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a b s t r a c t

The field of phylogenetic tree estimation has been dominated by three broad classes of methods:

distance-based approaches, parsimony and likelihood-based methods (including maximum likelihood

(ML) and Bayesian approaches). Here we introduce two new approaches to tree inference: pairwise

likelihood estimation and a distance-based method that estimates the number of substitutions along

the paths through the tree. Our results include the derivation of the formulae for the probability that

two leaves will be identical at a site given a number of substitutions along the path connecting them.

We also derive the posterior probability of the number of substitutions along a path between two

sequences. The calculations for the posterior probabilities are exact for group-based, symmetric models

of character evolution, but are only approximate for more general models.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional approach to estimating a tree from the dis-
tances between leaves entails calculating a corrected distance
estimate and then searching for a tree that displays path lengths
between its leaves that are as close as possible to the corrected
distances. Typically, maximum likelihood estimates of branch
lengths are used as the distance corrections in the first step.
Some form of weighted least squares (WLS) is often used for the
second step (Fitch and Margoliash, 1967; Beyer et al., 1974). For
example, if we have M species then we may search for the tree
that minimizes the weighted sum of squared errors, EðT ,mÞ:

EðT,mÞ ¼
XM�1

i ¼ 1

XM
j ¼ iþ1

wijðDij�mijÞ
2, ð1Þ

where wij is a (non-negative) weight for the pairwise comparison
between leaves i and j, Dij is the estimate of the distance between
leaf i and j (calculated from the data), and mij is the path length
between leaves i and j on the tree. mij is simply the sum of the
lengths of all the edges along the shortest path from leaf i to leaf j

on the tree. See Chapter 11 of Felsenstein (2004) for a more

detailed discussion of distance-based tree inference. This
approach to inferring trees has a few obvious weaknesses (all of
which have been pointed out by other workers):

1. each pairwise comparison of sequences in Eq. (1) is treated as
if it were an independent observation that should contribute
to the overall score;

2. the most appropriate weighting coefficient, wij, may not be
obvious; and

3. pairwise comparisons do not use all of the relevant informa-
tion because they do not enforce logical constraints that are
implicit in an evolutionary reconstruction.

1.1. Non-independence of pairwise comparisons

As with most methods based on pairwise comparison of
sequences, the two approaches that we introduce here do not
address the first objection. That is, they ignore the statistical
dependencies that arise because events that occur along an edge in
the tree will affect all pairwise combinations that traverse that edge.
Generalized least squares (GLS) methods, which account for covar-
iances caused by shared history, have been developed by Hasegawa
et al. (1985) and Bulmer (1991); interested readers should refer to
Bryant and Waddell (1998) for an efficient algorithm for using GLS
for tree inference, and to Susko (2003) and Sanjuan and Wrobel
(2005) for discussions of topology testing in the context of GLS. Our
assumption that each pairwise comparison is independent simplifies
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the scoring of trees and it makes the methods that we introduce
more directly comparable to the widely used WLS methods. Czarna
et al. (2006) report that the theoretical advantages of the GLS
approach over WLS may not translate to improvements in the
domain of topology testing (at least, not with the implementations
of GLS which are currently available).

1.2. Downweighting comparison involving large distances

A variety of systems have been proposed for weighting the terms
of the least squares equation (Cavalli-Sforza and Edwards, 1967; Fitch
and Margoliash, 1967; Beyer et al., 1974). Typically, lower weights are
assigned to comparisons that have higher variances. Because the
variance of a distance correction increases with the distance, these
weighting coefficients (the wij factors in Eq. (1)) are small for large
distances. Here, we introduce an estimation scheme that uses the
likelihood calculated from pairwise comparisons of leaves.

1.3. Enforcing constraints

Character-based approaches (likelihood and parsimony) calcu-
late a score for a tree while enforcing the constraints that each site
must have a valid substitutional history – a history which assigns a
single state at each internal node. Distance-based approaches do
not consider ancestral sequences and do not enforce any constraints
on valid substitutional histories. The constraint that the internal
nodes of the tree must be assigned a single state represents a source
of information about the histories of the sequences that is not being
used by distance methods. We can enforce some logical constraints
about the paths between leaves by:

1. treating the number of substitutions (rather than simply the
expected number of substitutions) as a parameter to be
estimated, and

2. only considering numbers of substitutions along a path that are
compatible with the sequences observed at the ends of the path.

Here we will develop an approach to tree estimation that enforces
these conditions. The approach can be cast as a hierarchical
model: the edges of the tree have an (unknown) expected number
of substitutions, m. Even if we know the correct value of m, the
actual number of substitutions is still a parameter to be esti-
mated. Thus, the edge lengths commonly used in distance-based
phylogenetics become hyper-parameters in our formulation.

2. Results

2.1. Pairwise maximum likelihood

The use of WLS scoring (Eq. (1)) for tree estimation can be
justified if the errors in distance estimates are expected to be
drawn from a normal distribution that has a mean of 0 and a
variance of wij. Susko (2003) demonstrated that this assumption
of normality was valid in the context for distances estimated from
long sequences. When the data consist of short sequences, it may
be more appropriate to use a likelihood function to evaluate path
length, rather than assuming a normal distribution as an error
model for our estimates. We can define a likelihood-based score,
S, for a tree and edge lengths, m, as:

SðT ,mÞ ¼
XM�1

i ¼ 1

XM
j ¼ 1þ i

ln½PðXi,XjjT ,mijÞ�, ð2Þ

where Xi and Xj denote the character data for leaves i and j,
respectively, and mij is the sum of edge lengths on the path from i

to j. Thus, mij is the expected number of substitutions on the path in
T connecting leaves i and j. In a later section, we will consider the
actual number of substitutions on this path, which we will denote
by xij to avoid confusion with mij. If PðT,i,jÞ is the set of edges that
are traversed when moving from i to j on tree T and me is the length
of edge e, then mij ¼

P
eAPðT ,i,jÞme. The tree and edge lengths with the

highest score would be preferred. Eq. (2) can be factored:

SðT,mÞ ¼
XM�1

i ¼ 1

XM
j ¼ 1þ i

ln½PðXiÞPðXjjXi,mijÞ�, ð3Þ

where one leaf (indexed by i) is arbitrarily chosen to serve as the
ancestral sequence for each comparison (when using time reversible
models, the score will not change if the directionality of the edge is
reversed). If we assume that the n sites involved in each comparison
evolve independently, then we have:

SðT,mÞ ¼
XM�1

i ¼ 1

XM
j ¼ 1þ i

Xn

k ¼ 1

ln½PðXi,kÞPðXj,kjXi,k,mk
ijÞ�, ð4Þ

where Xi,k denotes the sequence for leaf i at site k, and mk
ij is the

expected number of substitutions at site k on the path connecting
leaves i and j.

If the model of sequence evolution is assumed to be identical
for all sites (so mk

ij ¼ mij) then the dataset can be compressed by
counting the number of times each unique pattern of states is
observed in each pair of leaves. For a nucleotide model, only 16
possible patterns are possible. Compressing redundant patterns
can be performed prior to tree searching; therefore the calcula-
tion of the scores for trees encountered during a search will be
independent of the sequence length:

SðT,mÞ ¼
XM�1

i ¼ 1

XM
j ¼ 1þ i

X16

p ¼ 1

cpln½PðXi,pÞPðXj,pjXi,p,mijÞ�, ð5Þ

where cp is the number of times the data pattern p was observed
for the pairwise comparison of taxa i and j.

The use of the pairwise log-likelihood parameterized by the path
length separating two leaves is inspired by the WLS error formula-
tion. While the definition of the pairwise likelihood score (Eq. (2))
does not explicitly use a weighting coefficient to downweight long
paths, the use of the likelihood function will naturally accommodate
our intuition that the sequence comparisons associated with long
paths are less reliable. Plotting PðXj,kjXi,k,mijÞ versus mij for com-
monly used Markov models of sequence evolution reveals the
familiar plateauing of the transition probability that is associated
with saturation caused by multiple hits. The flattening of this curve
illustrates that small changes to a path length will have a relatively
small effect on the likelihood when the path is already long.

If all of the columns in the data matrix were scored for exactly
two leaves, no column of data would be used in more than one
pairwise comparison. In this case, the pairwise likelihood
approach would be identical to a standard ML estimation proce-
dure. When data columns are scored for more than two leaves,
then the pairwise likelihood scoring system is effectively replicat-
ing the data to produce an expanded matrix (as shown in Fig. 1).

This duplication of data will not compromise the consistency
of the method, but it does mean that the score calculated in the
pairwise likelihood method cannot be treated as a valid likelihood
for the purposes of likelihood ratio testing. The fact that this
pairwise ML will be a consistent estimator of the tree and edge
lengths is formalized in the following result, the proof of which is
given in Appendix. Recall that a phylogenetic L-tree is a phylo-
genetic tree with a leaf (taxon) set L.

Theorem 1. Consider a reversible Markov (or mixed-Markov) model

of site evolution on r states for which the evolutionary distance ðmij)
between any pair (i,j) of taxa can be uniquely determined from the
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r� r joint probability distribution on pairs of states for the two taxa.

Suppose k sites evolve i.i.d. under this model on a binary (fully

resolved) phylogenetic L-tree T0 with edge length assignment m0 that

is strictly positive and finite on every edge. Then a procedure that

returns a phylogenetic L-tree T̂k and (possibly zero or infinite) edge

length assignment m̂k that maximizes the likelihood-based score

defined by Eq. (2) has the property that, with probability1, as k

tends to infinity, T̂k ¼ T0 and m̂k converges to m0.

2.2. Calculating the posterior probability of the number of

substitutions

The pairwise likelihood criterion outlined in the previous
section does not address the concern that pairwise methods do
not enforce constraints on the number of substitutions that
occurred over a tree. We can address this point by estimating
the number of substitutions that have occurred along an edge. We
will begin by calculating the posterior probability of the number
of substitutions across an edge.

Suppose we have two aligned sequences, each of length n, which
are separated on an evolutionary tree by a path for which the
expected (prior) number of substitutions is m. We observe that k of
the n sites are different in the two sequences. Let Pn,k(j) denote the
posterior probability that the actual number of substitutions that
occurred on the path separating the two sequences was j. Clearly:

Pn,kðjÞ ¼ 0, ð6Þ

if jok.
First, consider the very simple case where n¼1 (i.e. a sequence

of length 1), in which case k¼1 or 0. So P1,1(j) is the posterior
probability that j changes have occurred along the path at the site,
given that the site has undergone a net change of state between
the two ends of the path.

Theorem 2. For the Jukes–Cantor model, the posterior probabilities

Pn,k(j) for n¼1 and jZ0 are given by:

(i) P1,0ðjÞ ¼
e�mmj

j!

� �
�

1þ3ð�1=3ÞjÞ

1þ3e�4m=3

 !
, ð7Þ

(ii) P1,1ðjÞ ¼
e�mmj

j!

� �
�

1�ð�1=3Þj

1�e�4m=3

 !
: ð8Þ

Note that P1,1ðjÞ ¼ 0 for j¼0 (by Eq. (6)) and P1,0ðjÞ ¼ 0 for j¼1
(since if exactly one change has occurred along the path, the site
cannot be in the same state).

Proof of Theorem 2. Let N be the number of substitutions on the
path connecting the two taxa, and let E0 and E1 be the events that
the two states at the end points are the same or different,
respectively. Then for k¼0,1, P1,kðjÞ is the conditional probability
PðN¼ jjEkÞ. Bayes’ formula gives:

PðN¼ jjEkÞ ¼
PðEkjN¼ jÞPðN¼ jÞ

PðEkÞ
: ð9Þ

In the Jukes–Cantor model N has a Poisson distribution and so
PðN¼ jÞ ¼ e�mmj=j!. Moreover, in the Jukes–Cantor model, PðE0Þ ¼
1
4 ð1þ3e�4m=3Þ and PðE1Þ ¼

3
4 ð1�e�4m=3Þ. The remaining term in

Eq. (9) to be determined is PðEkjN¼ jÞ. Clearly, PðE1jN¼ jÞ ¼

1�PðE0jN¼ jÞ so it suffices to determine PðE0jN¼ jÞ. In the
Jukes–Cantor model, this is simply ð13 Þ

j times the number of walks
of length j from a state to itself (regarding the states as vertices of
a complete graph on four vertices). The number of such walks is
easily shown to be 1

4 ð3
j
þ3ð�1ÞjÞ by algebraic or recursive argu-

ments (see, for example, Barry, 2007). Thus:

PðE0jN¼ jÞ ¼ 1
4ð1þ3ð�1=3ÞjÞ, ð10Þ

PðE1jN¼ jÞ ¼ 3
4ð1�ð�1=3ÞjÞ: ð11Þ

The formulae in Theorem 1 now follow by substituting the
various quantities into Eq. (9). &

2.2.1. Extensions to other numbers of states

The results extend easily to the symmetric Poisson model on
any number rZ2 of states by replacing 4 by r and 3 by r�1
above. Thus, the analog of Theorem 2 for r states is

P1,0ðjÞ ¼
e�mmj

j!

� �
�

1þðr�1Þð�1=ðr�1ÞÞjÞ

1þðr�1Þe�rm=ðr�1Þ

 !
;

P1,1ðjÞ ¼
e�mmj

j!

� �
�

1�ð�1=ðr�1ÞÞj

1�e�rm=ðr�1Þ

 !
:

2.2.2. Extension to more general models

Consider a general time reversible (GTR) Markov process with
the rate matrix Q. For a path along which the expected (prior)
number of substitutions is m and, given a pair of states a and b
(where we may also let a¼ b), let Eab be the event that we
observe states a and b at the endpoints of the path. As in the proof
of Theorem 2, let N be the number of substitutions on the path.
We would like to calculate the conditional probability
PðN¼ jjEabÞ. Once again, Bayes’ formula gives

PðN¼ jjEabÞ ¼
PðEabjN¼ jÞPðN¼ jÞ

PðEabÞ
: ð12Þ

Leaf Sequence
1 x1,1x1,2 . . . x1,n
2 x2,1x2,2 . . . x2,n
3 x3,1x3,2 . . . x3,n
4 x4,1x4,2 . . . x4,n

1
2
3
4

Fig. 1. A depiction of the data duplication that is implicitly performed by the pairwise likelihood scoring system. (a) A depiction of the observed data; (b) the pairwise form

of the data matrix in which each sequence is duplicated M times. The ‘?’ symbol denotes a set of n cells of missing data.
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The denominator PðEabÞ is easily calculated. If PðtÞ ¼ expðQtÞ is the
transition matrix for the process operating for duration t, and p
denotes the stationary distribution of states for the process and P
is the corresponding diagonal matrix, then:

PðEabÞ ¼ paexp Q �
m

�trðPQ Þ

� �
ab
: ð13Þ

To calculate the first term in the numerator, namely PðEabjN¼ jÞ,
consider the ‘embedded Markov chain’ associated with the con-
tinuous-time Markov process. This discrete Markov chain, on the
same set of states, has a matrix S¼ ½sab� of transition probabilities
that are described as follows: for aab set: sab ¼ qab=

P
baaqab,

and for each state a, saa ¼ 0. Thus S is the transition matrix for the
process that records changes of state. Accordingly, we have

PðEabjN¼ jÞ ¼ pa � ðSjÞab: ð14Þ

Finally, consider the second term in the numerator, namely
PðN¼ jÞ. For the Jukes–Cantor model, this is described (exactly)
by a Poisson distribution. A Poisson distribution also applies
exactly to some other models, including ‘group-based’ models,
such as the Kimura 3ST model. To see this, note that we can
express N as the sum of three independent random variables
N¼N1þN2þN3, where N1 is the number of transitions, and N2

and N3 are the number of transversions of type I and II,
respectively, which occur along the path. N1,N2,N3 each have a
Poisson distribution, and, although they may have different
means, their independence ensures that their sum is also Poisson.

For more complex (non-symmetric) models PðN¼ jÞ may fail to
be exactly described by a Poisson distribution, though it may still
provide a good approximation (in cases where it is not, one must
simply modify the first bracketed term in the following equation or
use the approaches introduced by Minin and Suchard (2008a,b)).

Assuming an exact (or approximate) Poisson distribution for N

then, from Eqs. (13) and (14), we have:

PðN¼ jjEabÞ ¼
e�mmj

j!

� �
�

ðSjÞab

exp Q �
m

�trðPQ Þ

� �
ab

0
BBB@

1
CCCA: ð15Þ

2.2.3. Exact calculations for n41 for the Jukes–Cantor model

Let mn,k and s2
n,k denote the mean and variance of the

distribution Pn,k(j), and let p̂1 ¼ k=n (the proportion of sites that
show different states at the ends of the path) and p̂0 ¼ 1�p̂1 .

Theorem 3. Suppose n sites evolve i.i.d. under the Jukes–Cantor

model. Then,

(i) mn,k ¼ mn � ða0p̂0þa1p̂1 Þ, and s2
n,k ¼ mn � ðb0p̂0þb1p̂1 Þ, where

a0 ¼
1�y

1þ3y
, a1 ¼

1þy=3

1�y
;

b0 ¼
16my

3ð1þ3yÞ2
þ

1�y
1þ3y

; b1 ¼
�16my
9ð1�yÞ2

þ
1þy=3

1�y

and y¼ e�4m=3:

(ii) Moreover:
(a) For large values of n, we can approximate Pn,k(j) by a

normal distribution with mean mn,k and variance s2
n,k as

described in Part (i).
(b) Regarding k as a random variable that counts the number of

sites that have different states at the endpoints of the path,
mn,k=n is an unbiased and consistent estimator of m; that is:
E½mn,k=n� ¼ m, and mn,k=n converges in probability to m as

n-1.

Proof of Theorem 3. For k¼0 and 1, consider the probability
generating function:

PkðxÞ ¼
X
jZ0

P1,kðjÞx
j:

From (2), we have:

P0ðxÞ ¼
e�m

1þ3e�4m=3
ðemxþ3e�mx=3Þ and

P1ðxÞ ¼
e�m

1�e�4m=3
ðemx�e�mx=3Þ: ð16Þ

Now:

m1,k ¼
dPkðxÞ

dx

����
x ¼ 1

and

s2
1,k ¼

d2PkðxÞ

dx2

����
x ¼ 1

þm1,k�m2
1,k:

Applying these identities in Eq. (16) and performing routine

calculations shows that, for k¼0,1:

m1,k ¼ akm, ð17Þ

s2
1,k ¼ bkm: ð18Þ

Now, consider the total number Ntot of substitutions along the

path connecting the two sequences and Ni, the number of

substitutions along the path for site i. Thus Ntot ¼
Pn

i ¼ 1 Ni. For

k¼0,1 let Ei
k be the event that Ek occurs at site i (Ek defined as in

the proof of Theorem 2). Then, by the i.i.d. assumption:

mn,k ¼ E½NtotjE1
1 � � � Ek

1,Ekþ1
0 � � � En

0� ¼ kE½NjE1�þðn�kÞE½NjE0�,

and so, by (17):

mn,k ¼ kma1þðn�kÞma0 ¼ mn � ða0p̂0þa1p̂1 Þ:

A similar identity applies for the variance, based on (18). This

establishes Part (i).

For Part (ii) of the theorem, Part (a) follows from the central

limit theorem applied to the sums of independent random

variables (in two classes). For Part (b), note that k has a binomial

distribution with mean np and variance npð1�pÞ where

p¼ 3
4 ð1�e�4m=3Þ. Thus, E½mn,k=n� ¼ mða0ð1�pÞþa1pÞ ¼ m and the

variance of mn,k=n is of order n�1. This justifies the claims. &

2.2.4. Extension to sequences with n41 under general independent-

sites models

We can calculate the posterior probabilities of different values
of j when we have multiple sites (n41) using recursion. When
the sequences are identical (k¼0), we have:

Pn,0ðjÞ ¼
Xj

i ¼ 0

P1,0ðiÞPn�1,0ðj�iÞ: ð19Þ

For the Jukes–Cantor model with n41 and 0okrn, the recur-
sive formulation is

Pn,kðjÞ ¼
Xj

i ¼ 0

P1,1ðiÞPn�1,k�1ðj�iÞ: ð20Þ

However, we know that some of the terms in this summation will
be 0. In particular, the term associated with i¼0 will be 0 because
P1,1ð0Þ ¼ 0. Similarly, whenever j�iok�1 then terms will drop
out because Pn�1,k�1ðj�iÞ will be 0. Thus, we can truncate the
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summation to:

Pn,kðjÞ ¼
Xjþ1�k

i ¼ 1

P1,1ðiÞPn�1,k�1ðj�iÞ: ð21Þ

Under any i.i.d. model, the same probability statements will be
encountered many times during the recursive calculations (Eqs.
(19) and (21)). Caching the probabilities in a data-structure (such
as a hash-table) that allows for efficient lookup of a value can
dramatically improve the running time. As written, the equations
decompose the calculations for n sites into calculations for one
site and n�1 sites. The computational time of algorithms based
these equations will scale on the order OðjnÞ. This scaling can be
improved to OðjlogðnÞÞ by splitting the n sites in half (or as close to
half as possible):

Pn,0ðjÞ ¼
Xj

i ¼ 0

Pbn=2c,0ðiÞPn�bn=2c,0ðj�iÞ: ð22Þ

When kZ1, we must ensure that all of the terms that we consider
account for exactly k differences between the leaves. If bn=2crk

then:

Pn,kðjÞ ¼
Xj�kþbn=2c

i ¼ 1

Pbn=2c,bn=2cðiÞPn�bn=2c,k�bn=2cðj�iÞ: ð23Þ

However, if bn=2c4k then:

Pn,kðjÞ ¼
Xj

i ¼ 1

Pbn=2c,kðiÞPn�bn=2c,0ðj�iÞ: ð24Þ

Applying this recursive style of calculation to models that are
more complex than the Jukes–Cantor model requires more
complicated bookkeeping. Rather than simply tallying the total
number of sites n and the number of sites that differ between the
leaves, we must record the number of times each type of data
pattern is observed in the pair of leaves. Nevertheless, the general
approach outlined in Eqs. (19) and (21) would still apply. Note
that it would even be possible to use this form of calculation if the
different sites evolved according to different models of evolution.
For example, different sites could be allowed to evolve at
differing rates.

2.2.5. Tree searching with estimates of the number of substitutions

per edge

We have implemented the methods into software that can
score trees using the Jukes–Cantor model. The software uses
numerical optimization techniques (specifically the simplex
method) to search for edge lengths that maximize the pairwise
likelihood score (Eq. (2)). Alternatively, the software can jointly
estimate the edge lengths (specified as the expected number of
changes) and the number of changes along an edge by maximiz-
ing a pairwise scoring scheme related to a posterior density.
Specifically, for each edge e on a tree, T, we search for a value of
the expected number of substitutions per site, me, and an actual
number of changes, xe. During this estimation procedure, we
attempt to maximize the score, B:

BðT ,l,nÞ ¼
X

eAEðTÞ
ln½PðmeÞPðxejmeÞ�þ

XM�1

i ¼ 1

XM
j ¼ 1þ i

ln½PðXjjT,xij,XiÞPðXiÞ�,

ð25Þ

where EðTÞ is the collection of indices for edges in the tree and xij

is simply the sum of all substitution counts for all edges along the
path from leaf i to leaf j. Note that xij is not a free parameter that
is separate from the counts of substitutions assigned to the edges;
it is simply the sum for the path from i to j:

xij ¼
X

eAPðT,i,jÞ
xe:

Note that Eq. (25) is very similar to Eq. (3), except that it
calculates the probability of the end state given the number of
substitutions along the path (xij), and it contains a summation of
the log of the prior density of Pðme,xeÞ over all edges. As in the
previous sections, we assume that PðxejmeÞ is the probability from
a Poisson distribution with mean me. Using Theorem 2 and the
recursions in Eqs. (19) and (21) directly would require us to have
a prior probability for the paths between different leaves. Here we
chose to specify the prior probability for edge lengths by treating
each edge length parameter as an independent parameter and
placing an identical prior distribution on each parameter (as is
commonly done in Bayesian inference of unrooted trees). Calcula-
tion of PðXjjT,xij,XiÞ can be done with recursions similar to those
described in Eqs. (19) and (21). When considering a single site, we
use:

PðXjjxij,XiÞ ¼
1
4ð1þ3ð�1=3ÞjÞ if Xi,k ¼ Xj,k ð26Þ

PðXjjxij,XiÞ ¼
1
4ð1�ð�1=3ÞjÞ otherwise: ð27Þ

These formulae follow directly from Eqs. (10) and (11).
Although we have not concentrated on an optimized software

implementation, we note that if the optimization routine in the
software was to change a single edge length, then a small subset
of the ðM2 Þ pairwise comparisons would be affected. Thus, it would
be possible to implement the efficient nearest-neighbor-inter-
change branch-swapping techniques similar to the ones used by
Desper and Gascuel (2002) in their FastME software.

2.3. Example

Farris (1981) provided an example of a dataset that is the
clearest demonstration of the objection that distance-based
approaches do not enforce all of the constraints that are implied
by descent from a common ancestor. He pointed out that on a
dataset such as the one shown in Fig. 2a, a distance-based
approach will infer a star tree with equal edge lengths (see
Fig. 2b). The path length between any pair of leaves shown in
Fig. 2b will be 0.25, which corresponds exactly with the observed
(uncorrected) distance based on the data matrix. This result
seems unsatisfying because the common ancestor of all of the
sequences must have had a nucleotide at the first position. No
sequence has a distance of 0.125 from all of the four leaves, and
thus it seems counterintuitive that the inferred tree would
display these edge lengths and be considered to have a perfect
fit to the data. Put another way: the star tree shown in Fig. 2b
shows that distance methods do not impose the constraint that
the interior node of the tree must be assigned a sequence.
Felsenstein (1984) referred to this constraint as ‘‘realizability.’’

Intuitively, one might expect that an inference method would
judge the four trees shown in Fig. 2c to be tied as optimal
solutions. In each of the four trees shown in Fig. 2c, we would
infer the ancestral sequence to be identical to one of the leaf
sequences; this leads to one edge with length 0 and three edges
with length 0.25.

We conducted analyses of the dataset shown in Fig. 2a using
the Jukes–Cantor model under WLS (Fitch and Margoliash, 1967)
and ML implemented in PAUPn (Swofford, 2003), as well as the
two new criteria introduced here: pairwise likelihood scoring, and
joint estimation of the substitution counts and edge lengths. The
edge lengths optimized on the star tree and a fully resolved tree
are summarized in Table 1. The approximate edge lengths
returned by simplex numerical optimization routines were mod-
ified slightly to assure that the score was optimized completely.
We used an (improper) uniform prior distribution on the
expected edge length in those distance analyses that used
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substitution counts. Note that the edge lengths estimates from
pairwise ML are identical to the estimates from WLS for this
dataset. This is unsurprising because, as Farris pointed out, the
star tree can result in trees with a perfect fit for this dataset when
perfect fit is assessed via pairwise comparisons of leaves.

Our distance analysis which jointly estimates the number of
substitutions favored the set of edge lengths (l) identical to those
shown in Fig. 2c. Thus the method does seem to address, to some
degree, the concern raised by Farris (1981) that the edge lengths
in a phylogenetic analysis should return a tree estimate that could
be realized by actual sequence evolution. However, it is not clear
that estimating the number of substitutions will improve the
accuracy of the tree estimation procedure. Felsenstein (1984)
pointed out that the behavior of traditional distance methods
(which estimate the tree shown in Fig. 2b) is indeed appropriate if
one views the edge lengths as parameters. These parameters
express the expected number of changes along an edge instead of
a count of the number of changes that must have occurred. More
importantly, Felsenstein (1984) points out that Farris’ objections

do not undercut the validity of distance-based methods – indeed,
distance-based phylogenetic methods have been proven to be
statistically consistent (Atteson, 1999) and surprisingly powerful
(Roch, 2010).

One can ask whether our system for jointly considering
substitution counts and edge lengths is sufficient to guarantee
that only realizable solutions are considered. In other words, is it
true that every set of substitution counts that has a score greater
than �1 according to Eq. (25) will be realizable by assigning
sequences to internal nodes? The answer to this question is ‘‘no,’’
as can be seen by considering the data shown in Fig. 2a and the
tree shown in Fig. 2b with one substitution assigned to every
edge. The path between each pair of sequences will contain two
substitutions, and this scenario is compatible with one observed
difference between each pair of leaves (and the score of BðT ,l,xÞ
will be not be �1 if the branch lengths are not 0). However, no
sequence can be assigned to the internal node that is one
substitution away from all four sequences shown at the leaves.
Thus, consideration of the substitutional counts during pairwise

Leaf Sequence
1
2
3
4

1

2

3

4

�1 = �2 = �3 = �4 = 0.125

1

2

3

4

�1 = �2 = �3 = 0.25

�4 = 0

1

2

3

4

�1 = �3 = �4 = 0.25

�2 = 0

1 2

3

4
�2 = �3 = �4 = 0.25

�1 = 0

1

2
3

4

�1 = �2 = �4 = 0.25

�3 = 0

Fig. 2. A version of the dataset discussed by Farris (1981) and Felsenstein (1984): (a) the data matrix, (b) a tree and edge length that have a perfect fit to the data (using

uncorrected distances and a least squares criterion), (c) four possible combinations of edge lengths that one might expect to be the optimal solutions because they consider

the sequences for the internal node.

Table 1
Summary of optimal edge lengths under different criteria for the dataset shown in Fig. 2a.

Criterion Tree topology Optimal Approximate optimal edge lengths

WLS Star Yes 0.152 for all edges

Any binary Yes 0.152 for terminal edges; 0 for internal

ML Star No 0.216 for all edges

Any binary Yes 0.194 for terminal edges; 0.078 for internal

Pairwise ML Star Yes 0.152 for all edges

Any binary Yes 0.152 for terminal edges; 0 for internal

With subst. counts Star Yes m¼ 0:25,w¼ 1 for three edges;

m¼ 0,w¼ 0 for one edge

Any binary Yes m¼ 0:25,w¼ 1 for three terminal edges;

m¼ 0,w¼ 0 for the internal and one terminal edge
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comparisons can eliminate some impossible scenarios from con-
sideration (because PðXjjxij,XiÞ will be zero for some scenarios
that are obviously incompatible with the data), but this is not
sufficient to enforce all of the conditions that would address
Farris’ critique. It is not clear if the maximum a posteriori (MAP)
estimate of ðl,nÞ will ever correspond to an unrealizable scenario.

Also note that the estimates of the expected numbers of
changes per site are precisely equal to the count of the number
of changes divided by the number of sites. This will occur if the
prior distribution used for the edge length hyper-parameters (m)
is a uniform distribution, and we use the MAP estimate of all
parameters and hyper-parameters.

3. Conclusions

We have developed two new optimality criteria for evaluating
evolutionary trees. These criteria are closely tied to distance-
based approaches to tree estimation because they calculate a
score based on all possible pairwise comparisons of the leaves.
However, they also have properties in common with character-
based tree inference approaches. The pairwise ML procedure uses
the likelihood of a pairwise sequence spectrum under a model of
sequence evolution to assess the fit of a set of edge lengths to the
data. It is possible that this approach will be preferable to WLS
estimation in cases of short sequences (where assuming the
normality of errors in distance estimates may not be justified).
Tamura et al. (2004) reported that a pairwise ML approach for
distance corrections results in more accurate neighbor-joining
trees.

The other tree estimation procedure that we introduced is the
joint estimation of the number of substitutions and edge lengths.
This method was inspired by the observation that distance-based
approaches assume additivity of the edge lengths when expressed
as the expected number of substitutions, but they do not attempt
to utilize the fact that the actual count of substitutions should be
additive.

The results reported here may be useful in other contexts. For
example, Markov chain Monte Carlo techniques that use data-
augmentation (e.g. Lartillot, 2006) require draws from the sub-
stitutional history along a branch of fixed length and end points;
our results on the posterior probability of the number of sub-
stitutions along a branch would allow for efficiently drawing
realizations of substitutional histories. Minin and Suchard
(2008a,b) have developed methods for calculating the moments
of counting processes (such as counting the number of non-
synonymous substitutions in a codon model) over a phylogenetic
tree. Unlike our results, their approaches are not restricted to the
domain of models that have a Poisson prior distribution on the
number of substitutions. As a result of the generality of their
methods, their calculations of the probability of the number of
substitutions, given the end states, are more expensive – unlike
our results for P1,0ðjÞ and P1,1ðjÞ (see Theorem 2), the more general
approach entails a summation of j terms. O’Brein et al. (2009)
used the approaches introduced by Minin and Suchard (2008a) to
develop robust distance estimators based on the expected num-
ber of changes between two sequences. However, they did not
investigate distance-based tree inference where the number of
substitutions along each branch is treated as a parameter.

Future work would include thorough simulation studies to
determine the contexts in which the approaches introduced here
perform differently from ML- and WLS-based inference. Distance-
based approaches to tree estimation are usually much faster than
ML inference, but the likelihood principle implies that they make
less efficient use of the data. At least two promising avenues for
improving the accuracy of distance-based methods appear to be

available: developing better error models for the disagreement
between pairwise distance and path lengths, and developing
methods that primarily not only rely on distances but also utilize
some information about plausible substitutional histories. It is
unclear which of these avenues is most promising.

The criteria we introduce can be thought of as intermediates
between ML- and WLS-based approaches. We do not expect these
methods to outperform ML estimation, but we hope that they will
be helpful in diagnosing the causes for disagreements between
ML and WLS estimates. Cases in which the tree returned by WLS
and the pairwise ML approach disagree may highlight contexts in
which the sum of squared errors criterion is an inappropriate
error function. Similarly, future work may identify cases in which
jointly estimating the edge lengths and the number of changes
along a path improves tree inference. Such cases could inform us
about conditions in which statistical power requires us to enforce
some constraints on valid substitutional histories.

It would also be interesting to a study a method that estimates
the number of changes at each site for each branch. Because such a
procedure would reveal sites which have a large number of
changes, it would allow for the joint estimation of the rate of
evolution for a site (at the expense of introducing a large number
of parameters to be estimated). Traditional distance-based
approaches have difficulty dealing with among-site rate variation,
because such variation cannot be accurately detected from pair-
wise comparisons alone.
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Appendix A. Proof of Theorem 1

We apply the following result from Chang (1996).

Lemma A1 (Chang, 1996). Let X be a finite set and let fPy : yAYg
be a family of probability distributions on X , where the closure Y of

Y is a compact subset of a metric space. Let Y1,Y2, . . . be independent

and identically distributed random variables (or vectors) with prob-

ability distribution Py0
for some y0AY. Assume the identifiability

condition

PyaPy0
for each yAY with yay0:

Suppose that for each xAX , the function y/PyðxÞ is continuous on

Y, and let ŷk ¼ ŷk ðY1, . . . ,YkÞ maximize the log-likelihoodPk
s ¼ 1 logPyðYsÞ over yAY. Then Py0

ðŷk-y0Þ ¼ 1.

Let L¼ f1, . . .ng denote the leaf (taxon) set, Lð2Þ denote the set of
pairs ði,jÞAL� Lwith io j, and A denote the alphabet of character
states. Consider the set T L ¼ fðT ,mÞg of phylogenetic L-trees with
finite edge lengths, and the map:

f : T L-½0,1�L
ð2Þ

defined by ðT ,mÞ/yðT ,mÞ,

where, for each (i,j) in Lð2Þ, yðT ,mÞ
ij ¼ expð�

P
eAPðT ,i,jÞmeÞ. Thus,

�logyðT ,mÞ
ij is the length of the path connecting the leaves i,j in T

under the edge weighting m. To apply Chang’s lemma in the
present setting, let:

Y¼fðT LÞ ¼ fyðT,mÞ : ðT ,mÞAT Lg:
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The closure Y of Y is the set of limit points in Y obtained by
letting various sets of edge lengths in phylogenetic trees tend to
infinity. Note that Y is a closed bounded subset of ½0,1�L

ð2Þ

and
hence is a compact subset of a metric space.

Now suppose we have a stochastic process on site patterns,
which is either a reversible, continuous-time Markov process (e.g.
Jukes–Cantor or General time reversible (GTR)) or a mixture of
such processes (by allowing a distribution of site specific rates,
e.g. GTR þ G). All such models have the property that for any pair
of leaves i,j separated by a path of length mij, for any ordered pair

of states a,bAA, the joint distribution PðXi ¼ a,Xj ¼ bÞ can be

expressed as a linear function of non-negative (but not necessa-

rily integer) powers of yij ¼ e�mij , where the coefficients are

independent of the tree topology or edge lengths. Allowing one
or more branch lengths to be infinite on this path corresponds to

allowing yij ¼ 0, in which case PðXi ¼ a,Xj ¼ bÞ ¼PðXi ¼ aÞ �
PðXj ¼ bÞ ¼ pa � pb (the product of the equilibrium probabilities

for the states a and b). Thus, for any y¼ ½yij : ði,jÞALð2Þ�AY, we

can write PðXi ¼ a \ Xj ¼ bÞ as a continuous function of yij, which

we make explicit by writing: PðXi ¼ a,Xj ¼ bjyijÞ.

We now define Py for yAY. Let X ¼ ðA�AÞL
ð2Þ

, the set of
assignments of an ordered pair of character states to each pair of

taxa ði,jÞ : io j. For each specific vector y¼ ½yij : ði,jÞALð2Þ� where

each yijAA�A, let:

PyðY ¼ yÞ :¼
Y

ði,jÞALð2Þ
PððXi,XjÞ ¼ yijjyijÞ:

Thus, Py is the probability distribution of the states for pairs of
leaves, if one was to treat these as independent events across
different choices of pairs.1 We can recover the marginal distribu-
tion for ðXi,XjÞ from Py for all ði,jÞALð2Þ. Thus, if y0AY and yAY
satisfy the identity Py0

¼Py then, for each ði,jÞALð2Þ and all
choices of yij, we have: PððXi,XjÞ ¼ yijjðy0ÞijÞ ¼PððXi,XjÞ ¼ yijjyijÞ. It
now follows, by the assumption in the statement of the theorem
(and the fact that y0 lies in Y and not in Y�Y) that ðy0Þij ¼ yij for
all ði,jÞALð2Þ. Thus, y0 ¼ y, and the required identifiability assump-
tion holds. The continuity assumption also holds, i.e. y/Py is
continuous, since PððXi,XjÞ ¼ yijjyijÞ depends continuously on yij.

Let Y1,ybe i.i.d. random variables with the same distribution
as Y. Notice that each Ys is a vector ½ðXs

i ,Xs
j Þ : ði,jÞAL

ð2Þ
� where

ðXs
i ,Xs

j Þ records the state of leaf i and of leaf j at site s. Note also
that for each s, the random variables ðXs

i ,Xs
j Þ are not independent

as (i,j) varies; however, the vectors Y1,Y2, . . . are.
Now, finding a phylogenetic tree ðT,mÞ with branch lengths

(possibly infinite) to maximize the score SðT ,mÞ in Eq. (2) corre-

sponds to finding a value ŷk AY that maximizes
Pk

s ¼ 1 logPyðYsÞ

and, by Chang’s lemma, Py0
ðŷk-y0Þ ¼ 1. Thus if we let

e¼minfðm0Þij : ði,jÞALð2Þg40, then with probability 1 there exists

N sufficiently large so that for all kZN we have ðŷk Þij4e=2 for all

ði,jÞALð2Þ, which implies that ŷk ¼fðT̂k ,m̂k Þ for some phylogenetic

tree T̂k and edge lengths m̂k that are uniformly bounded above by

a constant dependent only on e.
Taking logarithms, it follows that for all ði,jÞALð2Þ and as

kð4NÞ tends to infinity, the following limit holds with probability

1: jðm̂k Þij�ðm0Þijj-0. Finally, if d40 is the smallest interior edge

length of T0, then when k is sufficiently large that jðm̂k Þij�ðm0Þijjo

d=2 for all ði,jÞALð2Þ, we have T̂k ¼ T , by Theorem 2.1 (Part (ii)) of
Moulton and Steel (1999), as required.
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