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Abstract—We show that the following two related problems arising in phylogenetic analysis are
NP-hard: 2
(i) given a collection of aligned 2-state sequences, find the largest subset of sequences compatible

with some tree,
(ii) given six trees, leaf-labelled by S, find the largest subset S’ of S so that the six subtrees
induced by S’ are compatible.
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1. INTRODUCTION

A tree that has its leaves labelled by a set S and its remaining vertices unlabelled and of degree
at least 3 is a useful model for representing evolutionary relationships in biology. Such an object
is called a phylogenetic tree on S. Here we refer to it simply as a tree on S, and it is binary if all
nonleaf vertices have degree 3. Note that a tree T on S determines a collection ¥ of bipartitions
(i.e., partitions of a set into two nonempty subsets) of S, called the splits of T—where each split is
obtained by deleting an edge of T’ and recording which leaves lie in the two resulting components.
We say a split is trivial if one of the sets contains just one element. A collection ¥ of bipartitions
is said to be compatible if ¥ C X for some tree T on S.

A fundamental theorem in [1] states that ¥ is compatible if and only if ¥ is pairwise compatible,
and this is equivalent to requiring that for each pair {4, A’}, {B, B’} € £, at least one of the
four intersections AN B, ANB’, AN B, A'N B’ is empty. Thus determining compatibility of ¥
can be achieved in polynomial time (indeed in linear time, see [2]).

Day and Sankoff [3] showed that the problem of determining whether X has a subset of size at
least k£ which is compatible is NP-complete (for variable k). Here we consider the following dual
problem, which we show later is NP-complete.

Problem: Subcharacter compatibility (SCC).

Instance: A collection T of bipartitions of a set S, integer k.

Question: Is there a subset S’ of S of size at least k, such that the bipartitions ¥’ of S” induced
by ¥ are compatible? '

It follows that the following problem in phylogenetic analysis is, in general, NP-hard: given a
collection of aligned DNA sequences, determine the largest subset of these sequences that can have
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evolved on a tree from some (unknown) ancestral sequence without reverse or parallel mutations.
SCC is a particular case of this problem since (i) any collection ¥ of bipartitions can be realized
by sites in a collection of aligned DNA sequences (using just two of the four states available),
and (ii) compatibility for ¥ corresponds to fitting the corresponding sequences to a tree in the
manner prescribed. )

A related problem takes as its input a collection of P = {T1, ..., Tk} of trees on S, rather than
bipartitions. Given a subset S’ of S, and a tree T on S, take the subtree of T' which connects
just the leaves of T labelled by S’ and make this subtree homeomorphically irreducible (i.e.,
suppress vertices of degree two) to obtain a tree on S, denoted Tj_,. The mazimum agreement
subtree (MAST) problem is to find a largest subset S’ of § for which T;;,, i = 1,...,k all agree
(this common tree which we call a MAS tree is called a mazimum agreement subtree in [4], or
a mazimum homeomorphic subtree in [5]). This problem, posed in [6], is solvable in polynomial
time when either k£ = 2 [4], or when the degree of the vertices of the trees in P is bounded [5];
however, without this last restriction it is NP-hard when k = 3 [5].

One problem with MAST in phylogenetic applications is that it is overly severe. This is because
a vertex v of degree d > 3 in a reconstructed phylogenetic tree does not necessarily represent the
simultaneous creation of (d —1) descendants from the ancestral species represented by v, but may
represent rather that the exact phylogenetic details of the descent of these (d — 1) descendants
are unclear. This leads us to the following definitions.

We say that a tree 7' on S refines a tree T on S if, by collapsing certain edges of T’, one
obtains T'. More generally, given a collection P = {T7,..., T} of treeson S, a tree 7" on S’ C S
is compatible with P if T' refines T, for i = 1,..., k. A mazimum compatible tree (MC tree) for
P is a tree T’ on a maximum cardinality subset S’ of S which is compatible with P. Note that
an MC tree can have more vertices than any of the input trees, while a MAS tree is a subtree of
each input tree.

Note also that if all the trees in P are binary then MCT is equivalent to MAST. Thus, in this
case, finding an MC tree can be achieved in polynomial time by using an algorithm described
in [5]. However, in general this problem is NP-hard, as we will shortly show. First, we state the
problem more precisely.

Problem: Maximum Compatible Tree (MCT).
Instance: A collection P of trees on a set S, integer k.
Question: Is there a subset S’ of S of size at least k, and a tree 7' on S’ which is compatible

with P?
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Figure 1. The MC tree and a MAS tree for three trees on {1,2,3,4,5,6}.

2. RESULTS

Note that SCC and MCT are both in NP, and although superficially different, they are actually
(polynomially) equivalent by the following reasoning. Given an instance (X, k) of SCC, we can
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replace each o € ¥ by the tree on S whose only nontrivial split is ¢ = {A, A’}. In this way we
obtain a collection P = P(X) of trees and thereby an instance (P, k) of MCT, for which the corre-
sponding question has answer “yes” precisely if it is “yes” for (X, k) in SCC [7, Theorem 1 (3a)].
Conversely, given an instance (P, k), P = {T1,...,T} of MCT, let £ =Xp = Ui=1,...,r 1., the
union of the splits of the T;. This gives an instance (X, k) of SCC for which the corresponding
question has answer “yes” precisely if it is “yes” for (P, k) in MCT (7, Theorem 1 (3a)]. Note
that the two constructions can be implemented in polynomial time, so that both problems are
NP-complete once we show that either one of them is. In fact, we show a stronger result, namely
that the following specialization of MCT is NP-complete.

Problem: Maximum Compatible Tree for six trees (MCT6).
Instance: A collection P of six trees on S, integer k.
Question: Same as for MCT.

THEOREM 2.1. MCT6 and SCC are NP-complete.

PROOF. Our proof is a modification of the NP-completeness proof of MAST (for 3 trees) [7]. By
the comments preceding the theorem it suffices to show that MCT6 is NP-complete. The MCT6
problem is clearly in NP. We will reduce the three dimensional matching problem (3DM) (8]
to MCT6. The 3DM is as follows:

Problem: 3DM.

Instance: Let M C X xY x Z where X, Y, and Z are disjoint sets, | X| =|Y| = |Z}| = gq.

Question: Does there exist a set M’ such that M’ C M, |M'| = ¢, and any two elements of M’
differ in all three coordinates?

Define a caterpillar tree on n leaves (n > 3) to be a binary tree for which there are exactly two
vertices that are each adjacent to precisely two leaves (note that, in any binary tree with more
than three leaves, there are at least two such vertices). Examine these two vertices and, for each,
distinguish one of the two leaves. Call one of these leaves the root; call the other the summit
(see Figure 2a).

(m,1)

(m' ,5)

1 %e® 108+ 1 *.° 10g%+1

Tl m>m Tl'

Figure 2. A caterpillar tree (a), and the ordering of its leaves in the trees 71 and
T (b).

Given an instance of 3DM, we construct six trees, T = {T1, T}, T>, T4, T3, T4} each on leaf set
S ={1,2,...,10¢> + 1} U (M x {1,...,5}), which have the property that 7 has an MC tree
of size 10¢g2 + 5¢ + 1 if and only if the answer to the 3DM question is “yes.” Each tree in 7°
has leaves 1,...,10¢g% + 1 adjacent to a vertex, and this vertex is identified with each root of a
family of g caterpillar trees. Furthermore, each of the g caterpillar trees in T3 and 7] corresponds
(bijectively) to an element of X (similarly, each of the caterpillar trees in T5 and T’ (respectively,
T3, T4) correspond to an element of Y (respectively, Z)). We now describe precisely how the
leaves of these caterpillar trees are labelled. First, we (arbitrarily) order M, and we use this order
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to define two orders, < and <’, on M x {1,...,5} as follows: we write (m,%) < (m/,7) if m < m’
or if m = m’ and i < 4’; and we write (m,i) <’ (m/,#') if m > m’ or m = m’ and i < i’. Then
in Ty (respectively, T{) we label the leaves of the caterpillar corresponding to x € X with the
pairs {(m,1) : mx ==z; i = 1,...,5} (where m = (mx,my, mz)), arranged in increasing order
under < (respectively, <') from the leaf closest to the root, to the summit (see Figure 2b; note
also that, without loss of generality, we may assume that {m € M : zps = x} is nonempty). We
do this for all z € X (for which we have an associated caterpillar tree in 77 and T7). ‘We then
repeat this procedure, with Y in place of X, to obtain the trees T, and T3, and again, with Z in
place of X, to obtain the trees T3, Tj. _ .

We first show that any MC tree for 7 must contain all the leaves 1,...,10¢% + 1. Suppose
that T is compatible with 7 and that T uses leaves from ¢ caterpillars of T} and j leaves from
1,...,10¢% + 1. If i+ j > 2, then we have a distinguished vertex in T to which we can attach the
remaining leaves from 1,...,10¢? to obtain a tree which is still compatible with 7. If however
i+j < 2, then T can have at most 10¢? leaves (as there are at most g2 elements of M which have =
as their first coordinate, and so each caterpillar in 77 has at most 5¢2 leaves), and so the star
tree with leaves 1,...,10¢2 4+ 1 is a tree that is compatible with 7", yet has more leaves than T
This establishes our claim that any MC tree for 7 must contain all the leaves 1,...,10¢% + 1.

We next claim that any MC tree T for 7 has the property that if (m, ) and (m/,j), m # m/,
are leaves of T, then m and m' differ in all three coordinates. Suppose, on the contrary, that
(m,4) and (m/, j) both appear in the leaf set A of T" and that these two leaves share a coordinate
in m, say the first (the other two cases are similar)—we will derive a contradiction and show
that T is not an MC tree by constructing a tree compatible with 7" but with more leaves than T
By assumption, (m,%) and (m/,j) appear on the same caterpillar of T;. Since T refines both
T34 and Tl’lA, and since, as we have just shown, {1,...,10¢% + 1} lies in A, it follows that (m, 1)
and (m/,j) are the only two leaves of A on this caterpillar. Let T* be the tree obtained from T’
by deleting (m/, j) and deleting any other pair (m”, k) which appears together with (m, ) on the
same caterpillar of T3 or T3 (note that, as before, there can only be at most one such pair (m”, k)
for T> and at most one such pair for T3) and then making the resulting tree homeomorphically
irreducible. Note that T™* is still compatible with 7 but it may have up to three leaves fewer
than T. However if we now delete from T™ the leaf (m, ¢) and identify its adjacent vertex with the
root of a caterpillar tree which has five other leaves, labelled (m,j), j = 1,...,5, and arranged
in increasing order (under <) from the leaf nearest the root to the summit, we obtain a tree
which is both compatible with 7 and which has more leaves than T'. This shows that T" was not
an MC tree for 7, thereby providing the required contradiction. Thus, m and m' differ in all
three coordinates, as claimed.

Furthermore, if an MC tree contains leaf (m,) for some m € M and ¢ € {1,...,5} then it
must also contain the four other leaves (m,j): j =1,...,5;j # %, as all five leaves appear in the
same order on the caterpillars in trees from 7, and we have already shown that no other leaves
of this MC tree can lie on the same caterpillar as these leaves. Hence, if the six trees in 7 have
an MC tree of size 10g? + 5¢ + 1, then, by taking the leaves of this MC tree and replacing each
of the five leaves {(m,%); 2 = 1,...,5} by m we obtain a subset M’ of M of size g, for which (as
we have shown) any two elements differ in all three coordinates, so M’ is a three-dimensional
matching set.

Conversely, any three dimensional matching set M’ gives rise to an MC tree for 7 of size
10¢% +5¢+1, namely the tree obtained from the (star) tree consisting of just a central vertex and
the leaves 1,...,10¢% + 1 as follows: for each m € M’, identify with v the root of a caterpillar
tree with six leaves, and label the other five leaves of this caterpillar tree (m,1),...,{(m,5) in
increasing order (under <) from the leaf closest to the root to the summit leaf.

Hence, M has a subset M’ of size ¢ such that any two elements of M’ differ in all three
coordinates iff, for the six trees 7', there is an MC tree of size 10g* + 5g + 1. ]
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