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Abstract—The Robinson-Foulds (RF) distance is by far the most widely used measure of dissimilarity between trees. Although the

distribution of these distances has been investigated for 20 years, an algorithm that is explicitly polynomial time has yet to be described

for computing the distribution for trees around a given tree. In this paper, we derive a polynomial-time algorithm for this distribution. We

show how the distribution can be approximated by a Poisson distribution determined by the proportion of leaves that lie in “cherries” of

the given tree. We also describe how our results can be used to derive normalization constants that are required in a recently proposed

maximum likelihood approach to supertree construction.

Index Terms—Biology and genetics, discrete mathematics applications, trees, phylogenetics, Robinson-Foulds distance, Poisson

approximation, normalization constant.

Ç

1 INTRODUCTION

TREE comparison metrics are widely used in phylogenetics
for comparing evolutionary trees [3], [9] and performing

statistical tests—for example, to test whether two trees are
more “significantly different” from each other than one
might expect if one or both trees were randomly chosen [6],
[7]. In order to address these statistical questions, one needs
to determine the distribution of the metric under some null
model (see, for example, [6], [7]). The symmetric difference or
Robinson-Foulds metric is the most widely used measure of
differences between phylogenetic trees, and its distribution
is particularly attractive to study. In a landmark paper [4],
the authors described this distribution of trees relative to a
fixed reference tree via a system of generating functions.
This allowed the authors to calculate the distribution
explicitly for small trees and provided a tool for analytic
results on this distribution in later work by others.

However, the approach described in [4] does not
immediately appear to provide a polynomial-time algo-
rithm for computing this distribution, and for larger trees,
their approach may be computationally prohibitive. In this
paper, we describe how to calculate the distribution of the
Robinson-Foulds metric relative to a fixed tree. We also
show how the distribution can be approximated by a
Poisson distribution whose parameter depends on just one
aspect of tree shape—the number of “cherries.”

Our investigation into the distribution of the metric has
also been motivated by its relevance to a recent approach
for “supertree” construction that is based on maximum
likelihood [12]. In particular, our algorithm allows the
normalization constants in the likelihood calculations to be
computed explicitly. We describe how these normalization

constants depend weakly on aspects of the shape of the
tree—for example, how many “cherries” the tree has. We
start by recalling some terminology.

1.1 Terminology

Let X be a finite set. A phylogenetic tree with leaf set X is a

tree with its degree 1 vertices (leaves) labeled bijectively by

elements of X and whose remaining vertices have degree at

least 3. We use V ðT Þ and EðT Þ to denote the set of nodes

(vertices) and edges of T . Let V
�
ðT Þ denote the set of internal

(nonleaf) nodes of T and E
�
ðT Þ be the set of edges in EðT Þ

that have both endpoints in V
�
ðT Þ, the internal edges.

A phylogenetic tree is fully resolved if every internal
vertex has degree 3. Following [4], we let PT ðnÞ denote the
set of phylogenetic trees on the finite set X ¼ f1; 2; . . . ; ng
and BPT ðnÞ the set of fully resolved (“binary”) trees in
PT ðnÞ (two trees in BPT ð6Þ are shown in Fig. 1). The
number of trees in BPT ðnÞ is denoted bðnÞ and is given by

bðnÞ ¼ ð2n� 5Þ!! ¼
Yn
k¼3

ð2k� 5Þ n � 3; ð1Þ

see [9]. For convenience, we let �ðmÞ denote the number of
fully resolved trees with exactly m internal edges, so

�ðmÞ ¼ bðmþ 3Þ ¼
Ymþ3

k¼3

ð2k� 5Þ m � 0: ð2Þ

Every edge e 2 EðT Þ induces a bipartition or split of the
leaf set X corresponding to the labels present in the two
connected components remaining when the edge e is
removed. Let �ðT; eÞ denote this bipartition, which we
consider unordered. We let cðT Þ denote the set of all
bipartitions obtained by removing different edges of T .
Hence, jcðT Þj � 2n� 3, the maximum number of edges in a
phylogenetic tree, and jcðT Þj ¼ 2n� 3 exactly when T is
fully resolved. A bipartition is trivial if it separates a single
element from all other elements; trivial bipartitions corre-
spond to the edges in the tree that are external, meaning that
they are incident with a leaf of the tree. A cherry of a fully
resolved phylogenetic tree T is a pair of leaves that forms
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one half of a split of T (i.e., a pair of leaves whose incident
edges contain a common vertex). In Fig. 1, the pairs (1,2)
and (5, 6) form cherries in both trees, while the right-hand
tree has an additional cherry (3, 4).

The symmetric difference metric is defined on PT ðnÞ, and
hence, on BPT ðnÞ by

dðT1; T2Þ ¼ jcðT1Þ 4 cðT2Þj:

Note that this number is always even when T1 and T2 are

both in BPT ðnÞ, since for any two trees in PT ðnÞ, we

have dðT1; T2Þ ¼ jcðT1Þj þ jcðT2Þj � 2jcðT1Þ \ cðT2Þj, and if

T1; T2 2 BPT ðnÞ, then jcðT1Þj ¼ jcðT2Þj ¼ 2n� 3. As an

example, the two trees shown in Fig. 1 have a distance

value of 2 since the splits f1; 2; 3gjf4; 5; 6g and f3; 4gj
f1; 2; 5; 6g each occur in just one tree.

The metric was introduced by Bourque [1] and general-

ized by Robinson and Foulds [8]. As all phylogenetic trees

contain all trivial splits, the maximum possible distance

between two trees is 2ðn� 3Þ, which is twice the maximum

number of internal edges.

2 COMPUTING THE DISTRIBUTION

OF THE ROBINSON-FOULDS METRIC

For each T 2 PT ðnÞ, let bmðT Þ denote the number of trees

T 0 2 BPT ðnÞ for which dðT; T 0Þ ¼ m. As d is a metric,

b0ðT Þ ¼ 1. A recursive formula for the generating function

of bmðT Þ is given in [4] and [10]. This formula can be

described conveniently using generating functions. Let

BðT; xÞ :¼
X
m�0

bmðT Þxm:

For any interior edge e of T , let T=e be the tree formed by
contracting e, and let T1; T2 be the maximal subtrees of T
with e as a pendant edge. Then, from [4], we have

BðT; xÞ ¼ xBðT=e; xÞ þ ð1� x2ÞBðT1; xÞBðT2; xÞ:

As far as we could deduce, the recursion described by this

generating function identity does not provide a polynomial-

time algorithm for computing the bmðT Þ values, due to an

exponential explosion in the number of subcases.

Instead, we use an alternative approach, applying results

of [10]. Let qsðT Þ denote the number of trees in BPT ðnÞ that

share exactly s internal splits with T . Then, for all

m ¼ 0; 2; 4; . . . ; 2ðn� 3Þ, we have

bmðT Þ ¼ qn�3�m=2ðT Þ: ð3Þ

Define the polynomial

qðT; xÞ ¼
Xn�3

s¼0

qsðT Þxs: ð4Þ

Let E � E
�
ðT Þ denote a subset of the set of internal edges

of T . The forest T � E has exactly jEj þ 1 components

F1; F2; . . . ; FjEjþ1. We use E
�
ðFiÞ as a short hand for the edges

of E
�
ðT Þ that are contained in Fi.

Define

NEðT Þ ¼
YjEjþ1

i¼1

�ðjE
�
ðFiÞjÞ: ð5Þ

Note that NEðT Þ equals the quantity h�ðEÞi defined in [10]

(here, assuming that T is fully resolved) and also equals the

number of fully resolved trees containing all those splits

induced by edges in E.
For s � 0, define

rsðT Þ ¼
X
E�E
�
ðT Þ

jEj¼s

NEðT Þ;

the sum of NE over all subsets E � E
�
ðT Þ of cardinality s.

For example, r0ðT Þ equals �ðjE
�
ðT ÞjÞ ¼ �ðn� 3Þ. It was

shown in [10] that the generating function

RðT; xÞ ¼
X
s�0

rsðT Þxs

satisfies the identity

qðT; xÞ ¼ RðT; x� 1Þ: ð6Þ

In what follows, we derive a formula to evaluate the
coefficients rsðT Þ so that we can compute the coefficients
bmðT Þ via (3) and (6).

As usual, the computation applies dynamic program-

ming, requiring us to introduce definitions for the

appropriately divided subproblems. Let v0 be the node

adjacent to leaf n. Delete leaf n and make v0 the root of the

tree so that now every internal node has exactly two

children. For each internal node v, let Tv denote the

subtree of T containing v and all of its descendants. Given

a subset E � E
�
ðTvÞ, we define NEðTvÞ as in (5), where

F1; . . . ; FjEjþ1 will now be components of Tv � E instead of

T �E. We let �ðv; EÞ denote the number of edges in the

component of Tv � E containing v. For s; k � 0, we let

Eðv; s; kÞ denote the set of all subsets E � E
�
ðTvÞ such that

jEj ¼ s and �ðv; EÞ ¼ k. Define

Rðv; s; kÞ ¼
X

E2Eðv;s;kÞ
NEðTvÞ; ð7Þ

so that if v0 is the root of T and s � 0, we have

rsðT Þ ¼
Xs
k¼0

Rðv0; s; kÞ: ð8Þ

With these definitions in mind, and recalling the notation
�ðmÞ from (2), we now derive a recursion for Rðv; s; kÞ. As is
customary, an empty summation equals zero.

BRYANT AND STEEL: COMPUTING THE DISTRIBUTION OF A TREE METRIC 421

Fig. 1. Two fully resolved phylogenetic trees on six leaves, with

Robinson-Foulds distance value of 2.
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Lemma 1. Suppose that v 2 V
�
ðT Þ. Then,

Rðv; 0; kÞ ¼ �ðkÞ if k ¼ jE
�
ðTvÞj;

0 otherwise:

�
ð9Þ

Lemma 2. Suppose that s � 1. For all v 2 V
�
ðT Þ, let

nv ¼ j E
�
ðTvÞj.

1. If k > nv, then Rðv; s; kÞ ¼ 0.
2. If v 2 V

�
ðT Þ has no children in V

�
and s � 1, then

Rðv; s; kÞ ¼ 0.
3. If v 2 V

�
ðT Þ has one child v1 in V

�
, then

Rðv; s; kÞ ¼
P

k1�0 Rðv1; s� 1; k1Þ if k ¼ 0;
Rðv1; s; k� 1Þð2kþ 1Þ otherwise:

�
ð10Þ

4. If v 2 V
�
ðT Þ has two children v1; v2 in V

�
ðT Þ, then

Rðv; s; 0Þ ¼
Xs�2

s1¼0

X
k1�0

Rðv1; s1; k1Þ
 !

X
k2�0

Rðv2; s� 2� s1; k2Þ
 !

:

ð11Þ

5. If v 2 V
�
ðT Þ has two children v1; v2 in V

�
ðT Þ and

k � 1, then

Rðv; s; kÞ ¼
Xs�1

s1¼0

X
k1�0

Rðv1; s1; k1Þ
 !

Rðv2; s�1�s1; k� 1Þ�ðkÞ=�ðk� 1Þ

þ
Xs�1

s2¼0

X
k2�0

Rðv2; s2; k2Þ
 !

Rðv1; s�1�s2; k� 1Þ�ðkÞ=�ðk� 1Þ

þ
Xs
s1¼0

Xk�2

k1¼0

Rðv1; s1; k1ÞRðv2; s�s1; k�2�k1Þ

�ðkÞ
�ðk1Þ�ðk� 2� k1Þ

:

ð12Þ

Proof. Parts 1 and 2 follow from the definition of R.

3. Let e be the edge from v1 to v. When k ¼ 0, it
holds that E 2 Eðv; s; kÞ if and only if E ¼
E1 [ feg for some E1 2 Eðv1; s� 1; k1Þ, where k1

ranges from 0 to s� 1. This gives the first case.
When k � 1, the edge e connecting v and v1 is
absent from every set in Eðv; s; kÞ. Thus, E 2
Eðv; s; kÞ if and only if E 2 Eðv1; s; k� 1Þ:

NEðTvÞ ¼ NEðTv1
Þ �ðkÞ
�ðk� 1Þ

¼ NEðTv1
Þð2kþ 1Þ:

4. Let e1; e2 be the edges from v to v1; v2, respec-
tively. Since k ¼ 0, for all E 2 Eðv; s; kÞ, we have

e1 2 E and e2 2 E. Thus, E 2 Eðv; s; kÞ if and only
if there exists E1 2 Eðv1; s1; k1Þ and E2 2 Eðv2; s�
2� s1; k2Þ for some s1; k1; k2 � 0 such that E ¼
E1 [E2. For each such set E, we have: NEðTvÞ ¼
NE1
ðTv1
ÞNE2

ðTv2
Þ.

5. Again, let e1; e2 be the edges from v to v1; v2,
respectively. For each E 2 Eðv; s; kÞ with k > 0,
exactly one of the following cases holds:

Case 1. e1 2 E but e2 62 E. This case applies if

and only there exists E1 2 Eðv1; s1; k1Þ and E2 2
Eðv2; s� 1� s1; k� 1Þ for some s1; k1 � 0 such

that E ¼ E1 [ E2 [ fe1g. For such a set E, we have

NEðTvÞ ¼ NE1
ðTv1
ÞNE2

ðTv2
Þ �ðkÞ
�ðk� 1Þ :

Case 2. e1 62 E but e2 2 E. Identical to Case 1

with v1 and v2 switched.
Case 3. e1 62 E and e2 62 E. This case applies if

and only there exists E1 2 Eðv1; s1; k1Þ and E2 2
Eðv2; s� s1; k� k1 � 2Þ such that E ¼ E1 [ E2. For

each such set E, we have

NEðTvÞ ¼ NE1
ðTv1
ÞNE2

ðTv2
Þ �ðkÞ
�ðk1Þ�ðk� 2� k1Þ

: ut

Theorem 3. Given a fully resolved tree T on n leaves, the

coefficients bmðT Þ can be computed in Oðn5Þ time.

Proof. Consider a vertex v 2 V
�
ðT Þ. If v has one child in

V
�
ðT Þ, then we evaluate (10) for all s; k � n� 3 in

Oðn3Þ time. If v has two children in V
�
ðT Þ, then we

evaluate (12) in Oðn4Þ time.
Hence, computing all the coefficients rsðT Þ takes

Oðn5Þ time. From (6), we obtain

qmðT Þ ¼
Xn�3

s¼m

s

m

� �
rsðT Þð�1Þs�m; ð13Þ

from which we compute the values bmðT Þ ¼
qn�3�m=2ðT Þ. tu

3 POISSON APPROXIMATION

When n is large, we can approximate the qsðT Þ values by a

Poisson distribution with mean �T :¼ cT =2n, where cT
denotes the number of cherries of T (recall that a cherry is

a pair of leaves whose incident edges contain a common

vertex). More precisely, we have the following result.

Theorem 4. For any tree T 2 BPT ðnÞ, let YT be a Poisson

random variable with mean �T . Then, the distribution

qsðT Þ=bðnÞ as a function of s (the proportion of trees in

BPT ðnÞ that share s nontrivial splits with T ) and the

distribution of YT have variational distance that converges to

zero as n!1. In particular,X
s�0

jqsðT Þ=bðnÞ � e��T �sT =s!j ¼ Oðn�1Þ:
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Proof. Let XT denote the random variable which counts the

number of nontrivial splits that T shares with a tree T 0

selected uniformly at random from BPT ðnÞ. Thus,

IPðXT ¼ sÞ ¼ qsðT Þ=bðnÞ. Let X0T be defined in the same

ways as for XT but counting only splits that divide the

leaf set into subsets of size 2 and n� 2. Clearly, X0T � XT .

Moreover, the probability of the event G that T 0 shares a

split with T that is not of the type counted by X0T is

bounded above by a term of order n�1, and so (since

IPðXT ¼ X0T Þ � IPðXT ¼ X0T jGcÞP ðGcÞ¼1 � ð1�Oðn�1ÞÞ) ,

we have

IPðXT 6¼ X0T Þ ¼ Oðn�1Þ: ð14Þ

Now, for any two discrete random variables X and

X0, an elementary probability argument shows thatP
s jIPðX ¼ sÞ � IPðX0 ¼ sÞj � 2IPðX 6¼ X0Þ, and soX
s�0

jIPðXT ¼ sÞ � IPðX0T ¼ sÞj � 2IPðXT 6¼ X0T Þ: ð15Þ

Combining (14) and (15) givesX
s�0

jIPðXT ¼ sÞ � IPðX0T ¼ sÞj ¼ Oðn�1Þ: ð16Þ

By the triangle inequalityX
s�0

jIPðXT ¼ sÞ � IPðYT ¼ sÞj

�
X
s�0

jIPðXT ¼ sÞ � IPðX0T ¼ sÞj

þ
X
s�0

jIPðX0T ¼ sÞ � IPðYT ¼ sÞj:

ð17Þ

which, combined with (16), givesX
s�0

jIPðXT ¼ sÞ � IPðYT ¼ sÞj

�
X
s�0

jIPðX0T ¼ sÞ � IPðYT ¼ sÞj þOðn�1Þ:
ð18Þ

Thus, to establish Theorem 4, it suffices to show thatX
s�0

jIPðX0T ¼ sÞ � IPðYT ¼ sÞj ¼ Oðn�1Þ: ð19Þ

Now, by [10, Lemma 3], we have

IPðX0T ¼ sÞ ¼
XcT
r¼s
ð�1Þrþs r

s

� � cT
r

� � bðn� rÞ
bðnÞ : ð20Þ

Furthermore, let � denote �T for brevity, we have

IPðYT ¼ sÞ ¼ e���s=s! ¼
X1
r¼s
ð�1Þrþs r

s

� ��r
r!
:

Substituting this and (20) into the left-hand side of (19)

gives the expression:

X
s�0

X1
r¼s
ð�1Þrþs r

s

� � cT
r

� � bðn� rÞ
bðnÞ �

�r

r!

� ������
�����; ð21Þ

which, after some algebra, and moving the absolute

value inside the second summation, is bounded above by

�n :¼
X
s�0

1

s!

X1
r¼s

1

ðr� sÞ! fðn; rÞ; ð22Þ

where

fðn; rÞ :¼ cT
2n

� �r
�

Qr�1
i¼1 ð1� i=cT ÞQr

j¼1ð1� ð2jþ 3Þ=2nÞ � 1

�����
�����:

Using the fact that cT � n=2 and a somewhat tedious case
analysis, it can be shown that fðn; rÞ � C=n for a
constant C that is independent of r; n. It follows that

�n �
X
s�0

1

s!

X1
r¼s

1

ðr� sÞ!C=n ¼ Ce
2=n;

which establishes (19) and thereby the theorem. tu
Remark. If T is selected uniformly at random from BPT ðnÞ,

then �T converges in probability to 1
8 by [5, Theorem 4(b)].

Thus, Theorem 4 can be viewed as a refinement of the
main result from [10] that for two trees selected uniformly
at random from BPT ðnÞ the number of nontrivial splits
they share is asymptotically Poisson distributed with
mean 1

8 .

4 APPLICATION TO LIKELIHOOD-BASED

SUPERTREES

Steel and Rodrigo [12] recently presented a likelihood
framework for constructing consensus trees and supertrees.
Let LðTiÞ denote the set of leaves of a (fully resolved) gene
tree Ti. The probability of observing Ti with leaf set LðTiÞ ¼
Xi given an estimated species tree or supertreeT has the form

IPT;Xi
ðTiÞ ¼ IPT ðTiÞ ¼

1

ZT jLðTiÞ
e��idðTi;T jLTiÞ; ð23Þ

where T jLðTiÞ denotes the restriction of T to the leaf set Ti
and �i is a positive parameter that can be inferred by the
data by maximum likelihood.

There are many reasons why an estimated gene tree
might differ from the true tree, including sampling error,
model violations, and alignment errors. Under the model of
[12], the probability of observing a tree Ti on a given leaf set
Xi falls off exponentially with its distance to the underlying
tree T restricted to Xi. The parameter � can vary with the
quantity and quality of the data, with high values of �
corresponding to more confidence in the gene tree estimates.
See [2] for a recent discussion of this approach.

The normalizing constant

ZTi ¼
X

T 0:LðT 0Þ¼LðTiÞ
e��idðT

0;T jLTiÞ ð24Þ

is required so that the IPT ðTiÞ values sum to 1 over all
choices of Ti. One complication with this approach is that
the normalizing functions ZTi depend on T (more precisely,
although ZTi does not depend on how the leaves of T are
labeled, it may depend on the shape of T ), meaning that the
constant needs to be computed in order to compare the
likelihood values of two trees. This was overlooked in [12],
in particular, Proposition 1 of that paper may only hold in
certain cases (for example, if the sets Xi are of size at most 5,
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or if the �i values are sufficiently large). However, [12,
Proposition 1] can be corrected by replacing the term

Xk
i¼1

�idðTi; T jXiÞ

in the statement of that Proposition by

Xk
i¼1

�idðTi; T jXiÞ þ �iðT Þ;

where

�iðT Þ ¼
Xk
i¼1

logðZTiÞ ¼ log 1þ
X
m>0

e��imnmðT Þ
 !

;

and nmðT Þ is the number of fully resolved phylogenetic
trees on leaf set Xi that have distance m from T jXi.

In general, normalizing constants are difficult to evalu-
ate. When d is the Robinson-Foulds distance; however,
computing the constant is straightforward. Suppose that
jXij ¼ n and bmðT Þ has been computed for all m. Then
(suppressing the index i), we have

ZT ¼
X

T 02BPT ðnÞ
e��dðT;T

0Þ

¼
X
m

bmðT Þe��m;
ð25Þ

which can be evaluated directly from the bmðT Þ values, and
thereby, in polynomial time overall in n.

It is instructive to estimate ZT in two limiting cases—first
for values of � that are close to 0, and for values of � that are
large. In both cases, we find that the dominant aspect of the
shape of T affecting ZT is the number cT of cherries that T
has. The experimental performance of these approximations
is evaluated in the final section.

4.1 Small Values of �

Our first approximation for ZT makes use of Theorem 4. Fix
a tree T and, as before, let � :¼ �T ¼ cT =2n, where cT is the
number of cherries in T . Starting with (25), we have

ZT ¼
X
m

bmðT Þe��m

¼ bðnÞ
X
s

qsðT Þ
bðnÞ e

�2�ðn�3�sÞ

 !

¼ bðnÞ
X
s

e���s

s!
e�2�ðn�3�sÞ þOðn�1Þ

 !
;

this last line following from Theorem 4 and the inequality
0 < e�2�ðn�3�sÞ � 1. Thus,

ZT ¼ bðnÞ e�2�ðn�3Þ
X
s

e���s

s!
e2�s þOðn�1Þ

 !
ð26Þ

¼ bðnÞ
�
e�2�ðn�3Þþ�ðe2��1Þ þOðn�1Þ

	
; ð27Þ

giving the small-� approximation

ZT 	 bðnÞ 	 e�2�ðn�3Þþ�ðe2��1Þ: ð28Þ

Note that (27) makes use of the formula for the moment
generating function of the Poisson distribution. For � close
to 0, the identity e��m ¼ 1� �mþOð�2Þ reveals that the
difference between ZT and the approximation

bðnÞ 1� � 2n� 6� 2
cT
2n

� �� �
consists of terms of order �2 and n�1. Thus, for n large, as �
converges to 0, ZT converges to a constant, and when � is
close to 0, the small difference from this constant is
dominated by cT .

4.2 Large Values of �

When � is large, let � ¼ e�2�. Then,

ZT ¼ 1þ b2ðT Þ�þ b4ðT Þ�2 þOð�3Þ:

Now, b2ðT Þ ¼ 2ðn� 3Þ, and from [11, Theorem 2.26], we
have

b4ðT Þ ¼ 4
n� 3

2


 �
þ 6ðn� 6þ cT Þ:

Thus, if we let An;� :¼ 1þ ð2n� 3Þ�þ 2ðn2 � 4n� 6Þ�2, then

ZT ¼ An;� þ 6cT �
2 þOð�3Þ;

giving the large-� approximation

ZT 	 An;� þ 6cT �
2: ð29Þ

Once again, we see that in the limit (in this case, as � tends to
infinity), ZT converges to a constant, and for large values of
�, the small difference from this constant is dominated by cT .

5 EXPERIMENTAL RESULTS

5.1 Features of Distribution

To study general features of the distribution and examine
the accuracy of the above approximations, we generated
random trees and computed the distribution of the
Robinson-Foulds distance for each tree. The trees were
drawn from a uniform distribution, with the number of taxa
varying from 5 to 50. One thousand replicates were
performed for each number of taxa. We also constructed
an unrooted caterpillar tree and a balanced unrooted tree
for every set of taxa. A balanced unrooted tree is one that
minimizes the length of the longest path between any two
leaves, an example being the right-hand tree in Fig. 1.

As predicted from the Poisson approximation, the
distributions of Robinson-Foulds distances from a fixed
tree were highly peaked. For all of the trees examined, at
least 99 percent of trees are either at distance 2ðn� 3Þ, the
maximum possible, or distance 2ðn� 4Þ.

For T 2 BPT ðnÞ, let NkðT Þ denote the number of trees in
BPT ðnÞ within Robinson-Foulds distance k of T : that is,

NkðT Þ ¼
Xk
m¼0

bmðT Þ:

Then, N2ðT Þ ¼ 2ðn� 3Þ þ 1, the number of trees that share
all but one split with T , together with the tree T itself. When
k > 2, the value of NkðT Þ varies with the shape of T . We
observed that for all k, NkðT Þ was minimized when T is a
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caterpillar. At the other extreme, NkðT Þ was almost always
maximized when T was balanced, the exception being
when T was balanced but did not have the maximum
number of cherries.

5.2 Accuracy of Approximations

For each tree and a range of different values for �, we
computed the exact normalizing constant ZT . Fig. 2
illustrates the variation in ZT over different values of �,
displayed on a log-log plot. The central curve gives the
average ZT values for 1,000 fifty taxa trees drawn from a
uniform distribution, as a function of �. The small-� and
large-� approximate values for ZT are also plotted.

As a function of �, the normalizing constant has two
distinct phases. The small-� approximation fits well for
logð�Þ < 0:2 (approximately), while the large-� approxima-
tion fits well for logð�Þ > 0:2. By differentiating, we see that
the small-� approximation has a minimum at � ¼ 1

2 log n�3
�

� 	
.

To the left of this minimum, the curve is well fitted by the
maximum of the two approximations. To the right of this
minimum, the large-� approximation is best. To summar-
ize, let cT be the number of cherries of T , � ¼ cT=2n,
� ¼ e�2�, and An;� :¼ 1þ ð2n� 3Þ�þ 2ðn2 � 4n� 6Þ�2. We
then have the approximation

ZT 	
max

�
ðbðnÞ

�
e�2�ðn�3Þþ�ðe2��1Þ	;

An;� þ 6cT �
2


if � < 1
2 log n� 3

�

� �
;

An;� þ 6cT �
2 otherwise:

8><
>:

ð30Þ

5.3 Importance of Normalizing Constant

As we observed above, to correctly compute the likelihood
for a supertree under the model of [12], we need to compute
ZT for every distinct supertree T . Even though, this
calculation takes polynomial time, it is still extremely
expensive computationally, particularly considering that
millions of candidate supertrees may be considered. Here
we examine whether or not this computation is strictly

necessary. If we ignore the normalizing constant when
comparing likelihoods, would the relative likelihood order-
ing of distinct trees change? The key question is to
determine how much the normalization constants ZT vary.
If the difference is sufficiently small, then there will be no
impact from ignoring the differences between normalizing
constants.

For a given value of �, define the range of ZT to be the
ratio of the largest to the smallest ZT values over all fully
resolved trees with n taxa. Fig. 3 plots the range of ZT for
the values of � used in Fig. 2, and for n ¼ 10; 20; 30; 40; 50
taxa trees, on a log-log axis. The trees minimizing ZT were
always caterpillar trees and the trees maximizing ZT were
usually, but not always, balanced trees. Fig. 3 indicates that
when � is outside the range ½0:03; 3
, there is little variation
in ZT between different trees. With 50 taxa, the normalizing
constants differ by a maximum of 7.5 log units.

Suppose that we are comparing the log-likelihood of two
trees T1 and T2 with respect to a third tree T . If
dRF ðT; T1Þ 6¼ dRF ðT; T2Þ, then�� log

�
e��dðT;T1Þ

	
� log

�
e��dðT;T2Þ

	�� � 2�;

so ignoring the normalizing constant will only change the
ordering of the likelihood values if j logZT1

� logZT2
j � 2�.

Plotting the curve for 2� on Fig. 3, we see that j logZT1
�

logZT2
j � 2� for some pairs of 50 taxa trees only when � lies

in the interval ½1:25; 1:86
. The corresponding interval will
be even smaller for trees with fewer taxa: for 20 taxa trees,
there is no value of � for which ignoring ZT scores leads to
a switch in the order of likelihood values for two trees.

In summary, when � is approximately 1.5 and the
number of taxa is greater than around 20, it is potentially
important to correctly compute normalization constants.
Outside that range, the influence of ZT on likelihood
rankings can be safely ignored. We note, however, that here,
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Fig. 2. The average ZT values for different values of �, plotted (in gray)
on a log-log axis. The approximations (with error terms discarded) for
small and large � are also plotted in black. All values were computed by
drawing 1,000 fifty taxa trees from a uniform distribution and computing
normalizing constants exactly using the algorithms described here.

Fig. 3. The range of the ZT values computed for different � and plotted
on a log-log axis. The ZT values were computed by drawing 1,000 trees
from a uniform distribution with n ¼ 10; 20; 30; 40; 50 taxa (five curves).
The range is the difference between the maximum ZT and minimum ZT
values for each choice of � and n. The dotted line indicates the 2� value:
when the range is less than 2� ignoring that the normalizing constant
has no effect on the relative order of likelihood values.



we are only interested in relative ordering of supertrees
with respect to likelihood: a Bayesian Monte-Carlo ap-
proach may well need accurate ZT values for all �.
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