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It is nearly 20 years since the landmark paper (Saitou and Nei 1987) in Molecular Biology and Evolution introducing
Neighbor-Joining (NJ). The method has become the most widely used method for building phylogenetic trees from dis-
tances, and the original paper has been cited about 13,000 times (Science Citation Index). Yet the question ‘‘what does the
NJ method seek to do?’’ has until recently proved somewhat elusive, leading to some imprecise claims and misunder-
standing. However, a rigorous answer to this question has recently been provided by further mathematical investigation,
and the purpose of this note is to highlight these results and their significance for interpreting NJ. The origins of this story lie
in a paper by Pauplin (2000) though its continuation has unfolded in more mathematically inclined literature. Our aim here
is to make these findings more widely accessible.

First we review briefly the Neighbor-Joining (NJ)
method and outline what it does ‘‘not’’ do. NJ builds a tree
from a matrix of pairwise evolutionary distances relating
the set of taxa being studied. The distance between any
taxon pair i and j is denoted as d(i, j) and can be obtained
from sequence data by a variety of approaches, for example,
using Kimura’s (1980) 2-parameter estimate. NJ iteratively
selects a taxon pair, builds a new subtree, and agglomerates
the pair of selected taxa to reduce the taxon set by one (fig.
1). Pair selection is based on choosing the pair i, j that min-
imizes the following Q criterion:
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where r is the current number of taxa and the sums run on
the taxon set. This formula is that of Studier and Keppler
(1988), which we showed (Gascuel 1994) to be essentially
equivalent to that of Saitou and Nei. Let f, g be the selected
pair (fig. 1). NJ estimates the length of the branch (f, u)
using
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and d(g, u) is obtained by symmetry. Finally, NJ replaces
f and g by u in the distance matrix, using the reduction
formula:
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Again, this formula is that of Studier and Keppler, not
that of Saitou and Nei, but they are equivalent and the 2 NJ
versions always reconstruct the same tree, both in terms of
topology and branch lengths (Gascuel 1994).

Even though NJ behaved well, both with simulated
and real data (Saitou and Nei 1987; Saitou and Imanishi

1989; Kuhner and Felsenstein 1994), mathematical founda-
tions of these 3 formulas only became clear over several
years, following mathematical investigations. The 2 main
questions related to consistency (i.e., whether NJ correctly
reconstructs a tree when the distances fit perfectly on that
tree) and to the criterion that NJ optimizes. The consistency
proofs of Saitou and Nei and Studier and Keppler were con-
tested by Mirkin (1996) but fixed by Gascuel (1997) and
Atteson (1999). The latter even proved a stronger result,
showing that NJ still reconstructs the correct tree when
the distance matrix is perturbed by small noise and that
NJ is optimal regarding tolerable noise amplitude. Re-
cently, Bryant (2005) provided a simple and elegant proof
of NJ consistency, and so the first question has been well
and truly laid to rest.

The second question was that of the criterion being
optimized and of its biological relevance. Indeed, most phy-
logenetic methods are based on explicit criteria, for exam-
ple, parsimony or maximum likelihood, and understanding
properties of these criteria is a central issue, which is inde-
pendent of (and should precede) the design of optimization
algorithms. Saitou and Nei (see also Saitou 1996; Nei and
Kumar 2000) showed that the selection criterion (1) is re-
lated to minimization of tree length, which is conceptually
close to parsimony. Assuming that the current taxon set (a,
b, c, d, e, f, and g in fig. 1a) only contains original taxa (i.e.,
not resulting from previous agglomerations, as is the case
with a, f, and g), they proved that selection criterion (1) is
equivalent to minimizing the ordinary (unweighted) least-
squares (OLS) length estimate (Felsenstein 2004, p 148) of
the agglomerated tree (as shown in fig. 1b, but removing
dashed subtrees). Accordingly, they called this approach
the minimum evolution (ME) principle, and the criterion
being minimized by NJ was thought to be the OLS tree
length estimate. However, this result was not fully convinc-
ing. First, the biological meaning and consistency of this
ME 1 OLS principle was not established at the time of
its publication. This was partly solved by Rzhetsky and
Nei (1993) who demonstrated ME 1 OLS consistency;
but the biological relevance of the OLS component was still
questionable because it does not account for the high var-
iance of the large evolutionary distances, as weighted least-
squares (WLS) approaches do (Fitch and Margoliash 1967).
Second, the result of Saitou and Nei applies to the first NJ
step where we only have original taxa in the taxon set but
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not to the subsequent steps; assuming that the current taxon
set contains agglomerated nodes (e.g., a, f, and g in fig. 1),
the OLS tree length estimate of the agglomerated tree (fig.
1b) differs from the estimate of Saitou and Nei. Thus, NJ
performs local optimization to select taxon pairs but is not
truly guided by minimization of the OLS tree length esti-
mate. Several simulation studies (Saitou and Imanishi 1989;
Kumar 1996; Gascuel 2000) showed that trees being shorter
(in the OLS sense) than NJ trees are easily found, but these
simulations also showed that these shorter trees are (slightly)
less accurate than NJ trees, thus demonstrating that 1) ME 1
OLS does not fit the phylogenetic requirements well and 2)
NJ cannot be viewed as optimizing this criterion.

Due to this confused situation (consistency, biological
relevance, and the fact that NJ does not fully minimize
the OLS tree length estimate), numerous authors (e.g.,
Swofford et al. 1996, p 490; Gascuel 2000; Felsenstein
2004, p 169) wrote that NJ does not explicitly optimize

any criterion. In fact, NJ greedily optimizes a natural tree
length estimate, as we shall explain now. In that respect, NJ
does not differ from the other usual phylogenetic methods,
for example, based on parsimony or maximum likelihood.
It performs a heuristic search of tree space where each step
is guided by this (global) tree length criterion. However,
just as other standard methods, it does not explore the whole
space and has no guarantee of finding the ‘‘best’’ tree for the
criterion it seeks to optimize.

Given a tree with branch lengths, its length (l) is the
total sum of all its branch lengths. We can express l as
a weighted sum of pairwise distances between pairs of taxa,
as has been observed by various authors (e.g., Yushmanov
1984; Makarenkov and Leclerc 1997; Sumiyama et al.
2001). For example, the reader should convince oneself that
for the tree at the top of figure 2 we can write
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which corresponds to selecting pairs of leaves that traverse
the tree in a clocklike fashion, that is, in the order e, g, h, f;
because these 4 paths (shown dashed in the fig. 2) cover
every edge twice, we divide by 1/2. There are other ways
to express l as a weighted sum of the distance values, for
example, if we redraw the ‘‘same’’ tree as shown in the bot-
tom of figure 2 so that we traverse its leaves in the clocklike
order e, h, g, f. This arbitrary dependence on how one choo-
ses to draw the tree means that tree length estimates like
equation (4) are somewhat unsatisfactory, and it raises
the question of whether there is a ‘‘natural’’ way of writing
l as a weighted sum of d values that does not depend on such
choices. Pauplin (2000) found such a formula for binary
trees, and this representation was subsequently extended
to nonbinary trees by Semple and Steel (2004). This more
general formula states
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FIG. 1.—One NJ agglomeration step. In the current tree (a), the taxon
set contains a, b, c, d, e, f, and g; some are original taxa, whereas the others
(i.e., a, f, and g) correspond to subtrees built during the previous steps. Tree
(b): after selection of the (f, g) pair, a new subtree is built, and both f and g
are replaced by a unique taxon denoted as u. NJ terminates when the central
node is fully resolved.
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FIG. 2.—Circulars orders and tree length estimates. Two drawings of
the same tree, which give rise to 2 different circular orders of the taxa and 2
estimates for l as a weighted sum of pairwise distances between leaves.
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where the weight w(i,j) is obtained as follows: consider the
directed path from i to j, and for each interior node count how
many outgoing branches are encountered—multiply these
numbers together and divide 1 by the result, this gives
w(i,j). For example, with tree of figure 1a, w(a#, a$) 5
1/2, w(b, c) 5 1/6, and w(a#, g$) 5 1/(2363232) 5
1/48. For the tree in figure 2, this gives a different estimate
of l to equation (4) because all 6w(i,j) values are nonzero and
with some equal to 1/4 rather than 1/2. Semple and Steel
(2004) showed that the estimate in equation (5) is precisely
what one obtains by averaging all of the ‘‘simple’’ estimates
(like eq. 4) over all possible ways to draw the tree in the
plane. For binary trees, equation (5) simplifies to Pauplin’s
formula, which sets w(i,j) equal to 1/2 raised to the power of
the number of interior nodes on the path connecting i and j.

As Pauplin observed, this suggests a new version of
the ME principle: simply select the tree that minimizes tree
length estimate in equation (5), instead of using OLS esti-
mator as proposed by Saitou and Nei. We designed fast
algorithms following this new ‘‘balanced minimum evolu-
tion’’ (BME) scheme (Desper and Gascuel 2002), both to
construct an initial tree by iteratively adding taxa on a grow-
ing tree and to refine this starting tree by nearest neigh-
bor interchanges (Semple and Steel 2003, p 32). These
algorithms are implemented in the FastME software
(http://atgc.lirmm.fr/fastme). We observed with simulated
data excellent topological accuracy of this new approach,
that is, better than NJ and also better than other available
distance methods. These findings were confirmed by Vinh
and von Haeseler (2005) on very large phylogenies (up to
5,000 taxa). This suggested that the balanced scheme is well
suited in phylogenetics, which we formally showed (Desper
and Gascuel 2004) by demonstrating that equation (5) cor-
responds to a form of WLS tree length estimation, which
puts more confidence on the short evolutionary distances
than on the larger ones, for example, in our above example
with figure 1a, a and a# are neighboring and d(a#, a$) has
weight 1/2, whereas a# and g$ are at 2 tree extremities and
d(a#, g$) has weight 1/48. BME consistency was also
shown in this paper.

Equation (5) also provides a way of quantifying any
modification of an existing tree by considering the change
in the l value. In particular, we can consider the selection of
a pair of taxa, as occurs in the selection of neighbors by NJ
(fig. 1), and this brings us to the main result of this note,
whose proof appears in Desper and Gascuel (2005).

Theorem. The NJ method, as defined by equations
(1), (2), and (3), selects at each step as neighbors that pair
of current taxa, which most decreases the whole tree length,
as computed using the generalized Pauplin formula (eq. 5).

Whole tree means that we consider all subtrees result-
ing from previous agglomerations and not only the central
node. With figure 1, this implies that among all possible
agglomerations within the current taxon set (i.e.,
ða; bÞ; ða; cÞ;.; until ðf ; gÞ), NJ selects that pair which min-
imizes the length of the whole tree shown in figure 1b, in-
cluding the subtrees and the original taxa a#, a$, f#, f$, etc. In
other words, NJ greedily minimizes the BME score. More-
over, this explains why FastME performs better than NJ: it is

based on the same BME criterion but optimizes it further via
topological rearrangements. This does not provide any guar-
antee on a given data set as the correct tree may not be the
one with best fit, whatever the phylogenetic criterion being
optimized (e.g., see Nei et al. 1998). But, on average, topo-
logical accuracy is improved by intensifying criterion opti-
mization, as clearly shown by the comparisons of Vinh and
von Haeseler (2005) between NJ and FastME.

We end by noting some other recent mathematical
insights into NJ. Bryant (2005) has provided a different
way of viewing the way that NJ selects pairs of taxa. Rather
than showing that this selection optimizes some global
quantity (the BME score) at each step, Bryant lists 3 desir-
able properties that any method for building trees from dis-
tances should possess if it operates (like NJ does) by
successively grouping pairs of taxa. These properties are
related to consistency and to taxon exchangeability. As-
suming this, he proves that NJ selection criterion is unique
among all possible linear criteria. In a further development,
Levy et al. (2005) have shown how to modify the NJ algo-
rithm to move beyond pairwise distances to more informa-
tive multiway distances (as might be obtained using
maximum likelihood on sequences). Most recently,
Mihaescu et al. (2006) have verified a conjecture of Atteson
(1999) by establishing a robustness property of NJ to small
perturbations in the data.

Acknowledgments

Many thanks to Richard Desper and Charles Semple,
who coauthored several of our articles on the topics that are
described here.

Literature Cited

Atteson K. 1999. The performance of the neighbor-joining methods
of phylogenetic reconstruction. Algorithmica 25:251–78.

Bryant D. 2005. On the uniqueness of the selection criterion in
neighbor-joining. J Classif 22:3–15.

Desper R, Gascuel O. 2002. Fast and accurate phylogeny recon-
struction algorithms based on the minimum-evolution princi-
ple. J Comput Biol 9:687–705.

Desper R, Gascuel O. 2004. Theoretical foundations of the bal-
anced minimum evolution method of phylogenetic inference
and its relationship to weighted least-squares tree fitting.
Mol Biol Evol 21:587–98.

Desper R, Gascuel O. 2005. The minimum evolution distance-
based approach to phylogenetic inference. In: Gascuel O,
editor. Mathematics of evolution & phylogeny. Oxford, UK:
Oxford University Press. p 1–32.

Felsenstein J. 2004. Inferring phylogenies. Sunderland, MA:
Sinauer Associates.

Fitch WM, Margoliash E. 1967. Construction of phylogenetic
trees. Science 155:279–84.

Gascuel O. 1994. A note on Sattath and Tversky’s, Saitou and
Nei’s and Studier and Keppler’s algorithms for inferring
phylogenies from evolutionary distances. Mol Biol Evol 11:
961–3.

Gascuel O. 1997. Concerning the NJ algorithm and its un-
weighted version, UNJ. In: Mirkin B, McMorris FR,
Roberts FS, Rzhetsky A, editors. Mathematical hierarchies
and biology. DIMACS series in discrete mathematics and
theoretical computer science. Providence, RI: American
Mathematical Society. p 149–70.

Neighbor-Joining Revealed 1999

http://atgc.lirmm.fr/fastme


Gascuel O. 2000. On the optimization principle in phylogenetic
analysis and the minimum-evolution criterion. Mol Biol Evol
17:401–5.

Kimura M. 1980. A simple method for estimating evolutionary
rate of base substitution through comparative studies of nucle-
otide sequences. J Mol Evol 16:111–20.

Kuhner MK, Felsenstein J. 1994. A simulation comparison of phy-
logeny algorithms under equal and unequal evolutionary rates.
Mol Biol Evol 11:459–68.

Kumar S. 1996. A stepwise algorithm for finding minimum evo-
lution trees. Mol Biol Evol 13:584–93.

Levy D, Yoshida R, Pachter L. 2005. Beyond pairwise distances:
neighbor joining with phylogenetic diversity estimates. Mol
Biol Evol (Advanced access, November 9, 2005).

Makarenkov V, Leclerc B. 1997. Circular orders of tree metrics,
and their uses for the reconstruction and fitting of phylogenetic
trees. In: Mirkin B, McMorris FR, Roberts F, Rzhetsky A,
editors. Mathematical hierarchies and biology. DIMACS series
in discrete mathematics and theoretical computer science.
Providence, RI: American Mathematical Society. p 183–208.

Mihaescu R, Levy D, Pachter L. 2006. Why neighbour-joining
works. arXiv:cs.DS/0602041 v1.

Mirkin B. 1996. Mathematical classification and clustering.
London: Kluwer Academic Publishers.

Nei M, Kumar S. 2000. Molecular evolution and phylogenetics.
Oxford, UK: Oxford University Press.

Nei M, Kumar S, Takahashi K. 1998. The optimization principle
in phylogenetic analysis tends to give incorrect topologies
when the number of nucleotides or amino acids used is small.
Proc Natl Acad Sci 95:12390–7.

Pauplin Y. 2000. Direct calculation of a tree length using a distance
matrix. J Mol Evol 51:41–7.

Rzhetsky A, Nei M. 1993. Theoretical foundation of the minimum-
evolution method of phylogenetic inference. Mol Biol Evol
10:1073–95.

Saitou N. 1996. Reconstruction of gene trees from sequence data.
In: Doolittle R, editor. Methods in enzymology. Volume 266.
Orlando, FL: Academic Press, Inc. p 427–49.

Saitou N, Imanishi M. 1989. Relative efficiencies of the Fitch-
Margoliash, maximum-parsimony, maximum-likelihood,
minimum-evolution, and neighbor-joining methods of phylo-
genetic reconstructions in obtaining the correct tree. Mol Biol
Evol 6:514–25.

Saitou N, Nei M. 1987. The neighbor-joining method: a new
method for reconstruction of phylogenetic trees. Mol Biol Evol
4:406–25.

Semple C, Steel M. 2003. Phylogenetics. Oxford, UK: Oxford
University Press.

Semple C, Steel M. 2004. Cyclic permutations and evolutionary
trees. Adv Appl Math 32:669–80.

Studier JA, Keppler KJ. 1998. A note on the neighbor-joining
method of Saitou and Nei. Mol Biol Evol 5:729–31.

Sumiyama K, Kim CB, Ruddle FH. 2001. An efficient cis-element
discovery method using multiple sequence comparisons based
on evolutionary relationships. Genomics 71:260–2.

Swofford DL, Olsen GL, Waddell PJ, Hillis DM. 1996. Phy-
logenetic inference. In: Hillis DM, Moritz C, Mable BK,
editors. Molecular sytematics. Sunderland, MA: Sinauer.
p 407–514.

Vinh LS, von Haeseler A. 2005. Shortest triplet clustering: recon-
structing large phylogenies using representative sets. BMC
Bioinformatics 6:92.

Yushmanov SV. 1984. Construction of a tree with p leaves from
2p-3 elements of its distance matrix (Russian). Matematicheskie
Zametki 35:877–87.

Naruya Saitou, Associate Editor

Accepted July 24, 2006

2000 Gascuel and Steel


