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Searching for the Tree of Life...
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“Searching for the 'true tree’ for twenty species is like trying to
find a needle in very large haystack. Yet biologists are now
routinely attempting to build trees with hundreds and sometimes

thousands of species.”

]
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Mathematical Aspects

=

of the‘Tree of

Charles Semple and Mike Steel
University of Canterbury, New Zealand

rees have long been used for illustrating certain phe-

nomena in nature. They describe the structure of braid-

ed rivers, classify acyclic hydrocarbons in chemistry,
and model the growth of cell division in physiology. In evolu-
tionary biology, trees describe how species evolved from a
common ancestor. Evolutionary trees date back (at least) to
Charles Darwin, who made an early sketch of one in a note-
book from 1837, more than 20 years before his Origin of
Species. In Darwin’s day, the main evidence available for
reconstructing such trees, apart from some fossils, was mor-
phology and physiology —the physical details of different
species (does an animal have wings or not, how many petals
does a plant have, and so forth). As Darwin wrote in 1872:

We possess no pedigrees or amorial bearings, and we
have to discover and trace the many diverging lines of
descent in our natural genealogies, by characters of any
kind which have long been inherited.

The problem with morphological and fossil data is that they
are patchy, and can be misleading. Also the evolution of mor-
phological characters is often complex and difficult to model.
Today, biologists prefer genetic datd to reconstruct and study
evolutionary trees, using methods that increasingly are based
on mathematical ideas. This field is known as phylogenetics —
phylo means race or tribe, and thus phylogenetics is the study
of grouping together species with similar genetic characteris-
tics. Since it attempts to reconstruct the distant past, it is usu-
ally impossible to check directly whether an inferred tree is
correct or not. So phylogenetics is somewhat akin to a field
like forensic science that aims to reconstruct a crime scene for
which no witness was present. Phylogenetic methods are used
to study other problems in biology —such as how different
strains of a virus (for example, of HIV or influenza) are relat-
ed, how much biodiversity is threatened by extinction, and
how populations, such as modern humans, came to be distrib-
uted across the planet. Phylogenetic techniques have even
been used to study the evolution of languages and the copying
history of old manuscripts.
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A phylogenetic (evolutionary) tree of 42 representative mammals
reconstructed using a Bayesian approach by concatenating 12 pro-
tein coding mitochondrial genes. The main mammalian groups are
colour-coded (Frédéric Delsuc and Nicolas Lartillot, unpublished).

In this article, we will describe some of the mathematical
aspects of phylogenetics, starting from the elementary princi-
ples, but also describing one or two deeper and more recent
results. Definitions of some basic combinatorial terms used in
this article are provided in a box on page 8.

Counting Trees

One of the most famous enumeration formulae in combina-
torics is Arthur Cayley’s formula from 1889, for the number of
trees with 7 labeled vertices: This number is 72, a simple for-
mula that has many known proofs, most of which are surpris-
ingly complicated.

In phylogenetics, we are interested in counting a different
class of trees, called phylogenetic (evolutionary) trees. A
phylogenetic tree is a tree whose leaves are labeled, but the
remaining vertices are unlabeled and of degree at least three.
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The leaves correspond to the species we see today, while the
unlabeled vertices correspond to unknown ancestral species.
The most ‘informative’ type of phylogenetic trees are those
that have the largest number of edges possible for the number
of leaves—these are sometimes called fully resolved or binary
phylogenetic trees—and this is the set of trees we will count.
Every vertex in a binary philogenetic tree that is not a leaf
must have degree 3, for otherwise two edges.incident with
such a vertex v could be plucked from v and joined together at
a new vertex, and a single new edge could be placed with one
end at the new vertex and the other end at v, resulting in a phy-
logenetic tree with the same leaves as the original, and one
more edge. k!

Even though the unlabeled vertices of a binary“yphylogenet-
ic tree all have degree 3, the reason they are called ‘binary’ is
because if we direct all the edges away from some leaf (which
might represent some ‘outgroup’ species that is distantly relat-
ed to the other species), then each non-leaf vertex encountered
as one traverses the tree can be viewed as a speciation event—
where each species splits into two daughter species. These
concepts are illustrated below.

vertex (degree 4) 4
1 2
1 & 2 edge > <
/ 3
leaf 4 > <

(a) b
(a) A phylogenetic tree on six leaves. (b) The three possible binary
phylogenetic trees on four leaves.

The observant reader may have noticed that in the above
definition, a phylogenetic tree has no root (representing a com-
mon ancestor). In practice, most reconstruction methods build
an unrooted phylogenetic tree. The often controversial
decision of where to place the root is done later.

To count the number of binary phylogenetic trees, we may
assume that the leaves are labeled 1,2, ..., n. There are three
unlabeled binary trees for n = 4, shown above. How many
binary phylogenetic trees are possible on n leaves? This prob-
lem was solved long ago—in fact, 21 years after Darwin pub-
lished his Origin of Species, the mathematician Ernst Schroder
was counting classes of trees for quite a different purpose, and
these trees included what we now call binary phylogenetic

trees.
Let N(n) be the number of binary phylogenetic trees on the
leaf set {1, 2, ..., n}. To determine N(n), we can use a well-
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known and elementary result from graph theory called the
Handshaking Lemma: the sum of the degrees of the vertices of
any graph is equal to twice the number of edges. For a binary
phylogenetic tree, if we denote the number of unlabeled (non-
leaf) vertices by [ and the number of edges by E, then the
Handshaking Lemma gives:

3/+n=2E. 1)

But a tree has one more vertex than its number of edges (see
box), so we also have:

E=n+1-1. 2)

Combining Equations (1) and (2) gives 3/ + n=2(n + 1 - 1),

and so I = n—2. Since, by (2), E = n + [ —1, the number of
edges in a binary phylogenetic tree is

E=2n-3, 3)

an equation that one could also prove by induction on . Curi-
ously, Equation (3) does not depend on the shape of the tree,
just the number of leaves. To determine N(n), we need anoth-
er insight—each binary phylogenetic tree 7 on leaf set {1, 2,
..., n} is obtained from a binary phylogenetic tree 7" on leaf set
{1,2,...,n-1} by subdividing an edge and attaching leaf n by
a new edge to the vertex resulting from this subdivision as
shown.

1 2 1 2
I >
3 5 3 5
4 6 4

Subdividing an edge to create a phylogenetic tree with 6 leaves.

Different choices of T" or edges to subdivide produce dif-
ferent choices for T and, as each 7" has (2n — 5) edges (by (3)),
we have:

N(n)=2n—-35)N(n—-1). 4)

This recurrence, together with the boundary condition N(3) =1,
implies that

N =Q2n—5)x(2n-T)x--x3x1. 5)

That is, N(n) is the product of the first n —2 odd numbers. Writ-

ten (2n —=5)!!, this number is sometimes called a ‘semi-
factorial’. It can also be written as a ratio of factorials and
powers of 2 as follows:

2n-4)!

S A 6
(n—2)12""2 ©)

This number shows up in other quite different contexts—for
example, it is the number of ways that 2n — 4 people can be
paired up into n — 2 teams of two. Finding a way to match a
binary phylogenetic tree to each such pairing is not easy, but
possible.
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How large is N(n)? Well, for 10 species we have N(10) =
2,027,025; for n = 20, we have N(20) = 2X10%, prompting the
biologist Walter Fitch to remark some years ago that:

We have, for twenty species, more than a gram molecular
weight of evolutionary tree!

Searching for the ‘true tree’ for twenty species is like trying
to find a needle in very large haystack. Yet biologists are now
routinely attempting to build trees with hundreds and some-
times thousands of species. To realize the smallness of the nee-
dle, consider how many millenia it would take a computer that
can check a million trees per second to search through N(20)
trees.

This leads to a very natural question—is there enough DNA
sequence data available to reconstruct accurately the one-in-a-
zillion tree that describes the evolution of the species you are
interested in? Or are the trees being reconstructed almost cer-
tain to be false in some details? We can give a crude counting
argument to provide a lower bound on the genome length k
required to accurately reconstruct binary phylogenetic trees on
n species. The number of genomes of length k is 4% (since a
genome is an ordered sequence whose alphabet consists of the
four bases of DNA — A, C, G and T). Representing each
species by its genome, the number of data sets consisting of n
genomes of length k is therefore (4X)" = 47, Now, suppose we
have a method that can reconstruct each binary phylogenetic
tree from some possible data set. Think of this method as a
function from the set A of data sets, each consisting of n
genomes (one for each species) of length &, to the set B of
binary phylogenetic trees on n species. Then the ability to
reconstruct each possible tree means that we want this function
to be onto, and so |Bl < |Al. In other words:

N(n) < 4, ©)

Some straightforward analysis (applying Stirling’s approx-
imation for n! to (6) in (7)) shows that k must grow at least at
the rate log(n). Of course, this bound is very crude, and it
would be useful to derive an upper bound on k under some
model of genome evolution, and see how different to log(n) it
is. We will describe the surprising answer to this problem at
the end of this article, but first we need to say more about
mathematical aspects of phylogenetic trees and how they can
describe data.

Properties of Phylogenetic Trees and Data

Phylogenetic trees can be described in many ways—one of
the simplest and most versatile is via its splits. Imagine taking
a pair of scissors and snipping an edge of a phylogenetic tree.
This disconnects the tree into two components, and the leaves
in each component form a bipartition, or split of the leaf set {1,
2, ..., n}. For example, cutting the edge e in the tree shown
below results in the two sets A= {1,2,3,5}and B={4,6,7}.

We denote such a split by writing AlB (or, equivalently, BIA).
The set of splits that are generated from a tree in this way carry
enough information that one can always uniquely recover the
tree just from its splits. Indeed, there is an easy and fast algo-
rithm for doing this called tree-popping, developed in 1983 by
a biologist Christopher Meacham.

Cutting an edge e produces the split {1,2,3,5}|{4,6,7}. Cutting both
eand e’ produces the partition {{1,2}, {3,5}, {4,6,7}}.

However, not every set of splits of {1,2, ...,n} corresponds
to the splits of a phylogenetic tree with leaf set {1,2,...,n}—
the precise conditions for this were found by Peter Buneman in
1971. Buneman was studying trees for a quite different pur-
pose, namely reconstructing the copying history of old manu-
scripts. Notice that if we were to cut the edge ¢’ in the tree
shown above, the resulting split A’ IB’, where A’ ={3, 5} and
B’ ={1,2,4,6,7}, would have the property that B N A’ is the
empty set. This is no accident—it is easy to see that if AIB and
A’ |B' are arbitrary splits of any phylogenetic tree, then one of
the four intersections

ANA,ANB,BNA,BNB

must be the empty set. Buneman showed that this ‘pairwise
compatibility’ condition is not just necessary, but also suffi-
cient for a set of splits to be realized by some phylogenetic
tree.

Many splits are well known in biology —for example, we
have the vertebrates and invertebrates. We would hope that
these splits correspond to splits of the underlying evolutionary
tree. More generally, we would like any partition of a set of
species to ‘fit’ their underlying evolutionary tree in the sense
that we could delete a set of edges so that the leaves that
remain connected form the blocks of the partition. For exam-
ple, consider the partition {{1, 2}, {3, 5}, {4, 6, 7}} and the
tree shown above. If we delete both edges e and e’, we obtain
this partition. We say that the partition is convex on the tree.

Convexity has a biological rationale—imagine that the
species in each block of the partition have a characteristic (for
example, species 1 and 2 have blue eyes, 3 and 5 have red
eyes, and 4, 6, and 7 have green eyes). Suppose that this state
(eye colour) evolved along the edges of the tree from some
hypothetical ancestral vertex in a homoplasy-free way (that is,
each state arises just once in the tree). Then the resulting par-
tition will be convex on the tree. Moreover, there is a pleasing
converse to this—any partition that is convex on a tree can be
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A graph is a set V of vertices and a set E of 2-element
subsets of V. It is much easier to think of a graph as a
picture consisting of vertices (points) joined by edges.

A path in a graph is an alternating sequence of distinct
vertices and edges vye v,¢, €, _ v, S0 that e, joins v; and
Vy, €, joins v, and vy, and so on.

A cycle is a path in which all vertices are distinct except
the first and last which are equal.

A graph is connected if there is a path joining every pair
of vertices.

The components of a graph are its maximal connected
subgraphs.

A tree is a connected graph with no cycles. Equivalently,

a tree is a connected graph that has exactly one more
vertex than it has edges.

The degree of a vertex is the number of edges incident
with it.
A leaf of a tree is a degree-1 vertex.

To subdivide an edge e of a graph, we replace that edge
with a path consisting of two edges. IHlustratively, a new
vertex is placed at the midpoint of e.

Stirling’s formula for approximating factorials is

1
T
nl~2me"n 2.

A partition of a set X is a disjoint collection of non-empty
subsets of X whose union is X. The non-empty subsets are
called blocks. A bipartition is a partition consisting of two
subsets.

described by homoplasy-free evolution on that tree (and from
any hypothetical ancestral vertex). Of course, homoplasy can
occur for certain characteristics—for example, wings can
evolve in some species and then be lost in some later descen-
dant species (reverse evolution), or wings can evolve inde-
pendently in different lineages (convergent evolution), and so
homoplasy-free evolution is an ‘ideal’ situation. Nevertheless,
certain genomic data (such as ‘retroposons’) exhibit very low
levels of homoplasy; this has been helpful in resolving, for
example, the tree of placental mammals (including the place-
ment of whales as a sister group to the hippopotamus).

It should be clear that not all sets of partitions can be
described by homoplasy-free evolution (i.e. be convex) on the
same tree—for bipartitions (splits), the condition for this is
precisely Buneman’s pairwise compatibility condition
described above. For sets of general partitions, the situation is
more interesting. Firstly, a pairwise condition won’t work—
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there are sets of partitions where, for each pair of partitions, a
tree exists on which both partitions are convex yet for the
entire collection, no such tree exists. Indeed, given a set of par-
titions, deciding whether there exists a tree on which the entire
set of partitions is convex is an NP-complete problem. Loose-
ly speaking, this means that, in general, the best solution we
have is to check each tree T individually to see if each of the
partitions in the set are convex on 7. Hmmm..., the small nee-
dle and large haystack does not make this good news!

Nevertheless, we can ask the following question: For any
phylogenetic tree 7', what is the smallest collection of parti-
tions required so that 7"is the only phylogenetic tree on which
all the partitions are convex? For this question to make sense,
T must be binary (otherwise we could always exhibit another
tree that resolves T and that tree would also satisfy the con-
vexity condition for any partition that 7" does). For splits, the
answer to the question is easy—we need one split for each
edge of T that is not incident with a leaf (otherwise we could
delete that edge and identify its two end-vertices to get a phy-
logenetic tree on which each split in the collection is still con-
vex). There are n — 3 such internal edges in a binary phyloge-
netic tree with n leaves (by Equation (3)), so for splits, we need
n — 3 partitions. The answer to the posed question for sets of
general partitions is more interesting. It was recently shown
that, for any binary phylogenetic tree T, a set of at most four
partitions exists so that 7" is the only phylogenetic tree on
which these partitions are convex (i.e. could have evolved
without homoplasy). What makes this result surprising is that
it does not depend at all on 7 (the number of leaves of the tree),
unlike the n — 3 result for splits.

Models of Evolution

The result that a tree can be uniquely reconstructed from
just four partitions is a combinatorial ‘best case’ situation. It
would be interesting to know how many partitions we would
need to reconstruct a tree if these partitions ‘evolved’ on the
tree according to some random model. A particularly simple
model is to suppose that each character state (e.g. eye colour)
can randomly change on any edge of the tree, and when it does
so it always takes on a new state that has not so-far arisen
(thereby producing partitions that are convex on the tree).

We can exactly describe the partitions generated in this way
by the following simple ‘random cluster’ process. For each
edge e of the tree T, cut edge ¢ with probability p, or leave it
intact with probability 1— p,. Perform this process independ-
ently across the edges of T and consider the subsets of the
leaves of T in the resulting components. This gives us a ran-
dom partition of the leaves. If we independently generate a
large number of partitions in this way, then, with high proba-
bility, 7 will be the only tree on which all the partitions are
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convex. How many partitions do we need to generate for this
to hold? It is unlikely to be a small number (like the 4 we
described above) particularly for a large tree, since the parti-
tions are randomly generated, not deliberately chosen by a
mathematician! But it still doesn’t need to grow too quickly
with n (the number of leaves of T); log(r) turns out to be fast
enough, at least under some mild restrictions.

More precisely, suppose that € < p, < g where € > 0 and
q < 1/2 are constants that are independent of n. Then the num-
ber of partitions required so that 7" is (with high probability)
the only tree on which all the partitions are convex is:

&
where ¢ depends just on g and on the probability with which
we wish to recover 7 correctly. When g is greater than 1/2, the
number of partitions required for tree reconstruction grows
much faster (but still polynomially) with .

How about models for describing the evolution of individ-
ual DNA sites? Since we have just 4 bases, it is unrealistic to
expect evolution to be homoplasy-free—if we can change state
from (say) A to G, then we should be able later to change state
from G back to A. Biologists typically model DNA site evo-
lution as a 4-state Markov process. For example, the tree of
the 42 mammals shown above was constructed using such a
model in a Bayesian statistical approach.

The question of how many sequence
sites we need to reconstruct a phylogenetic
tree accurately when the sites evolve inde-
pendently and identically under some
finite-state Markov process is difficult.
However, it was solved recently by
Elchanan Mossel and colleagues at UC
Berkeley, and their result is impressive. We
saw earlier that a very crude bound (from
(7)) requires that the sequence length’;need—
ed to reconstruct binary phylogentic trees
from DNA sequences must grow at the rate
log(n)—this argument was based just on
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required developing a fundamentally new approach to tree
reconstruction, and an analysis that combined delicate combi-
natoral and probabilistic arguments. 53]

For Further Reading

‘We have provided just a snapshot of some results in phylo-
genetics and omitted mentioning many other areas where
mathematics plays a crucial role. For more details the reader is
referred to Phylogenetics (C. Semple and M. Steel, Oxford
University Press, 2003). More recent mathematical develop-
ments can be found in Mathematics of Evolution and Phyloge-
ny (O. Gascuel. (ed.) Oxford University Press, 2005). The last
chapter of this book provides the mathematical details
described in the final section above. This second book also
deals with some complexity of molecular evolution which we
have not mentioned; for example, even the use of trees in rep-
resenting evolution can sometimes be overly simple, and in
primitive organisms such as bacteria, processes such as hori-
zontal gene transfer can make a directed acyclic graph a more
suitable representation. For a more biological and statistical
treatment of phylogenetics, the reader is referred to Inferring
Phylogenies (J. Felsenstein, Sinauer Press, 2004).
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