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We show that in a particular model of catalytic reaction systems, known as the binary polymer model,

there is a mathematical concordance between two versions of the model: (1) random catalysis and

(2) template-based catalysis. In particular, we derive an analytical calculation that allows us to

accurately predict the (observed) required level of catalysis in one version of the model from that in the

other version, for a given probability of having self-sustaining autocatalytic sets exist in instances of

both model versions. This provides a tractable connection between two models that have been

investigated in theoretical origin-of-life studies.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In previous work, we introduced and analyzed a model of
catalytic reaction systems (CRS) (Steel, 2000; Hordijk and Steel,
2004; Mossel and Steel, 2005; Hordijk et al., 2011), based on the
original model of Kauffman (1986, 1993). This model consists of
molecule types (bit strings up to a given length n), reactions
(ligation and cleavage), and randomly assigned catalysis, where
molecule types can catalyze reactions with a certain (given)
probability. Such models were developed and investigated within
the context of theoretical origin-of-life studies. In this setting, a
question of particular interest is the level of catalysis required to
have a high probability of autocatalytic sets (‘‘closed’’, self-sustain-
ing subsets of molecules and reactions) appearing in instances of
this random binary polymer CRS model. We showed, both
theoretically and computationally, that this level (in terms of
the average number of reactions catalyzed by any one molecule)
needs only grow linearly with n (the maximum molecule size in
the system) to get a high probability of autocatalytic sets (Hordijk
and Steel, 2004; Mossel and Steel, 2005). However, in Hordijk
et al. (2011), we showed that there is still some discrepancy
between the theoretically predicted and computationally
observed required levels of catalysis, and we provided a partial
explanation for this discrepancy. The theoretical analysis thus
provides an important (linear) upper bound, but not (yet) an exact
prediction.
ll rights reserved.

et,

ry.ac.nz (M. Steel).
In Hordijk et al. (2011), we also analyzed an extension of the
basic model, based on initial experiments reported in Kauffman
(1993), where instead of completely randomly assigned catalysis,
a molecule has to match the reaction template (a certain number
of bits around the reaction site) to be able to be a catalyst for that
particular reaction. For this more realistic version of the CRS
model, we also showed (again both theoretically and computa-
tionally) that a linear growth rate (in n) in the level of catalysis
suffices to get a high probability of autocatalytic sets. However, in
this case there is also a discrepancy between the theoretically
predicted and computationally observed values.

In this paper we take a different approach and ask whether it is
possible to accurately predict the (observed) required level of
catalysis in the template-based version of the model given the
(observed) values in the original, completely random version of
the model (and vice versa). At first, this may not seem obvious, as
the two versions of the model have quite different constraints on
which molecules can/will catalyze which reactions. However, we
derive an analytical calculation that allows us to make this
prediction to a very high degree of accuracy. Therefore, we can
conclude that, as far as the probability of the existence of self-
sustaining autocatalytic sets is concerned, the more realistic
template-based version of the model is (mathematically) no
different from the simpler original (completely random) version
of the model.

The outline of this paper is as follows. In the next section, we
briefly review the mathematical CRS model, in particular the
relevant notation and definitions, and highlight the differences
between the two versions of the model. In Section 3 we derive,
step by step, an analytical calculation that allows us to directly
relate the required level of catalysis in both model versions. In
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Section 4, we then show the close match between the analytically
predicted and actually observed required level of catalysis in the
template-based model. Finally, Section 5 summarizes the main
results and conclusions.
2. A model of catalytic reaction systems

Consider a catalytic reaction system (CRS) Q¼ ðX,R,CÞ, where X

is a set of molecule types x, R is a set of reactions r (converting
reactants into products) and C is a catalysis set, i.e., a set of
molecule–reaction pairs (x,r) indicating that molecule x can
catalyze reaction r. We also include the notion of a food set

F � X, which is assumed to contain molecule types that are freely
available in the environment. See Hordijk and Steel (2004) and
Steel (2000) for a detailed definition.

A particular CRS model that was introduced in Kauffman
(1986, 1993), here referred to as the binary polymer model,
consists of:
�

Fig
form

from

(ii)

101

mo

(ind
A set of molecule types represented by bit strings up to a given
length n, i.e., X ¼ f0;1grn.

�
 A food set consisting of bit strings up to a given (small) length

ton, i.e., F ¼ f0;1gr t .

�
 Two types of reactions: (1) ligation, which ‘‘glues’’ two smaller

bit strings together into one larger bit string, and (2) cleavage,
which breaks a larger bit string into two smaller ones. The
reaction set R consists of all such reactions that are possible
within the constraint of the maximum molecule length n.

�
 Randomly assigned catalysis, where each possible molecule–

reaction pair (x,r) is independently assigned to the set C with a
given probability p(n) (this probabilistic assignment is done
once at the model instantiation; each such instantiation thus
gives rise to a different set C).

Thus, n, t, and p(n) are the model parameters.
The main question that was studied in Kauffman (1986, 1993)

with this model is: under which conditions (model parameter
values) is there a high probability of an autocatalytic set existing
within a full CRS? An autocatalytic set can be (informally)
described as a subset of reactions R0 �R (and the molecules
involved in these reactions) in which (1) each reaction rAR0 is
. 1. (i) An example of a simple CRS in which a,b and c constitute the food set, catalysi

an RAF set (each reaction in R0 is catalyzed by at least one molecule that is either i

R0 , and all reactants of the reactions in R0 are either in the food set or can be pro

In the original polymer model (M), either one of the potential catalysts shown (1

10þ0111010-101100111010; in the template-based model (TM), only 110011 co

dels to have equal probabilities of containing an RAF, the probability p0 that a temp

icated by the bold dashed line) by a factor m (relative to p in model M) that can b
catalyzed by at least one molecule that is either in the food set or
can be produced from it by repeated application of reactions only
from R0, and (2) all reactants of the reactions rAR0 are either in
the food set or can be produced from it by reactions from R0 only
(a simple example is provided in Fig. 1(i)). For a formal definition,
see Hordijk and Steel (2004), where we used the term RAF
(reflexively autocatalytic and food-generated) for such autocata-
lytic (sub)sets.

Note that this CRS and RAF formalism is similar, or at least
related, to alternative models in the context of the origin of life, such
as Petri nets (Sharov, 1991), (M,R) systems (Rosen, 1991; Letelier
et al., 2006; Jaramillo et al., 2010), the chemoton model (Gánti,
1997), other artificial chemistries and topological approaches
(Benkö et al., 2009), and several other frameworks (see also
Hordijk et al., 2010; Letelier et al., 2011 for a more complete
overview and comparison). However, what most of these other
formalisms seem to be missing, is some way of actually finding or
identifying autocatalytic sets within a larger catalytic reaction
system, and a thorough analysis of the probabilities of finding such
subsets under different conditions (model parameters).

In Hordijk and Steel (2004), we introduced an efficient algo-
rithm to find RAF sets in any (general) CRS, and applied it to
instances of the binary polymer model. We showed both compu-
tationally (Hordijk and Steel, 2004) and theoretically (Mossel and
Steel, 2005) that a linear growth rate (with n, the maximum
molecule size) in the level of catalysis (in terms of the average
number of reactions catalyzed per molecule) is sufficient to
achieve a high probability Pn of autocatalytic sets occurring in
instances of the random binary polymer CRS model.

In Hordijk et al. (2011), we then analyzed a chemically more
realistic version of the binary polymer model: template-based
catalysis. This differs from the original model in the way mole-
cule–reaction pairs (x,r) are included in the catalysis set C:
�
 Each possible molecule–reaction pair (x,r) is considered for
inclusion in the set C with a given probability p0ðnÞ, but is only
allowed to be included if the molecule x, somewhere along its
length, matches the reaction template of reaction r.

The reaction template, following Kauffman (1993), is made up of
the two bits on either side of the reaction site, or four bits in total
(in previous studies, the complement of the reaction template was
s is indicated by dashed lines, and where the reactions R0 ¼ fr1 ,r2g (shown in bold)

n the food set or can be produced from it by repeated application of reactions only

duced from it by reactions from R0 only). This is the only RAF present in this CRS.

10011 and 01110) has the same probability p of catalyzing the ligation reaction

ntains a matching template (namely *1001*) for this reaction. In order for the two

late-matching molecule catalyzes a reaction needs to be elevated in the TM model

e calculated analytically.



Fig. 2. The state transition graph G that generates all possible bit strings.
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actually used; however, given that the model uses bit strings, this
does not make a difference in terms of the mathematics due to
the inherent symmetry). So, for example, in the ligation reaction
000þ11111-00011111, the reaction template is 0011, i.e., the
last two bits of the first reactant plus the first two bits of the
second reactant (another example is provided in Fig. 1(ii)). For
this template-based catalysis version of the model, we also
showed that a linear growth rate (with n) in the level of catalysis
suffices for autocatalytic sets to appear with high probability
(although with a higher coefficient, or slope, in the linear relation
than for the original model).

So, in the original (template-free) random catalysis version of
the model, we have Pr½ðx,rÞAC� ¼ pðnÞ. Let m(n) be the probability
that an arbitrary molecule (of length at most n) matches the
four-bit reaction template of an arbitrary reaction. Then
Pr½ðx,rÞAC� ¼ p0ðnÞ �mðnÞ in the template-based version of the
model. This suggest that taking p0ðnÞ ¼ pðnÞ=mðnÞ might lead to a
similar probability Pn of finding autocatalytic sets in the template-
based model as with p(n) in the original model. We will show that
this heuristic estimate turns out to be extremely accurate, which
is not clear a priori, as the two models are quite different (in the
original model molecules catalyze each reactions with identical
probabilities, while in the template-based model, these probabil-
ities are highly heterogeneous). So, to predict the required level of
catalysis p0ðnÞ in the template-based version of the model, given p(n)
and a particular value of Pn, we need to know the probability m(n).
3. The molecule–reaction template match probability

In this section, we derive a precise mathematical procedure for
calculating the molecule–reaction template match probability m(n)
analytically. This procedure consists of several steps, which will be
explained in detail. We then show the results of applying the derived
procedure to calculate the actual template match probabilities.

3.1. The number of substring matches

As the first step, we obtain a procedure to calculate analyti-
cally the number fs(n) of bit strings of a given length n that
contain a given substring s of given length. We will describe this
in detail for a substring s of length four, but the procedure is
applicable for any substring length. In the context of our CRS
model, fs(n) is equivalent to the number of molecules of a given
length n that match a given four-bit reaction template s.

We apply a mathematical technique, known as the transfer-

matrix method (Stanley, 1986), which calculates the number f s ðnÞ of
bit strings of length n that do not contain a given substring s. This is
actually a very general method with a wide range of applicability,
but here it will be explained explicitly in the context of counting bit
strings of length n that contain a given substring of length four.

To apply this method, we first need to construct a state transition

graph Gs that can generate all bit strings (of any length) that do not

contain a given substring s of length four. For this purpose, it will be
instructive to start with a state transition graph G that can generate
all possible bit strings. This graph G is shown in Fig. 2, and can be
interpreted as follows. Each node in the graph represents one of eight
possible states, with a state being defined (and labeled) by the last
three bits that were seen while generating a bit string bit by bit. For
example, the bottom-left node labeled 000 represents a state where
the last three bits, of the bit string as generated so far, were all zero.
The next bit that will be generated is either another zero or a one. If it
is another zero, then again the last three bits seen are all zero, giving
rise to a state transition represented by the arrow that loops back to
node 000 itself. If the next bit is a one, then the last three bits seen are
now 001, giving rise to a state transition represented by the arrow
that points from node 000 to node 001. Obviously these are the only
two possible state transitions (arrows) going out from node 000 (we
cannot, for example, go from the last three bits being 000 to 111 by
simply adding one bit). Similarly, there are two outgoing transitions
from each of the eight nodes, corresponding to generating either a
zero or a one. So, following the state transitions (arrows) as given in
Fig. 2, and adding the corresponding bit (a zero or a one) to the bit
string generated so far at each state transition, all possible bit strings
can be produced. This state transition graph G can be represented
mathematically by its adjacency matrix A:

A¼

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

,
ð1Þ

where there is a 1 in position (i,j) if there is an arrow in the
corresponding graph G from state i to state j; otherwise, there is a
0. Note that a simple state transition graph with only two nodes
would actually suffice to generate all possible bit strings. However,
this more elaborate eight-state graph is needed for the next step:
excluding a given substring of length four.

From the general graph G (and matrix A) given above, it is now
straightforward to construct the corresponding graph Gs (and
matrix As) that generates all bit strings that do not contain a given
substring s of length four. For example, consider s¼0010. In this
case, in the graph G of Fig. 2, making the transition from node 001
to node 010 would not be allowed (as it would produce the
substring 0010). Equivalently, the entry (001,010) in the adja-
cency matrix A should be set to zero. The resulting graph G0010

and adjacency matrix A0010 are shown in Fig. 3 and Eq. (2),
respectively (the changed entry in the adjacency matrix is shown
in bold).

A0010 ¼

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

ð2Þ



Fig. 3. The state transition graph G0010 that generates all bit strings that do not

contain the substring 0010.
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Similarly, for each of the other 15 possible substrings s of length
four, there is a state transition graph Gs where one of the 16
arrows of the original graph G is left out, and a corresponding
adjacency matrix As where one of the 16 ones in matrix A is set
to zero.

Now, according to the transfer-matrix method (Stanley, 1986),
the number f s ðnÞ of bit strings of length n that do not contain a
given substring s of length four can be obtained by first comput-
ing the following generating function:

FsðlÞ ¼
X8

i,j ¼ 1

I�lAsð Þ
�1
ij ð3Þ

and then taking the coefficient of ln�3 in FsðlÞ as the value for
f s ðnÞ. Note that, in Eq. (3), I refers to the 8�8 identity matrix, and
ðI�lAsÞ

�1
ij is the row i and column j entry of the inverse of the

matrix I�lAs.
Given that there are 2n bit strings of length n, the number fs(n)

of bit strings of length n that contain a given substring s of length
four is now simply

f sðnÞ ¼ 2n
�f s ðnÞ: ð4Þ

Note that this procedure can be easily extended to substrings
(i.e., reaction templates) s of any length 9s9on. To exclude a given
substring s, we simply need to remember the last 9s9�1 bits that
were seen while generating or scanning a bit string, so the
required state transition graphs have 29s9�1 nodes. However, their
construction, and that of their corresponding adjacency matrices,
and the subsequent calculations are similar to the example given
above, where the summation in Eq. (3) is now from i,j¼1 to 29s9�1,
and the coefficient of ln�ð9s9�1Þ should be taken.
3.2. The template match probability

As the next step, using the results of Eq. (4), the average (or
expected) number g(n) of bit strings of length n that contain an
arbitrary substring of length four, is now easily calculated as

gðnÞ ¼
1

16

X
sA f0;1g4

f sðnÞ: ð5Þ

From this, the probability h(n) that a bit string of length at most n

contains an arbitrary substring of length four is then calculated as

hðnÞ ¼

Pn
i ¼ 1 gðiÞ

2nþ1
�2

, ð6Þ

where 2nþ1
�2 is the total number of bit strings of length at most

n. In practice, the summation needs only run from i¼4 to n, as any
bit string of length no4 will obviously not contain a substring of
length four (i.e., g(n)¼0 for no4).
In the context of our CRS model, this probability h(n) can be
taken as the probability that an arbitrary molecule up to length n

matches an arbitrary four-bit reaction template.

3.3. The fraction of reactions with a four-bit reaction template

So far, we have assumed that there actually is a substring of
length four to be contained (or not) in an arbitrary bit string (or,
in our context, a four-bit reaction template to be matched by a
molecule). However, in the template-based catalysis version of
our model, this is not always the case. In particular, all reactions
that have at least one molecule of length one as a reactant (or
product, in case of a ligation), do not have a valid four-bit reaction
template, given that we require two bits on each side of the
reaction site to make up a four-bit template. However, these
reactions can still be considered (with probability p0ðnÞ), along
with a molecule x, for inclusion in the catalysis set C (which, of
course, will never actually be ‘‘approved’’, given that they do not
have a valid four-bit template).

So, as the final step, we need to calculate the fraction k(n) of
reactions that actually do have a four-bit reaction template, in
order to ‘‘discount’’ for those reactions that might be considered,
but which do not have a valid reaction template. A straightfor-
ward counting argument will provide us with a simple expression
for this fraction k(n).

First, recall that the total number of reactions, for a given n, is
ðn�2Þ2nþ1

þ4. Next, we need to count the number of reactions
that have at least one molecule of length one as a reactant (since
reactions are considered bi-directional, we do not need to con-
sider cleavage reactions separately). A molecule of length one can
react (ligate) with any other molecule of length at most n�1
(otherwise, the maximum molecule length n would be violated).
There are two molecules of length one, which can be either the
first or the second reactant (i.e., four combinations) and there are
2n
�2 molecules of length at most n�1, so we have 4ð2n

�2Þ�4
reactions with at least one molecule of length one as a reactant
(the ‘�4’ at the end is because otherwise we would double-count
the four possible reactions where both reactants are of length
one). So, the fraction kðnÞ of reactions without a valid four-bit
reaction template is

kðnÞ ¼
4ð2n
�2Þ�4

ðn�2Þ2nþ1
þ4
¼

2nþ2
�12

ðn�2Þ2nþ1
þ4

�
2nþ2

ðn�2Þ2nþ1
¼

2

n�2
: ð7Þ

Consequently, the fraction k(n) of reactions with a valid four-bit
reaction template is

kðnÞ ¼ 1�kðnÞ ¼ 1�
2

n�2
¼

n�4

n�2
: ð8Þ

Note that this is an approximation, and the exact number is
actually equal to

kðnÞ ¼
n�4þ

1

2n�3

n�2þ
1

2n�1

: ð9Þ

However, even for relatively small values of n (10 or higher
suffices for our purposes), the difference between the exact and
simpler approximate values becomes negligible.

Now we can finally put everything together and calculate the
probability m(n) that an arbitrarily chosen molecule of length at
most n will match the four-bit reaction template of an arbitrarily
chosen reaction (including the possibly that a reaction does not
have a valid reaction template, in which case there is no match),



Table 1
Values for fs(n) for all eight possible four-bit templates that start with a 0, and for 4rnr20, as calculated using the transfer-matrix method. By symmetry, we only need to

describe templates that start with 0. Other symmetries are also apparent in the table: notice that the three columns headed by a bold template are identical, and the three

columns headed by an underlined template are also identical.

n/s 0000 0001 0010 0011 0100 0101 0110 0111

4 1 1 1 1 1 1 1 1

5 3 4 4 4 4 4 4 4

6 8 12 12 12 12 11 12 12

7 20 32 31 32 31 28 31 32

8 48 79 75 79 75 68 75 79

9 111 186 174 186 174 158 174 186

10 251 424 393 424 393 357 393 424

11 558 944 870 944 870 792 870 944

12 1224 2065 1897 2065 1897 1731 1897 2065

13 2656 4456 4087 4456 4087 3738 4087 4456

14 5713 9512 8721 9512 8721 7996 8721 9512

15 12 199 20 128 18 463 20 128 18 463 16 972 18 463 20 128

16 25 888 42 287 38 832 42 287 38 832 35 789 38 832 42 287

17 54 648 88 310 81 222 88 310 81 222 75 052 81 222 88 310

18 114 832 183 492 169 086 183 492 169 086 156 647 169 086 183 492

19 240 335 379 624 350 571 379 624 350 571 325 616 350 571 379 624

20 501 239 782 497 724 288 782 497 724 288 674 436 724 288 782 497

1 In previous papers, we have already shown that Pn¼0.5 provides a useful

reference point.
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by combining Eqs. (6) and (8):

mðnÞ ¼ kðnÞ � hðnÞ ¼
n�4

n�2
hðnÞ: ð10Þ

3.4. Results

We used the software package wxMaxima (http://wxmax-
ima.sourceforge.net), which is capable of performing symbolic com-
putation and is available for free under the GPL license, to compute
the generating functions FsðlÞ (Eq. (3)) and the corresponding values
of fs(n) (Eq. (4)). For example, for s¼0010 (using the adjacency matrix
A0010 in Eq. (2)), we get

F0010ðlÞ ¼
4l3
�2l2

�lþ8

�l4
þl3
�2lþ1

: ð11Þ

After applying a Taylor expansion, this yields

F0010ðlÞ ¼ 8þ15lþ28l2
þ52l3

þ97l4
þ181l5

þ � � � : ð12Þ

So, for example, f 0010 ð5Þ ¼ 28, i.e., the coefficient of l5�3
¼ l2 in

F0010ðlÞ. From this, it can be easily calculated that f 0010ð5Þ ¼
25
�f 0010 ð5Þ ¼ 32�28¼ 4, i.e., four bit strings of length n¼5 contain

the substring s¼0010. The results for all templates and 4rnr20 are
given in Table 1. Note that because of the inherent symmetry, we
only show values for the eight templates that start with a 0. To find
the value for a template s that starts with a 1, simply look up the
value for its (binary) complement s. For example, f 1010ð12Þ ¼
f 0101ð12Þ ¼ 1731. Notice also that other symmetries exist—in parti-
cular, fn(s) is identical to f nðs

0Þ when s0 is template s in reverse order.
This and further symmetries ensure that the number of distinct

columns in Table 1 is only four, rather than the eight possible.
Using the values from Table 1, we can compute g(n) (using

Eq. (5)), then h(n) (using Eq. (6)) and k(n) (using Eq. (8)), and,
finally, m(n) (using Eq. (10)). The results of these calculations are
shown in Table 2 for 4rnr20. The (analytically) calculated
values for fs(n) and g(n) were verified by a small computer
program we wrote to explicitly enumerate all possible bit
string/template combinations and counting the number of
matches. However, for larger values of n, this would obviously
be intractable, whereas the analytical (transfer-matrix) method
will still be feasible.
4. Predicting the required level of catalysis

Table 2 provides us with the molecule–reaction template
match probabilities m(n) which can be used to predict the
required level of p0ðnÞ (the probability of considering a
molecule–reaction pair for inclusion in the catalysis set C), given
p(n) and a probability Pn of observing autocatalytic sets.

To test these predictions, we performed computer simulations
with the two versions of the binary polymer model, using our RAF
algorithm to detect autocatalytic sets in instances of these CRS
models. For various values of n, we identified the required levels
of catalysis p(n) (random catalysis model) and p0ðnÞ (template-
based model) for which there was a probability Pn¼0.5 of finding
RAF sets.1 In the template-based catalysis version of the model,
we used reaction templates of four bits (two bits on each side of
the reaction site) that have to be matched completely by a
candidate catalyst (no partial matches allowed). We used a value
of t¼4 for the food set (i.e., molecules up to length four) to allow
at least some food molecules to also be catalysts. For each
combination of n and p(n) (or p0ðnÞ), we generated between 500
(for larger n) and 10 000 (for smaller n) instances of the binary
polymer model, and applied our RAF algorithm to count the
fraction (Pn) of these instances that contain an RAF set. Due to
the exponential growth in the size of the reaction set R with
increasing n, we went up to n¼18 only, which already took many
weeks of computing time, even on a large parallel computer
cluster. Due to this computational constraint, we also restricted
ourselves to reaction templates of length four. But as already
mentioned in Section 3, the mathematical calculations can be
easily extended to templates of any length.

With the simulation results and the analytically calculated
values of m(n) from Table 2, we can finally compare the predicted
values pðnÞ=mðnÞ (solid line) with the observed values p0ðnÞ (dots),
which is shown in Fig. 4. As this figure shows, there is a very close
match between the predicted and observed values (the dots fall
right on the line), with increasing accuracy for increasing values
of n. Fig. 5 shows the same results on a log scale, to show the
results (and increasingly close fit) more clearly for the larger
values of n. This confirms our proposition that the required levels
of catalysis in both model versions can be accurately predicted



Table 2
The analytically calculated values for g(n), h(n), k(n), and m(n), for 4rnr20. The

g(n) values are exact, the others are rounded to three significant digits.

n g(n) h(n) kðnÞa m(n)

4 1.000 0.033 0.235 0.008

5 3.875 0.079 0.408 0.032

6 11.375 0.129 0.527 0.068

7 29.625 0.181 0.611 0.110

8 72.250 0.232 0.671 0.155

9 168.625 0.281 0.715 0.201

10 382.375 0.327 0.750 0.245

11 849.000 0.371 0.778 0.288

12 1855.125 0.412 0.800 0.329

13 4002.875 0.450 0.818 0.368

14 8551.000 0.486 0.833 0.405

15 18 118.000 0.520 0.846 0.440

16 38 129.250 0.551 0.857 0.472

17 79 787.000 0.580 0.867 0.502

18 166 151.625 0.607 0.875 0.531

19 344 567.000 0.632 0.882 0.558

20 712 003.750 0.656 0.889 0.583

a For the calculation of k(n), we used the exact formula for no10 and the

approximation for nZ10. For n¼10, the two values differ by only 0.1%.

Fig. 4. Comparison of the predicted (p(n)/m(n); solid line) and observed (p0ðnÞ;

dots) values of the required level of catalysis in the template-based version of the

binary polymer CRS model, for various values of n.

Fig. 5. Comparison of the predicted (p(n)/m(n); solid line) and observed (p0ðnÞ;

dots) values of the required level of catalysis in the template-based version of the

binary polymer CRS model, for various n, using a log scale.

Fig. 6. Comparison of the predicted (p(n)/m(n); solid lines) and observed (p0ðnÞ;

dots) values of the required level of catalysis in the template-based version of the

binary polymer CRS model, for various values of Pn.
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from each other using the molecule–reaction template match
probabilities m(n).

Next, we performed the same comparison for a fixed value of n

but varied the probability Pn of finding RAF sets. For two given
maximum molecule lengths (n¼12 and n¼15), we identified the
values of p(n) and p0ðnÞ to get probabilities of finding RAF sets of
PnAf0:5,0:6,0:7,0:8,0:9g. Fig. 6 shows the predicted values
pðnÞ=mðnÞ (solid lines) and the observed values p0ðnÞ (dots) for
the template-based version of the model. Again, there is a close
agreement (for n¼12 the discrepancy is about 2%; for n¼15 it is
merely 0.3%). So, the relationship also seems to hold for different
values of Pn as well.

With these results, we can conclude to have established a
direct relationship between two structurally distinct versions of
the binary polymer model. More precisely, we have shown how
these two models lead to identical predictions concerning the
probability Pn of finding autocatalytic sets, when the probabilities
of catalysis are related by the m(n) scaling factor, which can be
calculated analytically.
5. Conclusions and discussion

We have compared two different versions of a well-known
binary polymer model of catalytic reaction systems as introduced
in Kauffman (1986, 1993) and investigated in detail in our own
previous work (Hordijk et al., 2011; Hordijk and Steel, 2004;
Mossel and Steel, 2005; Steel, 2000). In the first version of the
model, the probability p that an arbitrary molecule will catalyze
an arbitrary reaction is equal and independent for each possible
molecule–reaction pair. In the second version, a molecule will
catalyze a reaction with similar probability p0 only if it matches
the four-bit template around the reaction site.

At first glance, these two versions seem to impose rather
different constraints, resulting in rather different (actual) mole-
cule–reaction catalysis sets C. However, we have shown that it is
possible to calculate analytically a factor m which directly (and
accurately) relates the catalysis probabilities p and p0 in terms of
the probabilities Pn of finding autocatalytic sets in instances
of both model versions. In other words, given the required level
of catalysis in one model version to find autocatalytic sets with a
given probability Pn, it is possible to accurately predict the
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required level of catalysis in the other model version to get the
same probability Pn of finding autocatalytic sets.

Because of this mathematical concordance between the two
model versions, we can conclude that results obtained with the
original (purely random and less realistic) model can still be
considered relevant in the more realistic context of template-
based catalysis. We have shown that the mathematical relation-
ship holds for various n (with fixed Pn) as well as for various Pn

(with fixed n), with increasing accuracy for increasing n, so it
appears to be a very robust relationship. Furthermore, the
analytical method for calculating the scaling factors m(n) can be
easily generalized to, for example, non-binary molecules or
different template lengths, and therefore does not depend on
specific values of the model parameters.

This result clearly (and substantially) counters one potential
and important objection that the binary polymer model in its
original form (with purely randomly assigned catalysis) is too
simplistic. We already showed earlier that it is straightforward to
add more realistic extensions to the original model, such as
template-based catalysis, which still results in similar behavior
(in particular, a linear growth rate in the level of catalysis is
sufficient for a high probability of finding RAF sets) (Hordijk et al.,
2011). In the current paper, we established a different, more
direct and analytical relationship between the required levels of
catalysis in these two model versions. Furthermore, it is interest-
ing to note that recently, an in vitro ‘‘implementation’’ of the
binary polymer model was realized (Taran et al., 2010), where the
food set consists of dinucleotides such as CA and TG, which can be
interpreted as 0’s and 1’s in the binary model (von Kiedrowski,
2011). The authors conclude that ‘‘different building blocks can be
incorporated into the strand, promoting the formation of combi-
natorial libraries of oligonucleotides long enough to be folded into
specific catalytically active structures and to potentially form
initial autocatalytic sets’’ (Taran et al., 2010). This is a further
indication that the binary polymer model (and its results) has
direct (bio)chemical relevance, including in the context of origin
of life studies.
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