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Abstract Suppose a finite set X is repeatedly transformed by a sequence of permu-
tations of a certain type acting on an initial element x to produce a final state y. For
example, in genomics applications, X could be a set of genomes and the permutations
certain genome ‘rearrangements’ or, in group theory, X could be the set of configura-
tions of a Rubik’s cube and the permutations certain specified moves. We investigate
how ‘different’ the resulting state y′ to y can be if a slight change is made to the
sequence, either by deleting one permutation, or replacing it with another. Here the
‘difference’ between y and y′ might be measured by the minimum number of permu-
tations of the permitted type required to transform y to y′, or by some other metric. We
discuss this first in the general setting of sensitivity to perturbation of walks in Cayley
graphs of groups with a specified set of generators. We then investigate some per-
mutation groups and generators arising in computational genomics, and the statistical
implications of the findings.
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1268 V. Moulton, M. Steel

1 Introduction and background

Mathematical techniques play an important role in developing methods to infer evo-
lutionary relationships between species, based on differences between their genomes
Fertin et al. (2009), Pevzner (2000), Semple and Steel (2003), Wang and Warnow
(2005). For the purposes of this paper a genome is simply an ordered sequence of
objects—usually taken from the DNA alphabet or a collection of genes—which may
occur with or without repetition, and with or without an orientation (+,−).

In evolutionary genomics, two genomes are frequently compared by the minimum
number of ‘rearrangements’ (of various types, such as transpositions or reversals)
required to transform one genome into another (Fertin et al. 2009). This minimum
number is then used as an estimate of the actual number of events and thereby the
‘evolutionary distance’ between the species involved.

Since both the precise number and the actual rearrangement events that occurred in
the evolution of the two genomes from a common ancestor are unknown, it is pertinent
to have some idea of how sensitive this distance estimate might be to the sequence of
events (not just the number) that really took place (Sinha and Meller 2008).

This question has important implications for the accurate inference of evolution-
ary relationships between species from their genomes, and we discuss some of these
further in Sect. 3. However, we begin by framing the type of mathematical questions
that we will be considering in a general algebraic context.

Let G be a finite group, whose identity element we write as 1G , and let S ⊂ G be a
subset of generators, that is symmetric (i.e. closed under inverses, so x ∈ S ⇒ x−1 ∈
S) and with 1G �∈ S. In addition, let � = Cay(G, S) be the associated (undirected)
Cayley graph, with vertex set G and an edge connecting g and g′ if there exists s ∈ S
with g′ = gs (unless otherwise stated, we use the convention of multiplying group
elements from left to right). For any two elements g, g′ ∈ G, the distance dS(g, g′) in
Cay(G, S) is the minimum value of k for which there exist elements s1, . . . , sk of S
so that g′ = gs1 · · · sk (for g = g′, we set dS(g, g′) = 0). Note that dS is a metric1 (in
fact it is just the usual shortest-path metric on �), in particular, dS(g, g′) = dS(g′, g),
since S is symmetric.

In this paper, our focus is on the following two quantities:

λ1(G, S) := max
g∈G,s∈S

{dS(sg, g)},

and

λ2(G, S) := max
g∈G,s,s′∈S

{dS(sg, s′g)}.

One way to view these quantities is via the following result which is easily proved.

1 Recall that a metric is a non-negative real-valued function d defined on X × X which satisfies the fol-
lowing properties for all values x, y, z ∈ X : d(x, y) = d(y, x), d(x, y) = 0 ⇔ x = y, and d(x, z) ≤
d(x, y) + d(y, z).
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The ‘Butterfly effect’ in Cayley graphs 1269

Fig. 1 The Cayley graph Cay(G, S) for G = �4 (the permutation group on {1, 2, 3, 4}) and the set of
transpositions S = {(12), (23), (34)}. Substituting just one element—namely (34) for (12)—in the product
corresponding to the walk in the lower front face (which starts and returns to the lower-most point [1234])
results in a walk that ends at a point ([4321], top) that is very distant (under dS ) from the end-point of the
original walk. In fact, the two end-points are at maximal distance in this example

Lemma 1 Let S be a symmetric set of generators for a finite group G. Then:

(a) λ1(G, S) is the maximum value of dS(g, g′) between any pair of elements g and
g′ of G for which g = h1h2 · · · hk, and h′ = h′

1h′
2 · · · h′

k , where h′
i = hi ∈ S for

all but at most one value (say j) for i , and h′
j = 1G , h j ∈ S.

(b) λ2(G, S) is the maximum value of dS(g, g′) between any pair of elements g and
g′ of G for which g = h1h2 · · · hk and g′ = h′

1h′
2 · · · h′

k where h′
i = hi ∈ S for

all but at most one value (say j) for i , and h j , h′
j ∈ S, h′

j �= h j .

Thus, λ1(G, S) tells us how much (under dS) a product of generators can change if
we omit one generator at some position in the product sequence, whilst λ2(G, S) tells
us how much (again under dS) a product of generators in S can change if we substitute
one generator for another at some position in the product sequence (see Fig. 1 for an
example where λ2(G, S) = 6; this follows by Lemma 1(b) since the maximal distance
between any pair of vertices in Cay(G, S) is 6 and, as indicated in the figure caption,
the substitution of the third generator (34) in the product (34) (23) (34) (23) (34) (23)
with the generator (12) converts a closed cycle in Cay(G, S) into a path from [1234]
to the maximally-distant vertex [4321]).

As such, λm (m = 1, 2) is a measure of the ‘sensitivity’ of walks in the Cayley graph
to a switch in, or deletion of, a generator at some point. Moreover, if G acts transitively
and freely2 on any arbitrary finite set X then λm provides a corresponding measure of

2 G acts transitively on X if for any pair x, y ∈ X there exists g ∈ G with xg = y; the action is free if
xg = xh ⇒ g = h, for all g, h ∈ G and x ∈ X .
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1270 V. Moulton, M. Steel

sensitivity of this action to a switch in or deletion of a generator (since a transitive, free
action of G on X is isomorphic to the action of G on itself by right multiplication).
Actions with large λm values can thus be viewed as exhibiting a group-theoretical
analogue of the ‘butterfly effect’ in dynamical systems theory (Hilborn 2004), where
a small change in the initial state of a system can result in large differences to later
states (cf. Holmgren (1994, Part IV) where the concept of sensitivity in dynamical
systems with a discrete state space is reviewed).

In the genomics applications that we consider, X is a set of DNA sequences or
genomes, elements of G correspond to evolutionary events such as site substitution
or genome rearrangement, and the metric dS to some ‘evolutionary distance’ between
DNA sequences or genomes, respectively. In this context, we are interested in under-
standing whether small changes in the sequence of evolutionary events acting on some
initial DNA sequence or genome can lead to large differences in the resulting DNA
sequence or genome relative to dS (cf. Holmgren (1994, Sect. 11.1) for related con-
cepts arising in symbolic dynamics). After presenting some general results concerning
λm , in Sect. 2 we discuss some applications arising for various choices of G and S.
These include the Klein four group, which arises in evolutionary models of DNA
sequence evolution, and the permutation group, which typically appears when study-
ing rearrangement distances between genomes. In Sect. 3 we outline some statistical
implications of our results, followed by some brief concluding comments.

One can imagine many other settings besides genomics where similar questions
arise—for example, in a sequence of moves that should unscramble the Rubik’s cube
from a given position (Kunkle and Cooperman 2009), what will be the consequences
(in terms of the number of moves required) for completing the unscrambling if a
mistake is made at some point (or one move is forgotten)? In addition, related ques-
tions arise in the study of ‘automatic’ groups, where the group under consideration is
typically infinite (Eppstein 1992).

In genomics, there has been a great deal of work over the last two decades on the
combinatorial and algorithmic aspects of genome rearrangements. Particular high-
lights have included Hannenhalli and Pevner’s celebrated polynomial-time algorithms
for calculating the minimal reversal distance between signed genomes (Hannenhalli
and Pevzner 1999), and a more recent and general approach based on the combinator-
ics of the ‘double cut and join’ operation (Bergeron et al. 2009) [other related results
are also described in Bafna and Pevzner (1996), Kececioglu and Sankoff (1995) and
Pevzner (2000)]. However, to the best of our knowledge, there has been no attempt to
define or study two quantities (λ1, λ2) that we consider in this paper, and we view our
results as providing some modest initial results, motivated by statistical considerations
that are outlined in Sect. 3.

1.1 Algebraic background and general inequalities

We first make some basic observations about Cayley graphs and the metric dS [further
background on basic group theory, Cayley graphs, and group actions can be found in
Rotman (1995)]. It is well known that � is a connected regular graph of degree equal to
the cardinality of S and that � is also vertex-transitive [see, for example, Kostantinova
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The ‘Butterfly effect’ in Cayley graphs 1271

(2008, Proposition 1)]. Consider the function lS : G → {0, 1, 2, 3 . . . |G|}, where,
lS(1G) = 0 and, for each g ∈ G − {1G}, lS(g) is the smallest number l of elements
s1, . . . , sl from S for which we can write g = s1 · · · sl . In terms of the Cayley graph,
lS(g) is the shortest path from g to the identity element. The function lS clearly satisfies
the subadditivity property that, for all g, g′ ∈ G:

lS(gg′) ≤ lS(g) + lS(g
′).

In addition,

lS(g−1) = lS(g),

and

lS(g) = 1 ⇔ g ∈ S, lS(g) = 0 ⇔ g = 1G .

Note that lS(gg′) is generally not equal to lS(g′g). The metric dS , described in the
previous section, is related to lS as follows:

dS(g, g′) = lS(g−1g′).

Consequently, by definition:

λ1(G, S) = max
g∈G,s∈S

{lS(g
−1sg)}, (1)

and

λ2(G, S) = max
g∈G,s,s′∈S

{lS(g
−1ss′g)}. (2)

Let lS(G) = max{lS(g) : g ∈ G}, which is the diameter of Cay(G, S), that
is, the maximum length shortest path connecting any two elements of G. Clearly,
λ1(G, S) ≤ lS(G) and λ2(G, S) ≤ lS(G). Moreover:

λ2(G, S) ≤ 2 · λ1(G, S), (3)

since, for any g ∈ G and s, s′ ∈ S, we have:

dS(sg, s′g) ≤ dS(sg, g) + dS(g, s′g).

A partial converse to Inequality (3) is provided by the following:

λ1(G, S) ≤ λ2(G, S) + λ′
1(G, S), (4)

where λ′
1(G, S) = maxg∈G mins∈S{lS(g−1sg)}. To verify (4), select a pair g from G

and s from S so that lS(g−1sg) = λ1(G, S). Then:
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1272 V. Moulton, M. Steel

λ1(G, S) = dS(sg, g) ≤ dS(sg, s1g) + dS(s1g, g),

where s1 is an element s′ (possibly equal to s) in S that minimizes lS(g−1s′g). Now,
dS(sg, s1g) ≤ λ2(G, S) (even if s′ = s) and dS(s1g, g) ≤ λ′

1(G, S), and so we
obtain (4).

Note also that if G is Abelian, then λ1(G, S) = 1, and λ2(G, S) ≤ 2 for any
symmetric set S of generators. Moreover, for the Abelian 2-group G = Z

n
2 and with

the symmetric set S of generators consisting of all n elements with the identity at all
but one position, we have lS(G) = n and λ1(G, S) = 1. This shows that the ratio
λ1(G, S)/ lS(G) can be made as close to zero as desired by selecting an appropriate
pair (G, S). Our next result generalizes this observation further.

Lemma 2 Let G1, G2, . . . , Gk be finite groups, and let Si be a symmetric set of gen-
erators of Gi for i = 1, . . . , k. Consider the direct product G = G1 × G2 × · · ·× Gk

along with the symmetric set of generators S of G consisting of all possible k–tuples
which consist of the identity element of Gi at all but one co-ordinate i , where it takes
some value in Si . Then:

(i) λ1(G, S) ≤ max1≤i≤k
{
lSi (Gi )

}
, and

(ii) lS(G) = ∑k
i=1 lSi (Gi ).

Proof For Part (i), let λ1(G, S) = lS(g−1sg), where s ∈ S is a non-identity ele-
ment at some co-ordinate ν. Notice that (g−1sg) j = 1G j for all j �= ν. Moreover,
(g−1sg)ν = s1 · · · sl where l ≤ lSν (Gν). Thus lS(g−1sg) ≤ lSν (Gν), as claimed.

For Part (ii), the inequality lS(G) ≤ ∑k
i=1 lSi (Gi ) is clear; to establish the reverse

inequality, for any 1 ≤ i ≤ k let gi be an element of Gi with lSi (gi ) = lSi (Gi ), and
g = (g1, . . . , gk) ∈ G. Then lS(g) = ∑k

i=1 lSi (Gi ), and so lS(G) ≥ ∑k
i=1 lSi (Gi ).

��
We now consider how λm (m = 1, 2) behaves under group homomorphisms. Sup-

pose H is the homomorphic image of a group G under a map p. Let N = K er(p) be
the kernel of p, which is a normal subgroup of G, and with H ∼= G/N . Thus we have
a short exact sequence:

1G → N → G
p→ H → 1G . (5)

Let S be a symmetric set of generators of G. Then SH = {p(s) : s ∈ S − N } is a
symmetric set of generators of H .

Lemma 3 For m = 1, 2, λm(H, SH ) ≤ λm(G, S).

Proof First suppose that m = 1. For x ∈ SH and h ∈ H , consider h−1xh. There exist
elements g ∈ G and s ∈ S − N for which f (g) = h and f (s) = x . Now the element
g−1sg ∈ G can be written as a product of at most l = λ1(G, S) elements of S, that
is g−1sg = s1s2 · · · sk for k ≤ l. Applying p to both sides of this equation gives:
h−1xh = p(s1)p(s2) · · · p(sk). Notice that some of the elements on right may equal
the identity element of H (since p(si ) = 1H ⇔ si ∈ N ), but they are elements of SH

otherwise. Thus lSH (h−1xh) ≤ l. Since this holds for all such elements h, x , Eq. (1)
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The ‘Butterfly effect’ in Cayley graphs 1273

shows that λ1(H, SH ) ≤ λ1(G, S). The corresponding result for m = 2 follows by an
analogous argument. ��

To obtain a lower bound for λm(G, S) suppose that the short exact sequence (5) is a
split extension, i.e. there is a homomorphism ι : H → G so that pι is the identity map
on H , which [by the splitting lemma (Rotman 1995)] is equivalent to the condition
that G is the semidirect product3 of N with a subgroup H ′ isomorphic to H . In this
case we have the following bounds.

Proposition 1 Suppose a finite group G is a semidirect product of subgroups N (nor-
mal) and H. Let SN , SH be symmetric generator sets for N and H respectively, and
let S = SN ∪ SH which is a symmetric generator set for G. Then:

λ1(H, SH ) ≤ λ1(G, S) ≤ λ1(H, SH ) + lSN (N ).

In particular, by (3), λ2(G, S) ≤ 2λ1(H, SH ) + 2lSN (N ).

Proof The lower bound on λ1(G, S) follows from Lemma 3. For the upper bound we
must show that for all s ∈ S and g ∈ G, dS(sg, g) ≤ λ1(H, SH ) + lSN (N ) holds.
We consider two cases: (i) s ∈ N , and (ii) s ∈ H . In Case (i), note that the conju-
gate element g−1sg is also an element of N ; in this case we have the tighter bound
dS(sg, g) ≤ lSN (N ). In Case (ii), write g = hn where n ∈ N and h ∈ H . Consider
the word

w = g−1sg = n−1h−1shn.

Since N is normal we have n−1(h−1sh) = (h−1sh)n′ for some element n′ ∈ N . Thus
w = h−1shn′n. Write w = w1w2 where w1 = h−1sh ∈ H and w2 = n′n ∈ N . We
can select w2 to be a product of terms of SN of length at most lSN (N ) and, by Inequal-
ity (3), we can select w1 to be a product of terms of SH of length at most λ1(H, SH ).
Thus w can be written as a product of, at most, λ1(H, SH ) + lSN (N ) elements of S.

��
Finally, as it can sometimes be useful to consider metrics on a group other than

those arising from some Cayley graph, given an arbitrary metric d and a finite group
G with symmetric generator set S, in analogy with (1) and (2) we define:

λ1(G, S, d) := max
g∈G,s∈S

{d(sg, g)} and λ2(G, S, d) := max
g∈G,s,s′∈S

{d(sg, s′g)}.

In particular, λm(G, S) = λm(G, S, dS) and λm(G, S, d) ≤ maxg,g′∈G{d(g, g′)},
m = 1, 2. Moreover, the following analogue of Inequality (3) for an arbitrary metric
d on G is easily seen to hold:

3 The statement that G is the semidirect product of a normal subgroup N of G with another subgroup H ′
of G means that each element g of G can be written uniquely as the product nh (and as hn) where n ∈ N
and h ∈ H .
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1274 V. Moulton, M. Steel

λ2(G, S, d) ≤ 2 · λ1(G, S, d). (6)

Note that, although the quantities λm(G, S) and λm(G, S, d) need not be directly
related to one another, in certain circumstances, they are. For example, if d has the
property that d(g, gs) ≤ c for some constant c it is an easy exercise to show that
λm(G, S, d) ≤ c · λm(G, S), for m = 1, 2.

2 Permutation groups and genomic applications

In this section, we describe some applications of the above observations in computa-
tional genomics.

2.1 Evolution of DNA sequences by site-wise permutations

We first describe a direct application that is relevant to the evolution of a DNA sequence
under a simple model of site substitution (Kimura’s 3ST model) (Kimura 1981). Con-
sider the four-letter DNA alphabet A = {A, C, G, T } and the Klein four-group K =
Z2 × Z2 with an action on A in which the three non-zero elements of K correspond
to ‘transitions’ (A ↔ G, C ↔ T) and the two types of ‘transversions’ (A↔C, G↔T;
and A↔T, G↔C). This representation of the Kimura 3ST model was first described
and exploited by Evans and Speed (1993).

For g ∈ K and x ∈ A, let xg denote the element of A obtained by the (right) action
of g on x (the identity element fixes each element of A). The resulting component-wise
action of K n on An , defined by: (x1, . . . , xn)(g1, . . . , gn) = (x1g1, . . . , xngn), can
be regarded as the set of all changes that can occur to a DNA sequence over a period
of time under site substitutions.

Now, under any continuous-time Markovian process these change events (‘site sub-
stitutions’) occur just one at a time and so a natural generating set of K n is the set Sn

of all elements of K n that consist of 1K at all but one co-ordinate. Moreover, since
the action of K n on An is transitive and free (and so is isomorphic to the action of K n

on itself by right multiplication), λm(K n, Sn) measures the impact of ignoring (for
m = 1) or replacing (for m = 2) one substitution in a chain of such events over time.
As K n is Abelian, one has λ1(K n, Sn) = 1 and λ2(K n, Sn) = 2, which implies that
this impact is minor, and, more significantly, is independent of n; this has important
statistical implications which we will describe further in Sect. 3.

For a related example, consider the ordered sequence of distinct genes (g1, g2, . . . ,

gn) partitioned into regions R1, R2, . . . Rk so that genomic rearrangements occur
within each region, but not between regions (e.g. Ri for 1 ≤ i ≤ k might refer to
k different chromosomes). This situation can be modelled by the setting of Lemma 2
in which Gi is a permutation group on the genes within Ri , and Si is set of elemen-
tary gene order rearrangement events that generates Gi (we discuss some examples
below). In this case, Lemmas 2(i) and (3) provide a bound on λ1 and λ2 that is inde-
pendent of the number of regions k (specifically, if lSi (Gi ) ≤ r then λ1 ≤ r and
λ2 ≤ 2r ).
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The ‘Butterfly effect’ in Cayley graphs 1275

2.2 Genome rearrangements and permutations

We turn now to the calculation of λm(�n, S) for the permutation group �n on n!
elements and various sets S of generators. This group commonly arises when study-
ing (unsigned) genome rearrangements (Kostantinova 2008). Our main interest is to
determine, for each instance of S, whether there is a constant C (independent of n) for
which λm(�n, S) ≤ C , for m = 1, 2.

A permutation g on the set [n] := {1, 2, . . . , n} is a bijective mapping from [n] to
itself. We will also write g as g = [g1, g2, . . . , gn] where gi = g(i) is the image of
the map g for i ∈ [n]. Note that, following the usual convention, the product gg′ of
two permutations g, g′ ∈ �n will be considered as the composition of the functions g
and g′. In particular, gg′(i) = g(g′(i)) for all i ∈ [n].

When studying genomes, each entry gi of a permutation g corresponds to a gene
and the full list [g1, g2, . . . , gn] to a genome. Multiplying g by a permutation leads
to a rearrangement of the genome. For example, multiplying by a transposition ti, j

interchanges the values at positions i and j of g, i.e. [. . . , gi , . . . , g j , . . . ]ti, j =
[. . . , g j , . . . , gi , . . . ], and multiplying by a reversal ri, j reverses the segment
[gi , g j ], 1 ≤ i < j ≤ n, of g, i.e.

[. . . , gi , gi+1, . . . , g j−1, g j , . . . ]ri, j = [. . . , g j , g j−1, . . . , gi+1, gi , . . . ].

Such rearrangements are widely observed and studied in molecular biology (Fertin
et al. 2009).

In genomics applications, we are often interested in defining some distance
between genomes. One distance that is commonly used in the context of permu-
tations is the breakpoint distance (Setubal and Meidanis 1997, 7.3). For g, g′ ∈
�n, dB P (g, g′) is defined as the number of pairs of elements that are adjacent in
the list [0, g1, g2, . . . , gn, n + 1], but not in the list [0, g′

1, g′
2, . . . , g′

n, n + 1]. For
example, if g = [1, 2, 3, 4, 5], g′ = [1, 4, 3, 2, 5] ∈ �5, we have dB P (g, g′) = 2. It
is clear that max{dB P (g, g) : g, g′ ∈ �n} = n + 1.

Alternatively, one can consider the rearrangement distance between two genomes,
i.e. the minimal number of operations of a certain type (such as transpositions or
reversals) that can be applied to one of the genomes to obtain the other (Fertin et al.
2009). In terms of Cayley graphs, this distance can be conveniently expressed for
transpositions and reversals as follows. For ti, j and ri, j as defined above, let

Tn := {ti, j : 1 ≤ i < j ≤ n},
Cn := {ti,i+1 : 1 ≤ i ≤ n − 1},

(the Coxeter generators), and

Rn := {ri, j : 1 ≤ i < j ≤ n}.

Note that each one of these sets generates �n (Kostantinova 2008) and that each of them
is symmetric, since each generator is its own inverse. The metric dS , for S = Tn, Cn

or Rn , is precisely the rearrangement distance (relative to S).
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1276 V. Moulton, M. Steel

Fig. 2 a A diagrammatic
representation of the element
g = [3, 2, 5, 4, 6, 7, 1] in �7,
defined in the proof of
Theorem 1 (iii). b The product
r1,7g = [5, 6, 3, 4, 1, 2, 7]. Note
that dB P (r1,7g, g) = 8

1 2 3 4 5 6 7

6 3 4 1 2 75
(b)

1 2 3 4 5 6 7

3 2 45 1 

(a)

6 7

The diameters of Cay(�n, Tn) and Cay(�n, Rn) are both n − 1, and the diameter
of Cay(�n, Cn) is

(n
2

)
(Kostantinova 2008).

Regarding the quantities λm(�n, S) for S = Tn, Cn, Rn we have the following
result:

Theorem 1 For n ≥ 7 the following hold:

(i) λ1(�n, Tn) = 1 and λ2(�n, Tn) = 2.
(ii) λ1(�n, Cn) = 2n − 3 and 2n − 2 ≤ λ2(�n, Cn) ≤ 4n − 6.

(iii) n+1
2 ≤ λm(�n, Rn) ≤ n − 1, m = 1, 2.

Proof (i) Note that if g ∈ �n and ti, j ∈ Tn , then:

g−1ti, j g = tg−1(i),g−1( j). (7)

Therefore λ1(�n, Tn) = 1 by (1). Thus, by Inequality (3), we have
λ2(�n, Tn) ≤ 2. The equality λ2(�n, Tn) = 2 follows by (2) and the
fact that g−1tk,l ti, j g = tg−1(i),g−1( j)tg−1(k),g−1(l) holds for any g ∈ �n and
1 ≤ i < j < k < l ≤ n.

(ii) Consider the permutation g ∈ �n given by g = [2, 3, . . . , n − 1, n, 1]. Then
g−1t1,2g = [n, 2, 3, . . . , n−1, 1]. Therefore, lC (g−1t1,2g) ≥ 2n−3 (since to
transform [n, 2, 3, . . . , n − 1, 1] to 1�n requires moving 1 and n back to their
original positions). Therefore, λ1(�n, Cn) ≥ 2n − 3 by (1). But, by Equality
(7), λ1(�n, Cn) ≤ 2n − 3, since any transposition is the product of at most
2n − 3 elements in C . In particular, λ1(�n, Cn) = 2n − 3.
Similarly, lC (g−1t1,2t3,4g) ≥ 2n − 2, and so λ2(�n, Cn) ≥ 2n − 2 by (2).
Hence, by Inequality (3), we have λ2(�n, Cn) ≤ 2(2n − 3).

(iii) The inequality λm(�n, Rn) ≤ n − 1, m = 1, 2 follows as the diameter of
Cay(�n, Rn) is at most n − 1.
Now, suppose n is odd. Let g ∈ �n be given by g = [3, 2, 5, 4, 7, 6, . . . , n−3,

n, n − 1, 1]. Then it is straight-forward to check that dB P (r1,ng, g) = n + 1
(see Fig. 2 for the case n = 7). In particular, since the length of any short-
est path in Cay(�n, Rn) joining any g, h ∈ �n is at least dB P (h, g)/2 by
(Setubal and Meidanis 1997, p. 238), we have λ1(�n, Rn) ≥ n+1

2 . Similarly,
dB P (r2,3r1,ng, g) = n + 1 for any g ∈ �n , and so λ2(�n, Rn) ≥ n+1

2 .
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In case n is even, consider g = [3, 2, 5, 4, 7, 6, . . . , n − 4, n − 1, n − 2, 1, n].
Then dB P (r2,ng, g) = n+1 and dB P (r3,4r2,ng, g) = n+1. Similar reasoning
yields the desired result. ��

2.3 Signed permutations

In genomics, the direction in which a gene is oriented in a genome can also provide
useful information to incorporate in rearrangement models (Hannenhalli and Pevzner
1999), which can be expressed as follows in terms of Cayley graphs (Kostantinova
2008). The hyperoctahedral group Bn is defined as the group of all permutations gσ

acting on the set {±1, . . . ,±n} such that gσ (−i) = −gσ (i) for all i ∈ [n]. An element
of Bn is a signed permutation. Signed versions of transpositions and reversals can be
defined in the obvious way; a sign change transposition tσi, j (i ≤ j) switches the values
in the i th and j th positions of a signed permutation as well as both of their signs and
so forth. Note that we also allow i = j for signed transpositions and reversals so that
ti,i = ri,i , i ∈ [n], simply switches the sign of the i th value. We denote the set of
signed elements corresponding to those in S = Tn, Cn, Rn , together with the elements
ti,i , 1 ≤ i ≤ n, by Sσ . Note that the diameter of Cay(Bn, Rσ

n ) is n + 1 (Kostantinova
2008).

Now, the group Bn a semidirect product of Z
n
2 and a subgroup isomorphic to �n

and so we have a short exact sequence:

1G → Z
n
2 → Bn

p→ �n → 1G, (8)

where the homomorphism p : Bn → �n sends gσ ∈ Bn to the permutation of [n]
that maps i to |gσ (i)| (i.e. it ignores the sign). Notice that p maps Sσ onto S when
S = Tn, Cn, Rn . In particular, from Lemma 3, (8) furnishes the following inequalities
for S = Tn, Cn, Rn and m = 1, 2:

λm(Bn, Sσ ) ≥ λm(�n, S). (9)

This leads to the following bounds.

Corollary 1 For n ≥ 7, the following hold:

(i) λ1(Bn, T σ
n ) ≤ 3 and λ2(Bn, T σ

n ) ≤ 6.
(ii) 2n − 3 ≤ λ1(Bn, Cσ

n ) ≤ 2n − 1 and 2n − 2 ≤ λ2(Bn, Cσ
n ) ≤ 4n − 2.

(iii) n+1
2 ≤ λm(Bn, Rσ

n ) ≤ n + 1, m = 1, 2.

Proof The inequalities λ1(Bn, T σ
n ) ≤ 3 and λ1(Bn, Cσ

n ) ≤ 2n − 1 follow from sim-
ilar arguments to those used in the proof of Theorem 1 (i) and (ii), using the signed
analogue of Eq. (7). Inequality (3) then implies that inequalities λ2(Bn, T σ

n ) ≤ 6 and
λ2(Bn, Cσ

n ) ≤ 4n − 2 both hold. The inequality λm(Bn, Rσ
n ) ≤ n + 1, m = 1, 2,

follows as the diameter of Cay(Bn, Rσ
n ) is at most n + 1. The inequalities 2n − 3 ≤

λ1(Bn, Cσ
n ) and 2n − 2 ≤ λ2(Bn, Cσ

n ), and the remaining ones in (iii) follow by
Inequality (9) and Theorem 1. ��
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2.4 Beyond dS : properties of breakpoint distance

As we have seen in Sect. 2.2, it can sometimes be useful to consider the breakpoint
distance dB P when studying genome rearrangements. In genomics, this distance is
commonly used as a proxy for rearrangement distances since, for example, it is easier
to compute (Sankoff and Blanchette 1997, 1998). Thus it is of interest to note:

Lemma 4 For n ≥ 7, the following hold:

(i) λ1(�n, Tn, dB P ) ≤ 4 and λ2(�n, Tn, dB P ) ≤ 8.
(ii) λ1(�n, Cn, dB P ) ≤ 4 and λ2(�n, Cn, dB P ) ≤ 8.

(iii) n+1
2 ≤ λm(�n, Rn, dB P ) ≤ n + 1, m = 1, 2.

Proof Suppose t = ti, j ∈ Tn, 1 ≤ i < j ≤ n. Using Eq. (7), it is straight-
forward to see that dB P (tg, g) ≤ 4 holds for any g ∈ �n . Therefore λ1(�n, Tn, dB P ),

λ1(�n, Cn, dB P ) ≤ 4. The inequalities in (i) and (ii) involving λ2 now follow from
Inequality (6).

The Inequalities in (iii) follow from the argument used in the proof of Theorem 1
(iii) and the diameter of dB P on �n . ��

In particular, for Cn , the set of Coxeter generators of �n , and m = 1, 2, we have
λm(�n, Cn) ≥ 2n − 3, but λm(�n, Cn, dB P ) ≤ 4. Intriguingly, this observation can
be extended as follows. For k ≥ 1, let R(k)

n , denote the set of reversals of the form
{ri, j : 1 ≤ i < j ≤ n, |i − j | ≤ k}. Such ‘fixed-length’ reversals have been consid-
ered in the context of genome rearrangements in e.g. Chen and Skiena (1996). Note
that R(1)

n = Cn and R(k)
n ⊆ R(k+1)

n , so that R(k)
n generates �n .

Proposition 2 For n ≥ 7, n ≥ k ≥ 1 and m = 1, 2,

λm(�n, R(k)
n ) ≥ 2

⌈n

k

⌉
− 2,

and

λm(�n, R(k)
n , dB P ) ≤ 4(k + 1).

Proof As in the proof of Theorem 1 (ii), let g ∈ �n be given by g = [2, 3, . . . , n − 1,

n, 1], so that g−1r1,2g = [n, 2, 3, . . . , n − 1, 1]. Then we have l
R(k)

n
(g−1r1,2g) ≥

2� n
k � − 3, since to transform [n, 2, 3, . . . , 1] to 1�n requires moving 1 and n back to

their original positions. Similarly, lC (g−1r1,2r3,4g) ≥ 2� n
k � − 2. This gives the first

inequality in the proposition. Moreover, if ri, j , rp,q ∈ R(k)
n , then it is straight-forward

to see that dB P (ri, j g, g) ≤ 2(k + 1) and dB P (rp,qri, j g, g) ≤ 4(k + 1) holds, which
gives the second inequality in the proposition. ��

This proposition implies that in genomics applications, adding or substituting a
single reversal in a sequence of reversals in R(k)

n could potentially have a large effect
on d

R(k)
n

, but a relatively small effect on dB P (especially for large values of n, e.g. there
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are n ≥ 20,000 genes in the human genome). It could be of interest to see whether
other combinations of generating sets and metrics for �n commonly used in genomics
[such as transpositions (Labarre 2006) and the k-mer distance (Trifonov and Rabadan
2010)] exhibit a similar type of behaviour.

3 Statistical implications

So far we have considered metric sensitivity from a purely combinatorial and deter-
ministic perspective. But it is also of interest to investigate the sensitivity of the metrics
discussed above when the elements of S are randomly assigned by some stochastic
process. Again, the motivation for this question comes from genomics, where stochas-
tic models often play a central role [see, for example, Mossel and Steel (2005); Wang
and Warnow (2005)]. In this section, we establish a result (Proposition 3) in which
the quantity λ2 plays a crucial role in allowing underlying parameters in such stochas-
tic models to be estimated accurately given sufficiently long genome sequences. Our
motivation here is to provide some basis for eventually extending the well-developed
(and tight) results on the sequence length requirements for tree reconstruction under
site-substitution models [see e.g. Daskalakis et al. (2010); Erdös et al. (1999); Gronau
et al. (2008); Mossel and Steel (2005)] to more general models of genome evolution.

As before, suppose a finite group G = Gn acts transitively and freely on a set
X = Xn of genomes of length n, and that S = Sn is a symmetric set of generators for
Gn . Consider a stationary stochastic process that generates elements of Sn according
to a Poisson process. We allow the Poisson intensity at which each element s is gen-
erated to vary with s, requiring only that it matches the Poisson intensity of s−1 (this
last requirement applies by default if s−1 = s, as is the case in most examples we
have described thus far).4 Starting from any initial genome, such a stochastic process
provides a mechanism to describe the evolution of this genome - simply apply the
process for a certain duration, and each time an element s ∈ Sn is generated it acts on
the current genome.

Suppose two genomes x and y are generated by two independent applications of
this process to an ancestral genome w for durations t1 and t2 (see Fig. 3). We would
like to estimate the ‘evolutionary distance’ (t1 + t2) between x and y, which we will
denote by μ(x, y), by comparing x and y, and without knowledge of the ancestral
genome w.

First observe that, since the action of G = Gn on Xn is transitive and free, there is
a unique value of g = gxy ∈ G for which y = xg, and we will show how one can use
(a normalization of)

δ(x, y) := d(gxy, 1G)

4 An example a process that allows Poisson intensity to vary with each generator s is provided by the
Kimura 3ST model of site substitution, in which site nucleotide transitions and the two types of nucleotide
transversions typically proceed at different rates.
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Fig. 3 An example of two
genomes x and y that have
evolved independently from
some (unknown) ancestral
genome w. Each branch
represents an independent
application of a continuous-time
stochastic process that generates
elements of S, each of which
acts sequentially on the current
genome (see text for details)

to estimate μ(x, y), for any metric d on G that satisfies the conditions:

(i) d(g−1, 1G) = d(g, 1G), and
(ii) for some λ > 0, we have λ2(Gn, Sn, d) ≤ λ for all n.

Note that all metrics considered thus far satisfy condition (i), which ensures that
δ(x, y) = δ(y, x), for all x, y ∈ Xn .
Let μn(x, y) denote the expected total number of times elements of Sn are selected
by the stochastic process when it is run for duration μ(x, y). Then μn(x, y) is pro-
portional to μ(x, y); we will assume that μn(x, y) is also proportional to the genome
length n. That is, we impose the condition:

(iii) μn(x, y) = n · rμ(x, y), where r > 0 is a constant.
We also assume one further condition:

(iv) δ = n · f (μ(x, y)), where δ is the expected value in the model of δ(x, y), and f
is a function with strictly positive but bounded first derivative on [0,∞).

A specific example that satisfies these four conditions (i)–(iv) is site substitutions
under the Kimura 3ST model (as described in Sect. 2.1 and taking d = dSn ). Observe
that Properties (i) and (ii) hold (in this case, δ(x, y) is simply the ‘Hamming distance’
between the sequences which counts the number of sites at which x and y differ).
Property (iii) also holds, as does Property (iv) since

δ = n · 3

4
(1 − exp(−4ρμ(x, y)/3)),

where μ(x, y) is the time separating x and y and ρ is the rate of substitution.
Turning to permutation-type genome rearrangements, note that both breakpoint

distance dB P and dSn (for Sn = Tn, Cn or Rn) satisfy (i), and we have described above
some cases where (ii) is satisfied. Whether conditions (iii) and (iv) hold depends on the
details of the underlying stochastic process of genome rearrangement. For example,
if reversals of fixed length occur randomly at a constant rate along a genome then
condition (iii) will hold, and under the approximation to the Nadeau–Taylor model of
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genome rearrangement studied in Sect. 2 of Wang (2002), Property (iv) would also
hold for breakpoint distance [the proof relies on Corollary 1(a) of Wang (2002)].

The following result shows how δ(x, y)/n can be used to estimate f (μ(x, y)) accu-
rately, and thereby μ(x, y) (by the assumptions regarding f ). The ability to estimate
μ(x, y) accurately provides a direct route to accurate phylogenetic tree reconstruction
by standard phylogenetic methods [such as ‘neighbor-joining’ (Saitou and Nei 1987)]
since μ(x, y) is ‘additive’ on the underlying tree [for details, see Semple and Steel
(2003)].

Proposition 3 Consider a stochastic model of genome evolution and a metric d on
Gn as described above, that together satisfy conditions (i)–(iv). The probability that
δ(x, y)/n differs from f (μ(x, y)) by more than any fixed value z > 0 converges to
zero exponentially quickly with increasing n. More precisely, for constants b > 0
(dependent on μ(x, y)), and c > 0 (dependent on μ(x, y) and λ) we have:

P(|δ/n − f (μ(x, y))| ≥ z) ≤ 2 exp(−bn) + 2 exp(−cz2n),

for δ = δ(x, y).

Proof Suppose that W1, W2, . . . , Wk are independent random variables taking values
in the set S, and h is any real-valued function defined on S that satisfies the following
property for some constant ξ :

|h(w1, w2, . . . , wk) − h(w′
1, w

′
2, . . . , w

′
k)| ≤ ξ,

whenever (wi ) and (w′
i ) differ at just one coordinate. In this general setting, a form

of the Azuma–Hoeffding inequality [see e.g. Alon and Spencer (1992)] states that the
random variable Y := h(W1, W2, . . . , Wk) satisfies the following tight concentration
bound about its mean (for all k ≥ 1):

P(|Y − E[Y ]| ≥ z) ≤ 2 exp

(
− z2

2ξ2k

)
. (10)

We apply this general result as follows.
Let random variable K ≥ 0 denote the total number of times elements of Sn are

selected during the stochastic process that generates x and y from an ancestral genome
w. By assumption, K has a Poisson distribution, with mean equal to n · rμ(x, y) (by
condition (iii)).

Now, if K =k where k ≥ 1 we have x =wgx and y =wgy , hence y = xg−1
x gy , where

gx and gy are products of a total of k elements of Sn . Thus, gxy = g−1
x gy and we will

regard this as a sequence consisting of k elements of Sn that begins with the inverses of
the elements of Sn that make up gx , in reverse order, followed by the elements of Sn that
make up gy . For the example in Fig. 3, this sequence would be s−1

3 , s−1
2 , s−1

1 , s′
1, s′

2 (the
reason for this transformation is that it converts a process on three genomes (x, y, w)

into one on just two genomes (x, y) separated by duration μ(x, y)).
Let random variables W1, . . . , Wk denote these k elements of Sn in this (trans-

formed) order under the stochastic model. By the assumptions of the model, the Wi

are independent; moreover, δ(x, y) = d(gxy, 1G) = d(W1W2 · · · Wk, 1G) and so, by
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(ii), this function satisfies the requirements of the Azuma–Hoeffding inequality for
ξ = λ, upon taking h(w1, . . . , wk) = d(w1w2 . . . wk, 1G).

Thus (10) furnishes the following inequality:

P(|δ/n − δ/n| ≥ z | K = k) ≤ 2 exp

(
− z2n2

2λ2k

)
. (11)

Invoking condition (iv) and the law of total probability, we obtain:

P(|δ/n − f (μ(x, y))| ≥ z) =
∑

k≥0

P(|δ/n − δ/n| ≥ z | K = k)P(K = k),

from which (11) ensures the inequality:

P(|δ/n − f (μ(x, y))| ≥ z) ≤ 2E

[
exp

(
− z2n2

2λ2 K

)]
, (12)

where E denotes expectation with respect to K . Let us write E[exp(− z2n2

2λ2 K
)] as a

weighted sum of two conditional expectations:

E

[
exp

(
− z2n2

2λ2 K

)
|K > 2nrμ(x, y)

]
· p

+E

[
exp

(
− z2n2

2λ2 K

)
|K ≤ 2nrμ(x, y)

]
· (1 − p), (13)

where p = P(K > 2nrμ(x, y)). The first term in (13) is bounded above by
P(K > 2nrμ(x, y)) since exp(− z2n2

2λ2 K
) ≤ 1; moreover, since K has a Poisson distri-

bution with mean nrμ(x, y) (and so is asymptotically normally distributed with mean
and variance equal to nrμ(x, y)), the quantity P(K > 2nrμ(x, y)) is bounded above
by a term of the form exp(−bn) where b depends just on μ(x, y).

The second term in (13) is bounded above by exp(− z2n
4λ2rμ(x,y)

), where λ =
λ2(G, S, d), since the function x �→ exp(−A/x) increases monotonically on [0,∞).

Combining these two bounds in (13), the result now follows from (12). ��
Remark Referring again to the particular case of site substitutions under the Kimura
3ST model, Proposition 3 can be strengthened to:

P(|δ/n − f (μ(x, y))| ≥ z) ≤ 2 exp(−c′z2n),

where c′ > 0 can be chosen to be independent of μ(x, y). This stronger result is
the basis of numerous results in the phylogenetic literature that show that large trees
can be reconstructed from remarkably short sequences under simple site-substitution
models (Erdös et al. 1999). Although the bound in Proposition 3 is less incisive, it
would be of interest to explore similar phylogenetic applications for other models of
genome evolution in which λ2 is independent of n, such as those involving breakpoint
distance under reversals of fixed length.
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4 Concluding comments

Gene order provides a promising tool for inferring evolutionary history, by providing
a means to estimate the taxonomic distance between extant species. However, because
the particular sequence of genome rearrangements in the past is generally unknown,
the question of how sensitive such estimates are to perturbations in the sequence arises.
We have investigated some classes of genome rearrangement where single-element
perturbations either have a provably small impact, or potentially large impact on the
resulting genomes (and thereby on the estimates of taxonomic distance).

It would be interesting to extend the analysis in this paper to other types of genome
rearrangement events of biological relevance, such as such as translocations (Labarre
2006) and block-interchanges (Chin et al. 2007).

Also, we have concentrated on worst-case properties of perturbation in this paper,
which is useful for applying the Azuma inequality in the previous section. However,
it would also be of interest undertake an average case analysis of the expected effect
of perturbations on the distance between genomes. In particular, what is the expected
impact of a small change in a sequence of genome rearrangements? A related task
would be to investigate the variance of the distance between genomes under the sto-
chastic model, which is related to the average case analysis by a standard inequality
(Steele 1986). Simulation studies would provide some initial insights into these ques-
tions.
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