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a b s t r a c t 

A feature of human creativity is the ability to take a subset of existing items (e.g. objects, ideas, or tech- 

niques) and combine them in various ways to give rise to new items, which, in turn, fuel further growth. 

Occasionally, some of these items may also disappear (extinction). We model this process by a simple 

stochastic birth–death model, with non-linear combinatorial terms in the growth coefficients to capture 

the propensity of subsets of items to give rise to new items. In its simplest form, this model involves just 

two parameters ( P, α). This process exhibits a characteristic ‘hockey-stick’ behaviour: a long period of rel- 

atively little growth followed by a relatively sudden ‘explosive’ increase. We provide exact expressions for 

the mean and variance of this time to explosion and compare the results with simulations. We then gen- 

eralise our results to allow for more general parameter assignments, and consider possible applications 

to data involving human productivity and creativity. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this paper, we introduce and analyse a new mathemati-

al model for the broad process of the cumulative, combinatorial

ature of technological evolution ( Arthur, 2009; Kauffman, 2008;

016; 2019; Ogburn, 1922; Read and Andersson, 2019; Valverde,

016 ). Consider the course of technological evolution over the

ourse of hominid evolution ( Stringer, 2016; Stringer and Galway-

itham, 2017 ). In the Lower Paleolithic, about 2.6 million years

go, our ancestor Australopithecus first started shaping simple stone

ools such as diggers and scrapers. The diversity of these tools was

erhaps a dozen or so. During the Upper Paleolithic and Mesolithic,

he diversity of stone tools increased at a glacial pace. Stone knife

lades grew longer and sharper over hundreds of thousands of

ears. Compound tools such as a knife blade hafted to a bone han-

le by sinew emerged perhaps 30 0,0 0 0 years ago. Homo sapiens

rose about 150,0 0 0 years ago. By the time of Cro Magnon, 50,0 0 0

o 15,0 0 0 years ago, the number of stone tools had increased to

erhaps several hundred, ranging from bone needles and bone

utes to arrow heads, fluted fish hooks, and the spear thrower. Ten

housand years later, in the time of Mesopotamia about 50 0 0 years

go, the number of tools had increased to perhaps thousands, rang-

ng in complexity from needles and pots to war chariots. 
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Still another 50 0 0 years later (today), the diversity of ‘tools’ has

xploded into the billions, ranging from the 60,0 0 0-year-old nee-

le to machine tools, televisions, computers, and the International

pace Station (ISS). The Wright Brothers took their first flight in

903, and a mere 66 years later, Apollo landed on the moon. 

This history of human technological evolution shows two major

eatures. At first, it proceeded at a glacial pace for a very long time

s the complexity of goods and tools increased very slowly. But

hen the process exploded upward, creating an enormous array of

ools, from simple to complex. In this late explosion the rate of

hange increased enormously. In less than a century we have gone

rom the advent of computers to word processing, the World Wide

eb, smartphones with thousands of apps, and the Space Shuttle,

o name just a few. 

In this paper, we analyse a simple model that can explain this

nitial long and slow advance, followed by a sudden ‘hockey-stick’

pward trend in which an increasing number of distinct items of

ncreasing complexity appear. Here increasing ‘complexity’ means

hat newly-arising items (goods, tools etc) combine features of sev-

ral existing items, which in turn have resulting from combining

eatures of earlier items, and so on. Thus, although M t measures

he number of distinct items, the growth of M t is associated with

ncreasing complexity of the items themselves in the model pre-

ented here. 

This model develops the theme that “combinatorics is at the

eart of innovation [and so] provides a possible rationale for the

ccelerating growth of innovations” Solé et al. (2013) . It is based,

https://doi.org/10.1016/j.jtbi.2020.110187
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2020.110187&domain=pdf
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1 Rounding M t down to the nearest integer is one possibility. 
in part on the notion of the ‘adjacent possible’, which was intro-

duced some time ago to refer to the new things that could possibly

arise next, given what is in existence now ( Kauffman, 2008; 2019 ).

For example, before the development of rocketry, the Space Shuttle

and ISS could not arise. However, in the early 20th Century, when

Robert H. Goddard was trying to invent rocketry, the space shut-

tle and ISS were already in the adjacent possible. What exists now

does not necessarily cause, but certainly enables what could arise

next. 

Our model exhibits the phenomenon of an ‘explosion’ within

finite time due to a non-linear (positive feedback) terms. The

phenomenon is well known, both in the setting of determinis-

tic differential equation modelling (see for example Goriely and

Hyde, 20 0 0 ), and continuous-time stochastic birth-processes (see

e.g. Feller, 1968; Norris, 1999 ). Such processes can reach infinity in

finite time when the (expected) rate of population increase grows

sufficiently faster than linearly with population size. Indeed, a pa-

per in Science from 1960 noted that a simple dynamical growth

process (based on a first order non-linear differential equation

with parameters estimated from historical demographic data) pre-

dicted that the world’s population would reach infinity in the year

2026 ( von Foerster et al., 1960 ). Of course, this prediction was

not meant to be taken literally; it instead suggested a sudden fu-

ture upward growth some decades in the future, but not actually

reaching infinity, due to factors such as the limited carrying ca-

pacity of the planet (as well as time-delays between generations).

More refined studies that take such factors explicitly into account

have since appeared (see e.g. Cohen, 1995 , and Johansen and Sor-

nette, 2001 ; this last paper also investigated applications to global

GDP, a topic we consider also later in this paper). Similarly, in our

model, reaching infinity in finite time should be regarded in appli-

cations as predicting only a sudden explosion towards a very large

(but finite) value. Also, in this paper, our emphasis is on estab-

lishing results particular to our model (e.g. expressions for the ex-

pected time to extinction) which do not directly follow from more

general results. 

Formalising a model of combinatorial innovation 

We propose that a simple cumulative combinatorial process un-

derlies this pattern of human technological evolution, an idea that

builds on earlier studies, for which some empirical data has been

presented and discussed (see e.g. Ambrose, 2001; Arthur, 2009;

Boyd et al., 2013; Koppl et al., 2018; Solé et al., 2003 ). In this set-

ting, we assume that humans take whatever lies at hand to fit

a purpose and combine these in different possible ways, seeking

combinations of them that might together serve the desired pur-

pose. These (possibly arbitrary) combinations are then tested to see

if any of the new artifacts work, thus accumulating new goods or

tools that are useful in some way. Some of these inventions even-

tually become innovations (i.e. inventions that become economi-

cally or socially successful Erwin and Krakauer, 2004 ), though our

model does not explicitly model this distinction. 

This simple feature of this process of human inventive explo-

ration suggests the following equation (from Koppl et al. (2018) ):

M t+1 = M t + 

M t ∑ 

i =1 

αi 

(
M t 

i 

)
, (1)

where M t is the number of goods or tools in the economy at time

t and αi , i ≥ 1 is a decreasing sequence of positive real numbers

(each less than 1.0) which reflects the decreasing ease of finding

and testing useful combinations among an increasing number of

goods. 

However, Eq. (1) has a number of shortcomings. Firstly, it will

generally require M t to take non-integer values, which is problem-
tic for interpreting both the term 

(
M t 

i 

)
and the range of summa-

ion 

1 . Secondly, Eq. (1) is purely deterministic, whereas evolution-

ry processes are typically best modelled by a stochastic approach

 Felsenstein, 2004; Yule, 1925 ). Thirdly, Eq. (1) allows items to be

ained but not lost. 

In the next section, we describe and analyse a stochastic pro-

ess, which we call the Combinatorial Formation (CF) model, based

n Eq. (1) , which avoids these shortcomings. In Section 3 we then

how the results from two simulation models, one based on the

eterministic Eq. (1) and one based on the stochastic CF model.

hese simulation results agree well with the theoretical predictions

erived from the CF model. Moreover, the deterministic simulation

odel accurately represents the average behaviour of the stochas-

ic simulation model. We end by discussing the implications of our

odel and its results for describing technological evolution, and

ow it could have (indirect) consequences for human evolution. 

. A stochastic combinatorial formation (CF) model 

Consider the discrete-state, continuous-time process M t ( t ≥ 0)

n the non-negative integers, describing the size of a population

f ‘items’. M 0 denotes the initial value of the process at time t = 0 .

or each time t > 0 consider the following Markovian transition

rocess. Between time t and t + δ (where δ is small): 

• each non-empty subset S of the population at time t inde-

pendently gives rise to a new item in the population with

probability α| S| δ + o(δ) ; 
• each item in the population at time t is independently re-

moved from the population with probability μδ + o(δ) . 

These two processes are assumed to proceed independently of

ach other in continuous time; in addition, o ( δ) refers to a term

hich is asymptotically negligible in proportion to δ as δ → 0. Ob-

erve that when M t = n the number of items added to the popu-

ation in the interval between time t and t + δ has a Poisson dis-

ribution with mean ( 
∑ n 

i =1 αi 

(
n 
i 

)
) δ + o(δ) , whereas the number of

tems removed from the population in this interval has a Poisson

istribution with mean μnδ = o(δ) . 

The stochastic dynamics of M t can thus be described more con-

isely as follows. At time t + δ: 

 t+ δ = M t + χ(M t ) , 

here, conditional on M t = n we have: 

(M t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

+1 , with probability δ
n ∑ 

i =1 

αi 

(
n 
i 

)
+ o(δ) ;

−1 , with probability δμn + o(δ) ;
0 , with probability 1 minus the sum of 

the other two probabilities . 

The value μ ≥ 0 is the rate at which individuals are removed

rom the system (i.e. an extinction event), which unless stated oth-

rwise is assumed constant (possibly zero). Extinction events are

requently observed in technological evolution; for example, the

nvention of the car marked the decline and fall of carriages, har-

ess shops and buggies, and telegraph networks have disappeared

ince the invention of telephones ( Solé et al., 2003; 2013 ). 

In the parlance of stochastic processes, M t describes a particu-

ar birth–death process, with a nonlinear (and time-independent)

irth rate and a linear death rate. What is slightly non-standard is

hat the range of the summation term in χ ( M t ) (in the +1 case)

epends on the random variable M t . 

The values α1 , α2 , . . . are non-negative constants. We will as-

ume throughout that they also satisfy the following condition: 

i � = 0 for some i ≤ M 0 , and αk � = 0 for some k ≥ 2 . (2)
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x > 1. 
The reason for imposing the first half of Condition (2) is that if

i = 0 for all i ≤ M 0 , then M t either remains constant for all time

t M 0 (if μ = 0 ) or it is a pure death process (if μ > 0). The reason

or the second half of Condition (2) is that if the largest value of k

or which αk > 0 is k = 1 , then M t is described by a classic linear

irth–death process (which behaves quite differently from the CF

odel). We will refer to the value k in Condition (2) in some of

he later proofs. 

The following three quantities play a key role in the dynamics

f the CF model. Let: 

n = 

n ∑ 

i =1 

αi 

(
n 

i 

)
, λ′ 

n = λn + μn, and γn = μn/λ′ 
n . (3)

he first quantity ( λn ) is the rate at which birth events occur, the

econd ( λ′ 
n ) is the rate at which events (both birth or death) occur,

nd the third ( γ n ) is the probability that when an event (birth or

eath) occurs, it is a death event. 

A particular instance of the CF model is the case where αi = P αi 

or some α > 0 and P ∈ (0, 1], which we refer to as the geometric

F model . Note that Condition (2) automatically holds in this case.

nother special case is where μ = 0 , in which case M t is described

y a pure-birth process. We consider this special case first. 

.1. The case when μ = 0 

In this case, with probability 1, there is a finite value T (a ran-

om variable with a finite mean and variance) for which M t tends

o infinity as t approaches T . Thus T is the time until ‘explosion’ of

he process M t . Our first theorem provides an exact description of

he mean and variance of the random variable T for the pure-birth

F model. 

heorem 1. 

(i) For the pure-birth CF model, the time to explosion (T) has a

finite expected value and a finite variance given by: 

E [ T ] = 

∞ ∑ 

n = M 0 

λ−1 
n and V ar[ T ] = 

∞ ∑ 

n = M 0 

λ−2 
n , 

where λn is as in (3) . 

(ii) Consider now the geometric pure-birth CF model, and let x =
1 + α, and k = M 0 − 1 . We have: 

λn = P · (x n − 1) , (4)

and so: 

E [ T ] = 

1 

P 

∑ 

n>k 

1 

x n − 1 

. (5)

Moreover, a faster converging expression for E [ T ] is given as

follows: 

E [ T ] = 

1 

P 
·
(

x −k 

x − 1 

+ 

x −2 k 

x 2 − 1 

+ 

x −3 k 

x 3 − 1 

+ · · ·
)

. (6)

Similarly, 

V ar[ T ] = 

1 

P 2 

(
x −2 k 

x 2 − 1 

+ 2 · x −3 k 

x 3 − 1 

+ 3 · x −4 k 

x 4 − 1 

+ · · ·
)

. (7)

roof. For Part (i), by the theory of continuous-time Markov pro-

esses ( Grimmett and Stirzaker, 2001 ), T is the sum of an infinite

umber of independent exponentially distributed random variables

 T n : n ≥ M 0 ), where T n has expected value given by E [ T n ] = λ−1 
n 

nd thus variance V ar[ T n ] = λ−2 
n . Since the expected value (respec-

ively, variance) of a sum of independent variables is the sum of

he expected values (respectively variances), the equations stated

or E [ T ] and Var [ T ] now follow. It remains to show that these quan-

ities are both finite. To this end, observe that Condition (2) implies
hat λn ≥ αi 

(
n 
i 

)
+ αk 

(
n 
k 

)
where αi , αk > 0 and i ≤ M 0 and k > 1.

hus, for s = 1 , 2 we have: 

∞ ∑ 

 = M 0 

λ−s 
n ≤ K 

∞ ∑ 

n = M 0 

((
n 

i 

)
+ 

(
n 

k 

))−s 

, 

or a constant K = 1 / ( min { αi , αk } ) s , and this infinite series has a

onvergent (finite) sum, as required. 

For Part (ii), Eq. (4) follows from the expression for E [ T ] in

art (i), since the Binomial Theorem gives 
∑ n 

i =1 P · αi 
(

n 
i 

)
= P · ((1 +

) n − 1) . 

To establish Eq. (6) , observe that: 

1 

x n − 1 

= 

1 

x n (1 − 1 /x n ) 
= 

1 

x n 
·
(

1 − 1 

x n 

)−1 

= 

1 

x n 
·
(

1 + 

1 

x n 
+ 

1 

x 2 n 
+ · · ·

)
, 

hus, by Eq. (5) we have: 

 [ T ] = 

1 

P 

∑ 

n>k 

1 

x n 
+ 

∑ 

n>k 

1 

x 2 n 
+ 

∑ 

n>k 

1 

x 2 n 
+ · · · . 

q. (6) now follows, since: 

 

n>k 

1 

x jn 
= 

(1 /x j ) k +1 

1 − (1 /x ) j 
= 

x − jk 

x j − 1 

, 

or each value of j ∈ { 1 , 2 , 3 . . . } . 
The expression for Var [ T ] in (7) follows by a similar algebraic

nalysis to the expectation expression. �

xample. Consider the pure-birth geometric CF model with M 0 =
0 , α = 0 . 01 , and P = 1 . This gives x = 1 . 01 and k = 9 . Sum-

ing the first 10 terms in the expression for E [ T ] in Eq. (6) in

heorem 1 gives a value of 219.47. The first 20 terms give 236.40,

he first 50 terms give 241.58, and the first 100 (or more) terms

ives ~ 241.73. Similarly, the standard deviation of T calculated by

q. (7) is σ = 12 . 26 . 

emarks. 

• The pure-birth CF model has a close connection to a classi-

cal process in population genetics. Let H n be the height of

a Kingman coalescent tree, which traces the ancestry of n

genes back to their common ancestor ( Wakeley, 2008 ). In

the limit as n → ∞ , H n converges in distribution to the

time to explosion T for a pure-birth CF model that has M 0 =
2 , a 2 � = 0 and a i = 0 for all i � = 2 (note that this is an in-

stance of the CF model, as it satisfies Condition (2) ). In par-

ticular, E [ T ] = E [ H] = 2 and V ar[ T ] = V ar[ H] = (4 π2 / 3) − 12

(these expressions for E [ H ] and Var [ H ] are classical coales-

cent results from the 1990s ( Wakeley (2008) , p.76)). 
• Theorem 1 can be strengthened a little. For each integer

n ≥ 1, let T ( n ) be the time to explosion of a geometric pure-

birth CF model conditional on M 0 = n . Not only is E [ T (n ) ]

finite for each value of n but 
∑ 

n ≥1 E [ T (n ) ] is also finite. This

follows from the following identity: 

∑ 

n ≥1 

E [ T (n ) ] = 

1 

P 

∞ ∑ 

j=1 

x j 

(x j − 1) 2 
, (8)

where (as before) x = 1 + α. Eq. (8) follows from writing 

∑ 

n ≥1 

E [ T (n ) ] = 

1 

P 

∞ ∑ 

k =0 

( 

∞ ∑ 

j=1 

x − jk 

x j − 1 

) 

(9) 

(from Eq. (6) in Theorem 1 , noting that k = n − 1 ) and then

interchanging the order of summation in Eq. (9) . The expres-

sion on the right of Eq. (8) is finite, since x j 

(x j −1) 2 
≤ 1 

x j −2 
,

and the partial sums of these latter terms converge because
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2.2. The general CF model allowing extinction 

Let X n , n = 1 , 2 , 3 . . . denote the (discrete time sampled) value

of M t at t = n . We first remark that process satisfies the following

two conditions: 

(i) if X n = 0 , then X n +1 = 0 , and 

(ii) for some values δx > 0: 

X n ≤ x ⇒ P (∃ r : X r = 0 | X 1 , X 2 , . . . , X n ) ≥ δx . 

To see that (ii) holds, observe that since X n is a Markov process,

we have: 

P (∃ r : X r = 0 | X 1 , X 2 , . . . , X n ) = P (∃ r : X r = 0 | X n ) ≥ P (X n +1 = 0 | X n ) . 
Now, if X n ≤ x , then the probability that all the (at most x ) items

in X n are removed and no other items are added in the unit time

interval from n to n + 1 is a strictly positive value that depends

only on x and the ( μ, αi ) parameters in the CF model. 

A classic theorem of Jagers (1992) states that for any process

X n that satisfies conditions (i) and (ii) above, the following holds:

With probability 1, there is either a finite value of n for which X n 

equals zero (and so remains at zero), or X n tends to infinity as

n → ∞ . It follows that if M t does not become extinct, it tends to

infinity. However, tending to infinity is a different (weaker) con-

dition than explosion (e.g. linear birth processes tend to infinity

but do not explode) and so we need to argue further for this. We

do this by deriving a stronger result concerning the expected time

until extinction or explosion, in Theorem 2 . 

Theorem 2. Consider the CF model. 

(i) With probability 1, M t either explodes or becomes extinct. 

(ii) The expected time until M t either explodes or becomes extinct

is finite. 

Proof. First observe that for the pure-birth CF model, extinction

cannot occur and therefore Parts (i) and (ii) hold from the results

in the previous section. Thus throughout this proof we will assume

that μ > 0. �

Proof of Part (i). Consider the discrete-time sampled process

M 0 , M 1 , M 2 , . . . , M i , . . . , with M 0 � = 0. We first establish the follow-

ing claim: �

Claim 1. For a sufficiently large integer m, and all values of n ≥ m,

the probability that the discrete-sampled CF process has exploded

prior to time i + 1 (an event we denote by writing M i +1 = ∞ ) con-

ditional on M i = n, together with the values of M 0 , . . . , M i −1 , is ≥ p

where p > 0 is a value that depends only on n and the α parameters

and μ. In other words, for all i ≥ 0 : 

∞ > n ≥ m ⇒ P (M i +1 = ∞| M 0 , . . . , M i −1 , M i = n ) ≥ p. (10)

We give a short proof of Claim 1 under the assumption that

αk > 0 for some k ≥ 3 (which always holds in the geometric

CF model). Claim 1 also holds when α2 > 0 and αk = 0 for all

k > 2, but its proof requires a more delicate argument, given in

the Appendix (essentially, if M t explodes, then the number of death

events is finite in the case we deal with here, but in the special the

case dealt with in the Appendix it tends to infinity). 

Select a sufficiently large value of m so that the following two

inequalities hold: 

αk 

(
m 

k 

)
> μm and 

∞ ∑ 

j= m 

1 

λ j 

< 1 , (11)

where λj is as described in Eq. (3) . The first inequality can clearly

be satisfied (indeed it requires only that αk > 0 for some k ≥ 2),

and it follows that αk 

(
n 
k 

)
> μn for all n ≥ m . The second inequal-

ity in (11) can be satisfied since λj is of order at most j −2 (since

α > 0 for some k ≥ 3). 
k 
Suppose that M i = n where n ≥ m . The probability that the first

hange in the value of M t after time i is a birth (rather than death)

vent is exactly (1 − γn ) and this is at least (1 − C 
(n −1) ···(n −k +1) 

) ,

here C = k ! μ/αk (this follows from Eq. (3) , noting that γn ≤
n/αk 

(
n 
k 

)
. Thus, the probability that there are no death events

fter time i (conditional on M i = n ≥ m ) is greater or equal to

 = 

∏ ∞ 

i = m 

(1 − C 
(i −1) ···(i −k +1) 

) , which is strictly positive since k ≥ 3. 

Now, conditional on the event that no deaths occur after time i

when M i = n ), the process ( M t , t ≥ i ) corresponds to a pure-birth

F process ˜ M t with the same αi values (and μ = 0 ), started at time

 , and with 

˜ M i = n . Such a process has a strictly positive probabil-

ty of exploding by time i + 1 (here we use the fact that if ˜ M t ex-

lodes at time i + T then P (T > 1) ≤ E [ T ] ≤ 1 (the first inequality

olds since T is non-negative; the second holds from Theorem 1(i)

ogether with the second half of the condition in (11) ). This estab-

ishes Claim 1. 

Next observe that there is a value p ′ > 0 (dependent only on m

nd the CF parameters ( α values and μ) for which the following

olds for all i ≥ 0: 

 < n < m ⇒ P (M i +1 = 0 | M 0 , . . . , M i −1 , M i = n ) ≥ p ′ . (12)

o see this, simply observe that the process between t and t + 1

ould begin with i sequential deaths (and no births) and thus ab-

orb at zero, all with strictly positive probability. 

By combining (10) and (12) , letting p ′′ = min { p, p ′ } > 0 , and

etting E i +1 be the event that M i +1 = 0 or M i +1 = ∞ the following

nequality holds for all values of n (both < m and ≥ m ) 

 (E i +1 | M 0 , . . . , M i −1 , M i = n ) ≥ p ′′ . (13)

Let E i denote the complement of E i . From (13) , we have: 

 ( E i +1 | E i ) ≤ 1 − p ′′ . (14)

ince E i is a nested decreasing sequence and E i = 

⋂ i 
j=1 E j , the

roduct rule gives: 

 ( E i ) = P ( E 1 ) · P ( E 2 | E 1 ) · P ( E 3 | E 2 ) · · · P ( E i | E i −1 ) . 

hus, from Inequality (14) we have: 

 ( E i ) ≤ (1 − p ′′ ) i −1 . 

t follows that 
∑ ∞ 

i =1 P ( E i ) ≤ 1 /p ′′ < ∞ ; therefore, by the Borel–

antelli Lemma, with probability 1 only finitely many of the events

 i occur ( Grimmett and Stirzaker, 2001 ). Thus, with probability 1,

 i (and hence M t ) equals zero or explodes at a finite time. 

roof of Part (ii). If T is the (continuous) time until M t first

eaches 0 or explodes, then 

 ≤
∞ ∑ 

i =1 

1 E i 
, 

here 1 
E i 

is the indicator random variable that takes the value 1

f E i occurs, and 0 if E i occurs. Thus 

 [ T ] ≤ E 

[ 

∞ ∑ 

i =1 

1 E i 

] 

= 

∞ ∑ 

i =1 

E [1 E i ] = 

∞ ∑ 

i =1 

P ( E i ) ≤
∞ ∑ 

i =1 

(1 − p ′′ ) i −1 = 1 /p ′′ , 

hich is finite. �

emarks. 

(i) The probability of extinction lies strictly between 0 and 1.

Conditional on non-extinction, for all time t > 0, the prob-

ability of explosion before time t and after time t are both

strictly positive. In particular, E [ M t ] is infinite for all t > 0.

For the geometric CF model, the probability of extinction be-

comes small as we increase M 0 and/or α. On the other hand,

for any value of M 0 and any α, we can make μ large enough

so that the probability M t hits zero is as close to 1 as we

wish. 
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2 Similar to, but not exactly identical to the pure-birth CF model due to the use 

of discrete time and the upper bound value K . 
3 This may be seen by induction on t = 1 , 2 , . . . 
(ii) Theorem 2 holds also in the case where μ (the extinction

rate) changes its value a finite number of times with t (or,

more generally, if μ is a time-variable function, which is

uniformly bounded above by some constant μ∗ ). For exam-

ple, consider the particular case where μ undergoes a dis-

crete jump (eg. goes from a small value μ to a larger value,

say μ1 at time t 1 ). In that case, the probability of M t hit-

ting zero will increase; we can model this precisely by sim-

ply taking the constant rate setting in the CF model with

the extinction rate μ1 and the starting time at t 1 (rather

than 0) and taking the initial population size at M t 1 (rather

than M 0 ). The only difference here from the usual CF model

is that the initial population size is now a random variable

( M t 1 rather than M 0 ). 

(iii) A simple upper bound on the probability of extinction of M t 

in the geometric CF model is min { 1 , ( μPα ) M 0 } . This follows

from a standard coupling argument based on two observa-

tions: (i) (1 + α) n − 1 ≥ αn for all n ≥ 1 and so the birth rate

in a geometric CF model with n items is at least λn where

λ = P α, and (ii) it is a classic result (see e.g. Allen (2003) )

that a linear birth-death process with birth and death rates

λ and μ (respectively) and starting with M 0 individuals has

extinction probability min { 1 , ( μ
λ
) M 0 } . 

Theorem 2 shows that the expected value of T (time to ex-

inction or explosion) is finite and uniformly bounded; however,

t does not give an explicit description of it. Proposition 1 below

oes this; its proof is given in the Appendix. The calculation of the

ariance of T is more involved, and we have not considered this

urther in the current paper. 

roposition 1. Consider the CF model M t with M 0 = n . Let e n =
 [ T (n ) ] be the expected value of the time until M t either becomes ex-

inct or explodes. Then: 

(i) For all n ≥ 0, e n = 

1 
λ′ 

n 
+ e n −1 γn + e n +1 (1 − γn ) , with e 0 = 0 ,

where λ′ 
n and γ n are as in (3) . 

(ii) e n = lim N→∞ 

e (N) 
n , where e (N) 

n is the solution to the finite (and

invertible) tridiagonal system of linear equations given by: 

e (N) 
n − e (N) 

n −1 
γn − e (N) 

n +1 
(1 − γn ) = 

1 

λ′ 
n 

for 1 ≤ n ≤ N − 1 , with the boundary conditions: e 0 = e N = 0 . 

We can write this recursion more compactly as a vector equa-

ion: 

 N e = u , 

here u = [ u n ] is the column vector with u n = 

1 
λ′ 

n 
, A N is a (N −

) × (N − 1) tri-diagonal matrix, and e is the column vector [ e (N) 
n ]

for n = 1 , . . . , N − 1 ). Notice that A N has entries +1 down the diag-

nal, with all its off-diagonal entries being negative and each row

um equaling 0. 

. Simulation 

We have implemented two discrete-time numerical simulations

f the model, one deterministic and the other stochastic. Because

n any simulation of the model the terms 
(

M t 
i 

)
quickly grow out

f hand, we have chosen to put an upper limit K on how many

oods can potentially be combined into new goods. For the sake

f numerical simplicity, we have set K = 4 . However, as the results

elow show, this is not a severe restriction. As in the numerical

xample in the previous section, we use αi = P αi for some given

alue of α, and P ∈ (0, 1]. 
The deterministic model is implemented as follows: 

 t+1 = (1 − μ) M t + P ·
K ∑ 

i =1 

αi 

(
M t 

i 

)
(15)

Note that this version of the model is a variation of the one

iven in Koppl et al. (2018) , since the summation term has a fixed

pper bound. Moreover, the values of M t can be non-integer by ap-

lying the usual extension of the definition of 
(

x 
i 

)
to allow x to take

on-integer values (at the cost of losing the combinatorial meaning

f this term). 

A stochastic version of the model 2 is implemented as follows: 

1. Start with an initial number of items M 0 at t = 0 . 

2. Draw a random number u from a Poisson distribution with

mean μM t . Set M t = M t − u . 

3. For i = 1 , . . . , K, calculate the expected number of new items

resulting from a combination of i ‘parents’, as s i = P × αi ×(
M t 

i 

)
. 

4. For i = 1 , . . . , K, draw a random number r i from a Poisson

distribution with mean s i . This gives the actual number of

new items r i resulting from a combination of i parents. 

5. Set M t+1 = M t + 

∑ K 
i =1 r i . 

6. Set t = t + 1 . 

7. If M t < M , go to Step 2. 

There are two reasons why we have implemented the model as

 discrete-time process rather than a continuous-time one. First,

omputationally it is much faster to execute, while statistically it

rovides the same results. And second, it is easier to keep track

f which goods produce which new goods. This allows us to study

ther properties of the model, such as descent distributions. We

how some preliminary results on this below. 

First, we evaluate the results of Theorem 1 by running both the

eterministic and the stochastic simulation models without extinc-

ion, i.e., with μ = 0 . As in the numerical example above, we use

 0 = 10 , P = 1 . 0 , and α = 0 . 01 , and run the simulations until a

umber of goods M = 50 0 0 has been reached. We ran the deter-

inistic model once and the stochastic model 10 times. The results

re presented in Fig. 1 (left). 

The solid black curve results from the deterministic simula-

ion model, while the dashed black curves represent the differ-

nt runs from the stochastic simulation model. The solid red line

s the theoretically calculated value for the mean time to infin-

ty E [ T ] = 241 . 73 . The dashed red lines represent plus or minus

wo standard deviations, where the theoretically calculated stan-

ard deviation σ = 12 . 26 . 

Note that the theoretically calculated mean E [ T ] is slightly

maller than the one resulting from the simulation model. This is

artly explained by the fact that the simulation model uses an up-

er limit K = 4 on the number of goods that can be combined to

roduce new goods. This will result in a slightly smaller rate of

rowth in M t , and thus a slightly larger mean time till it begins

o explode. If we take the value M = 50 0 0 to represent ‘infinity’ in

he simulation model, then the observed mean is about 250, with

 standard deviation of 11.17. These values agree well with the the-

retically calculated values, despite the upper limit K = 4 used in

he simulation models. For larger values of K , the agreement will

e even better. We should stress, however, that although any con-

inuous CF either becomes extinct or reaches infinity in finite time,

or every value of t = 1 , 2 , 3 , the quantity M t , by contrast, must be

nite 3 , although its sudden hyper-exponential increase mimics an

xplosion. 
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Fig. 1. Left: The results of the numerical simulations of the model for both the deterministic version (solid black curve) and the stochastic version (dashed black curves) 

with no extinction. The solid red line represents the theoretically calculated mean time to infinity E [ T ] , with the dashed red lines representing ± 2 σ . Right: Numerical 

simulations using the stochastic version of the model but allowing extinction. The graph shows the result of 10 runs, 7 of which explode (shown in black) and 3 go extinct 

(shown in red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A histogram (in a log-log plot) of the descent distribution of one particular 

run of the stochastic model. Grey circles represent frequencies of less than 5. The 

straight line is a regression fit to the black circles. 
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Next, we evaluate Theorem 2 by running the stochastic simula-

tion model with extinction, setting μ = 0 . 01 (and using the same

values for the other parameters as before). Fig. 1 (right) shows the

result of 10 runs, with the vertical axis on a log-scale to clearly

show the fluctuations due to extinction. Out of these 10 runs, 7

eventually lead to an explosion (shown in black), while 3 lead to

extinction (shown in red). Note that once a number of goods of

around M t = 100 is reached, explosion follows very quickly, but

until then it could go either way. 

With the stochastic implementation we can also investigate

other types of behaviours that follow from the formal model. For

example, we can keep track of the “descendants” of each good. In

particular, each time a new item is produced from a combination

of i existing items, then this new item is regarded as a descendant

of each of the i items that produced it, as well as a descendant of

all the earlier items that have i as an ancestor. This gives rise to a

descent distribution which describes the proportion of items having

0 , 1 , 2 , . . . descendants. 

Fig. 2 shows such a descent distribution (in a log-log plot) from

one particular run of the stochastic model, using the same param-

eter values as above (but without extinction). This distribution is

shown as a histogram, with on the horizontal axis the possible

number of descendants and on the vertical axis the number of

items that have a given number of descendants. 

The grey circles in the plot represent frequencies of less than 5.

Ignoring those observations, and performing a regression analysis

on the data represented by the black circles results in a power law

(represented by the straight line) with a slope of -1.198, with a

good fit ( R 2 = 0 . 93 ). The exact slope of the power law depends on

the model parameters. Fig. 3 shows some preliminary results on

how the slope depends, in particular, on the parameters α and K .

Open circles represent individual runs, black circles connected by

lines represent averages over these individual runs. 

Power laws have been observed in, for example, patent data

( Youn et al., 2015 ). Although these authors did not look at descent

distributions, they do argue that patent data is a good proxy for
echnological innovations. It will be interesting to derive descent

istributions from such data, which could then be compared to the

esults from our simulation model. We hope to do this comparison

n future work. 

. Discussion 

We have formalised and analysed a stochastic model (the CF

odel) representing a simple cumulative combinatorial growth
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Fig. 3. Dependence of the slope of the power law on the model parameters α (left) and K (right). 

Fig. 4. World GDP (in 1990 international dollars) over the past two millennia, both in absolute value (Left) and per Capita (Right). World DPP Data source: Angus Maddison, 

http://www.ggdc.net/maddison/oriindex.htm (under ‘Historical Statistics’). 
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rocess of the number of ‘goods’ M t over time. Our results estab-

ish that if the extinction rate μ is equal to zero in this model,

 t initially grows very slowly, followed by a rapid burst of growth,

eaching infinity in finite time T with probability 1.0. We derived a

heoretical mean E [ T ] and variance for this time to infinity T . Our

imulation results fit this growth process and the theoretical cal-

ulations very well. If μ is strictly positive, the process either be-

omes extinct or explodes in finite time (the probability of each

cenario depends on the size of the initial population, together

ith how large μ is relative to the other parameters). 

Building on earlier work, as well as empirically-based studies

 Ambrose, 20 01; Arthur, 20 09; Boyd et al., 2013; Koppl et al., 2018;

olé et al., 2003 ), we suggest that our model describes the charac-

eristic hockey-stick pattern of initially slow growth then rapid ex-

losion in the cumulative technological evolution of humans. The
iversity of tools since 2.6 million years ago to the billions of

oods at present appears to fit this pattern, at least qualitatively.

s a recent proxy for such technological evolution, we can con-

ider global gross domestic product (GDP) over the past 20 0 0 years

 Koppl et al., 2018 ). The notion that the variety, complexity and

ophistication of products produced by a country was developed

ore formally into an ‘economic complexity index’ in Hidalgo and

ausmann (2009) , and has been shown to be a good predictor of

DP per capita growth. 

Here data are presented on the left-hand side of Fig. 4 . Global

DP grew very slowly for most of the past two millennia, until

bout 1850 (the time of the Industrial Revolution) when it sud-

enly shot upwards. One simple explanation for the characteristic

hape of this graph is that population growth has also experienced

 rapid increase near the present. However, if one takes the ratio

http://www.ggdc.net/maddison/oriindex.htm
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of GDP per capita (shown on the right of Fig. 4 ) the shape of the

resulting curve still maintains a similar overall shape, consistent

with the predictions of the type of model described here. 

It should be possible to fit the parameters of the CF model (in

particular, P and the αi parameters) to this actual economic data

( Koppl et al., 2018 ). One might alternatively explain the shape of

the curve in Fig. 4 as arising from a standard birth–death model,

where the birth rate was initially low and constant, then rose over

a relatively short period of time (10 0–20 0 years) as a result of fac-

tors that changed the world economy (e.g. mass production, in-

ternational travel and transport, computing, etc). However, this ex-

trinsic explanation can also be modelled within the context of our

model of intrinsic growth, since GDP is related to the complexity of

ideas, products, and processes, which arose through the sequential

combination of existing ideas, products and processes over time.

We note, however, that GDP can also be quite a course measure

of the complexity of some processes; for example, oil extraction in

the middle east using relatively low-level technology has a major

impact on GDP in that region. 

There may be other data that could be described directly and

quantitatively by our model, such as the diversity of stone tool

technology, or the historical records of patents. Within the former

context, the CF model can be interpreted by letting M t measure the

complexity of the most complex good introduced in the economy

at time t . New, more complex tools can arise from the complex

tools already available. The process then describes the increasing

complexity and diversity of these goods into a simultaneous ‘tool

kit’ of simple and ever more complex tools. Australopithecus had

perhaps a dozen very simple stone tools. Cro Magnon had hun-

dreds ranging from needles to spear throwers. We have billions

ranging from needles to the International Space Station. 

All these processes have in common that over time they ex-

pand into the ‘adjacent possible’, with new ‘things’ enabling the

emergence of even more new ‘things’, in a combinatorial manner.

We propose our CF model as a mathematical formalisation of such

processes. Here, we have shown the main properties of this model,

both theoretically and through simulations. These initial results are

encouraging, and we hope to explore the correspondences with

some of the above mentioned real-world processes in the future. 
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Appendix A. Additional proofs 

Proof of Claim 1 when α2 > 0 and αk = 0 for all k > 2. Our proof

will rely on the following lemma. It simply asserts that a discrete-

time random walk on the integers, starting at zero and with the

probability of taking a step to the right being uniformly greater

than the probability of taking a step to the left, has a strictly posi-

tive probability of never returning to its starting position. This is a

standard result from Markov chain theory. �
emma 1. Let Y 1 , Y 2 , . . . , Y j , . . . , be a sequence of independent ran-

om variables taking values in the set { +1 , −1 } with P (Y i = +1) >

 > 

1 
2 for all i. Then: 

 

( 

∀ j ≥ 1 , 

j ∑ 

i =1 

Y i > 0 

) 

> 0 . 

We use this lemma to justify Claim 1 by applying a coupling

rgument. First, select β > μ and then select a sufficiently large

alue of m such that for all n ≥ m , we have: 

k 

(
n 

2 

)
≥ 2 βn. (16)

The process M t conditioned on M 0 = n is stochastically identical

o the following stochastic process M 

′ 
t . Let B (n ) 

t be the pure-birth CF

rocess that is initiated at time t ≥ 0 with B t = n and which has

ts α values equal to exactly one half of the α values of M t and

ith extinction rate 0. 

Similarly, let D 

(n ) 
t be the CF process that starts at time t ≥ 0

ith B t = n and has its α values equal to exactly one half of the α
alues of M t , and with extinction rate μ. 

Starting at t = 0 , the process M 

′ 
t is obtained by running B ( n ) (0)

nd D 

( n ) (0) simultaneously and independently, and at the first time

 

′ that one of these processes changes from n to n ′ ∈ { n − 1 , n + 1 } ,
ne continues the process by running B (n ′ ) (t ′ ) and D 

(n ′ ) (t ′ ) inde-

endently. This process is then repeated as time proceeds, inorder

o give a sequence of values n, n ′ , . . . , at times t = 0 , t ′ , . . . . In this

ay, the resulting process M 

′ 
t is then stochastically identical to M t .

Now, the probability that the sum of all the cumulative changes

nder the D process is strictly positive is some value p > 0, since

 is dominated by a linear birth–death process with birth rate

> μ and so we may apply Lemma 1 above. Thus the process M 

′ 
t 

emains always greater or equal to n and so the probability that

 

(n ′ ) (∗) is called in place of D 

(n ′ ) (∗) always remains at least 1 
2 by

nequality (16) . Finally, D 

( n ) ( ∗) represents a pure-birth process that

xplodes at a finite time, with probability 1. Claim 1 now follows. 

roof of Proposition 1. We begin with a lemma. �

emma 2. Consider the CF model (M t ). For N ∈ { 1 , 2 , 3 , . . . , } , let

 N ( t ) be the event that M t ′ = 0 or M t ′ ≥ N for at least one value of

 

′ ≤ t. 

(i) Let E ( t ) be the event that M t has either reached 0 or exploded

by time t. Then: 

P (E(t)) = lim 

N→∞ 

P (E N (t)) . 

(ii) Let T be the time until M t has either reached 0 or exploded and

let T ′ 
N 

be the first time t at which either M t ′ = 0 or M t ′ = N.

Then E [ T ] = lim N→∞ 

E [ T ′ N ] . 

roof. Part (i): For fixed t , the sequence of events ( E N ( t ), N ≥ 1)

s a nested decreasing sequence (i.e. E N+1 (t) ⊆ E N ) and E(t) =
 

N≥1 E N (t) ). The equation in Part (i) of the lemma is now an el-

mentary identity in probability theory. 

Part (ii): From Part (i): 

 (T > t) = (1 − P (E(t)) = lim 

N→∞ 

(1 − P (E N (t)) = lim 

N→∞ 

P (T ′ N > t) . 

hus: 

 [ T ] = 

∫ ∞ 

0 

P (T > t) dt = 

∫ ∞ 

0 

lim 

N→∞ 

P (T ′ N > t) dt 

= lim 

N→∞ 

∫ ∞ 

0 

P (T ′ N > t) dt = lim 

N→∞ 

E [ T ′ N ] , 

here monotonicity allows us to exchange the order of the limit

nd integration. 
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We return now to the proof of Proposition 1 . Recall the defi-

ition of λ′ 
n and γ n from (3) . By the law of total expectation, for

ll n ≥ 1, we have T (n ) = X n + T ′ where X n is the time until the

opulation size of n first changes (up or down by 1) and T ′ is

he time from this new population size to explosion or extinction.

hus E [ T (n ) ] = E [ X n ] + E [ T ′ ] . Since X n has an exponential distribu-

ion with rate λ′ 
n , we have E [ X n ] = 

1 
λ′ 

n 
, and thus: 

 n = 

1 

λ′ 
n 

+ E [ T ′ ] . 

y the law of total expectation, we have: 

 [ T ′ ] = E [ T (n −1) ] γn + E [ T (n +1) ](1 − γn ) = e n −1 γn + e n +1 (1 − γn ) . 

ombining these two equations gives us the following equation.

or all n ≥ 1: 

 n = 

1 

λ′ 
n 

+ e n −1 γn + e n +1 (1 − γn ) , (17)

here the boundary condition is e 0 = 0 . 

Part (ii): With a view to using Lemma 2 , consider the modified

rocess M 

′ 
t as an absorbing finite-state continuous-time Markov

rocess on the state space 0 , 1 , . . . , N, that has 0 and N as its two

bsorbing states and has the same transition process as M t on

tates 1 , 2 , . . . , N − 1 . For n ∈ 0 , 1 , . . . , N, let e (N) 
n be the expected

ime until absorption of M 

′ 
t when M 

′ 
0 

= n (by classical Markov

rocess theory, e (N) 
n is finite). We have e (N) 

0 
= e (N) 

N 
= 0 . For n =

 , . . . , N − 1 , the same argument used to establish Eq. (17) gives

he tridiagonal system: 

γn e 
(N) 
n −1 

+ 1 · e (N) 
n − (1 − γn ) e 

(N) 
n +1 

= u n , 

here u n = 

1 
λ′ 

n 
. Part (ii) of Lemma 2 now justifies the limit claim

hat e n = lim N→∞ 

e (N) 
n . �
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