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Abstract

A pedigree is a directed graph that displays the relationship between individuals according to their parentage. We derive a

combinatorial result that shows how any pedigree—up to individuals who have no extant (present-day) ancestors—can be reconstructed

from (sex-labelled) pedigrees that describe the ancestry of single extant individuals and pairs of extant individuals. Furthermore, this

reconstruction can be done in polynomial time. We also provide an example to show that the corresponding reconstruction result does

not hold for pedigrees that are not sex-labelled. We then show how any pedigree can also be reconstructed from two functions that just

describe certain circuits in the pedigree. Finally, we obtain an enumeration result for pedigrees that is relevant to the question of how

many segregating sites are needed to reconstruct pedigrees.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The reconstruction of ancestral relationships—between
genera, species and populations—is central to much of
evolutionary biology. Traditionally, phylogenetic methods
have been used at the species (and higher) level, while for
populations, graph-based approaches (such as haplotype
networks) have been more commonly employed. However
although phylogeny dates back to Darwin, people have
been interested for much longer in the more basic level of
ancestral—namely that of pedigrees, which traces the
ancestors of individuals back in time.

The reconstruction of pedigrees—driven by human
curiosity, or more practical requirements (legal, medical,
etc.)—has variously involved meticulous record-taking
over centuries, the methodical recording and searching of
birth-and-death records, oral tradition, and verbal trans-
mission of ancestry (as with the Maori whakapapa). Of
course this mixture of approaches, along with a great deal
of ‘missing data’ leads to a very patchy and incomplete
e front matter r 2005 Elsevier Ltd. All rights reserved.
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pedigree for most collections of extant individuals.
A detailed (complete) record of ancestry would typically
run only a few generations back before ambiguities arise.
For example, it would be rare for two individuals chosen at
random in a major continent to be able to tell how many
ancestors they shared (say) five generations ago. Similarly
although nearly all individuals have four distinct grand-
parents, few of us could confidently state how many distinct

ancestors we had exactly 10 generations ago (some integer
in the range from 2 to 1024). However, it seems likely that
the increasing availability of genomic data for individuals
(rather than species) will soon provide new data and
impetus for reconstructing pedigrees, though how far into
the past this might be possible is currently unclear.
To date, the formal analysis of pedigrees has concen-

trated much less on reconstruction, and more on carrying
out statistical tests on the genetic aspects of pedigrees (as
for example, in the pioneering work of Cannings and
Thompson (1981) and Thompson (2000)). In other areas of
systematic biology—for example in the reconstruction of
phylogenetic trees—two questions arise: firstly, can we
piece together parts of a tree of life from smaller subtrees
(Bininda-Emonds, 2004)? Secondly, how much data (DNA
sequences) would we need to reconstruct such a large tree
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(Mossel and Steel, 2005; Sober and Steel, 2002)? Here we
ask the analogous questions for pedigrees—can they be
reconstructed formally from sub-pedigrees? And if we use
sequences to reconstruct pedigrees, how many segregating
sites would be needed given that the number of pedigrees is
likely to grow very quickly? In this paper, we provide some
initial answers to these questions using basic combinatorial
arguments. However, we also see considerable scope for
future work on the questions we posed above, and we list
some particular problems at the end of this paper.
Moreover, our results are not intended to be tailor-made
computational techniques for application to specific data;
rather we describe a general mathematical approach as a
framework for investigating pedigree reconstruction ques-
tions. We hope to explore further how these ideas might be
applied for the reconstruction of pedigrees from genomic
data. We begin with some formal definitions, which follow
(Semple and Steel, 2003; Thomas, 1993).

1.1. Definitions

A (strict) pedigree P is an acyclic digraph, for which the
vertex set V is the disjoint union of two subsets M and F

(‘Male’ and ‘Female’) and for which each vertex v 2 V

satisfies the following condition:
(P)
 if v has positive indegree then v has exactly two incoming
arcs, say ðu; vÞ and ðu0; vÞ, where u 2M and u0 2 F .
Condition (P) formalizes the requirement that each
individual in the set V that has at least one parent in V

has exactly two, one male and one female.
We will write P ¼ ðV ;AÞ to indicate that pedigree P has

vertex set V and arc set A. If X is a subset of the vertices of
P that have no outgoing arcs, then we say that P is a
pedigree on X. The set V 0 of vertices of P of indegree 0 is
sometimes referred to as the founders of the pedigree. Note
that for any finite pedigree (i.e. any pedigree for which jV j
is finite), the set V 0 is necessarily non-empty. An example
of a pedigree on X ¼ f1; 2; 3; 4g is shown in Fig. 1, in which
the round vertices denote females, square vertices denote
males, V 0 consists of the 12 individuals at the top, and all
arcs are oriented downwards.

To study pedigrees it is sometimes helpful to define a
more general type of acyclic digraph, which we will call a
1 2 3 4

ν

Fig. 1. A pedigree on X ¼ f1; 2; 3; 4g.
(general) pedigree. This has condition (P) replaced by the
weaker condition:
(P�)
Fig. 2

ignor
if v has positive indegree then either v has exactly two
incoming arcs, say ðu; vÞ and ðu0; vÞ, where u 2M and
u0 2 F , or v has one incoming arc.
Henceforth, ‘pedigree’ will mean a general pedigree, unless
we specifically use the prefix ‘strict’. Two other definitions
that are widely used in this paper are:
�
 For an arc ðu; vÞ of any pedigree we say that v is a child

of u and u is a parent of v.

�
 For any vertex v of P let gðvÞ 2 fM ;Fg indicate the

gender class that v belongs to.

It is important to formalize what it means for two
pedigrees to ‘be essentially the same’ (isomorphic) where
our set of extant individuals X is known (and so effectively
labelled) but where we do not care about the labelling of
the ancestral individuals. We may wish to either take
account of, or ignore, the sex of ancestral individuals
in a pedigree, and so we introduce the following two
definitions. Two pedigrees on X, P1 ¼ ðV 1;A1Þ and
P2 ¼ ðV2;A2Þ, are isomorphic, written P1 ffi P2 if there
is a bijective map f : V 1! V2 for which ðv1; v2Þ 2
A13ðfðv1Þ;fðv2ÞÞ 2 A2 (i.e. f is a digraph isomorphism)
and f is the identity map when restricted to X. If in
addition fðM1Þ ¼M2;fðF 1Þ ¼ F2 (where Mi and Fi is the
gender-based bi-partition of V i) then we say that P1 and
P2 are gender isomorphic, written P1ffigP2.
For example, consider the the two pedigree graphs in

Fig. 2 which show two individuals fx; yg that share the
same four grandparents. These two pedigrees are non-
isomorphic (and therefore not gender isomorphic). What
makes this example interesting is that these two pedigrees
are similar in many other respects—for example the
distribution of path lengths from x to y is the same, and
the ancestry of each individual (x or y) is the same for both
pedigrees.
Pedigree graphs have a number of attractive graph-

theoretic properties—for example, it is easily seen that they
can be properly 3-coloured (Semple and Steel, 2003).
Furthermore, any graph obtained from a pedigree by
adding edges between only M and F vertices can be
. Two pedigree graphs that are non-isomorphic even when gender is

ed.
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Fig. 3. The restricted pedigrees: (a) Pðf2; 3g;Dp2Þ and (b) PðX ;Dp2Þ for

the pedigree P shown in Fig. 1 (see text for details).
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properly 4-coloured (Thomas, 1993). This last fact follows
from the observation that the induced subgraph of any
pedigreeP on M is a forest (similarly the induced subgraph
of P on F) and any tree (hence forest) can be properly
2-coloured. This 4-colourability result implies that certain
pedigree graphs have small ‘tree-width’, which can be
useful for various statistical calculations. In general,
however a pedigree may have large tree-width, and so,
not surprisingly, the calculation of certain statistical
properties of pedigrees can be computationally complex
(see e.g. Aceto et al., 2004; Piccolboni and Gusfield, 2003;
Thomas, 1993).

1.2. Further definitions (restricted pedigree, depth)

We will be interested in restricting pedigrees to subsets of
vertices. To make this more precise, given a pedigree
P ¼ ðV ;AÞ, and a subset U of V, let PjU denote the
induced digraph which has vertex set U and arc set
fðv; v0Þ 2 A : v; v0 2 Ug. We call PjU the restriction of P to

U. For a subset S of X and a pedigree P on X, with vertex
set V, let V ðSÞ denote the set of vertices v of P for which
there is a path from v to at least one element of S, and let
PðSÞ denote the restriction of P to V ðSÞ; that is,

PðSÞ ¼ PjV ðSÞ.

For brevity we will often write Pðx1; . . . ;xrÞ in place of
Pðfx1; . . . ; xrgÞ.

For a vertex v in a pedigree, define the depth of v,
denoted DðvÞ, to be the length of the longest directed path
(number of arcs) from v to an element of X. For example,
in Fig. 1, the vertex v indicated has depth 3.

The depth of P, denoted DðPÞ is the largest depth of any
vertex in P. A pedigree P has discrete-step generations if
the depth of any vertex also equals the length of the
shortest path (and therefore the length of every path) from
that vertex to any element of X (as in Fig. 2, but not in
Fig. 1); any such pedigree can be 2-coloured (i.e. is bipartite
if regarded as an undirected graph), since we can assign
to each vertex its depth modulo 2 to obtain a proper
colouring. In this paper we generally do not restrict
ourselves to discrete-step generation pedigrees (many of
the proofs simplify considerably, however the discrete-step
generation assumption is very strong).

Given a pedigree P on X, and a subset S of X let
PðS;DpdÞ denote the restriction of PðSÞ to the set of
those vertices v of depth at most d in PðSÞ.

To illustrate these ideas for the pedigree P on X ¼

f1; 2; 3; 4g shown in Fig. 1, the pedigrees Pðf2; 3g;Dp2Þ and
PðX ;Dp2Þ are displayed in Fig. 3(a), (b), respectively.
Notice that the vertex labelled v in Fig. 1 appears in
Pðf2; 3g;Dp2Þ (as shown) but not in PðX ;Dp2Þ.

Note also that if P is a general (or strict) pedigree on X,
and S � X then PðS;DpdÞ is a general pedigree on S;
however if P is a strict pedigree on X, then PðS;DpdÞ may
fail to be a strict pedigree on X. This is because there may
exist a vertex at depth d � 1 which has precisely one parent
at depth d (this would be impossible if P had discrete-step
generations, but could occur otherwise, as Fig. 3(b)
illustrates).

2. Pedigree reconstruction by pairwise amalgamation

Our first result shows how any pedigree, up to any depth,
can be reconstructed from pedigrees of that depth on pairs
of individuals from X. Note that in this result individuals in
the pedigree that have no surviving descendants in X will
not be part of any reconstructed pedigree.

Theorem 2.1. Let P be a (general) finite pedigree on X.
Then,
(i)
 PðX Þ can be reconstructed (up to gender isomorphism)
from the collection of pedigrees Pðx;x0Þ of all pairs

x;x0 2 X (described up to gender isomorphism).

(ii)
 For any non-negative integer d the (general) pedigree

PðX ;DpdÞ can be reconstructed (up to gender iso-

morphism) from the collection of pedigrees Pðfx;x0g;
DpdÞ of all pairs x;x0 2 X (described up to gender

isomorphism).
In either case the reconstruction can be achieved by an

algorithm that runs in polynomial time (in the number of

vertices of P and of PðX ;DpdÞ respectively).

Proof. Part (i) follows immediately from part (ii) by taking
d ¼ DðPÞ so it suffices to establish part (ii). We may
assume that X ¼ f1; 2; . . . ; ng. We will establish the follow-
ing:

Claim 1. For m 2 f2; . . . ; ng, Pðf1; . . . ;mg;DpdÞ can be

determined up to gender isomorphism from the gender

isomorphism classes of Pð1; . . . ;m� 1;DpdÞ and the

collections Pðfi;mg;DpdÞ for choices of i 2 f1; . . . ;m� 1g.

For this task we use induction on m. First note that for
m ¼ 2 Claim 1 holds trivially. To establish the induction
step we introduce some further notation. Suppose P is a
pedigree on a set S � X . For any vertex v of P recall that
gðvÞ 2 fM;Fg indicates the gender class that v belongs
to. Given s 2 S, a gender path from s to a vertex w of P is
any sequence ðgðv1Þ; . . . ; gðvkÞÞ for kX1, where ðv1; v0Þ;
ðv2; v1Þ; . . . ; ðvk; vk�1Þ are arcs of P and v0 ¼ s; vk ¼ w. Note
that, for any sequence g ¼ ðg1; . . . ; gkÞ 2 fM;Fgk and any
s 2 S, there is at most one vertex z of P for which g is the
gender sequence from s to z; we call such a vertex z the
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Fig. 4. Example to illustrate that Theorem 2.1 requires gender isomorph-

ism.

M. Steel, J. Hein / Journal of Theoretical Biology 240 (2006) 360–367 363
vertex specified by taking the gender path g from s and
denote it by zðs; gÞ. For example, in Fig. 1, the vertex v

shown can be represented as zð4; ðM ;F ÞÞ, zð4; ðF ;M ;F ÞÞ,
zð3; ðM;F ÞÞ or zð2; ðM ;F ÞÞ.

Returning to the induction step for Claim 1, let P1 ¼

ðV1;A1Þ be gender isomorphic to Pðf1; . . . ;m� 1g;DpdÞ

and P2 ¼ ðV2;A2Þ be gender isomorphic to Pðfmg;DpdÞ.
To simplify the following construction we will regard V 1

and V 2 as disjoint sets (this is possible because we are
dealing with isomorphism classes, and it is convenient for
what is to follow).

Next we describe a relation � on V1 � V 2 (the point of
this relation will be to identify two vertices if they represent
the same individual in Pð1; . . . ;mÞ).

For v1 2 V1 and v2 2 V2 we determine whether the
following condition holds for any i 2 f1; . . . ;m� 1g that is
a descendant of v1: Select a gender path g from i to v1 in P1

and a gender path g0 from m to v2 in P2. Now, in
Pðfi;mg;DpdÞ let zði; gÞ denote the vertex specified by
taking gender path g from i, and let zðm; g0Þ denote the
vertex specified by taking the gender path g0 from m. Set
v1�v2 if and only if zði; gÞ ¼ zðm; g0Þ. This relation � is well
defined (i.e. independent of the choice of i; g and g0).

We now construct a digraph D with vertex set V

obtained from V 1 [ V2 by identifying v1 2 V1 and v2 2 V 2

whenever v1�v2. Since each vertex v 2 V corresponds to a
vertex in V1 or V2 or in both, we can define the arc set A of
D to be those pairs ðv; v0Þ 2 V � V for which correspond to
a pair of vertices in V1 (or in V 2) that form an arc in A1 (or
in A2, respectively). Then D ¼ ðV ;AÞ is a general pedigree
on f1; . . . ;mg, and so we may further let ðV 0;A0Þ denote the
restriction of this pedigree to vertices of depth at most d.

Consider the following bijective map from the vertices of
Pðf1; . . . ;mg;DpdÞ to V 0. Each vertex v in Pðf1; . . . ;mg;
DpdÞ either has a descendant in f1; . . . ;m� 1g, in which
case v corresponds to a unique vertex in V1 \ V 0, or v has m

as a descendant and in addition v has no descendant in
f1; . . . ;m� 1g, in which case v corresponds to a unique
vertex in V2 \ V 0 that is not � related to any vertex
in V1. This map provides a gender isomorphism from
Pðf1; . . . ;mg;DpdÞ to ðV 0;A0Þ, and thereby establishes
Claim 1.

Setting m ¼ n in Claim 1, Pðf1; . . . ;mg;DpdÞð¼

PðX ;DpdÞÞ can be reconstructed up to gender isomorph-
ism from the collection of pedigrees Pðfx;x0g;DpdÞ for
x; x0 2 X . Furthermore, the construction described above
can clearly be implemented in polynomial time. This
completes the proof. &

2.1. Remark

Theorem 2.1 is no longer true if one replaces the phrase
‘gender isomorphism’ by ‘isomorphism’ throughout. To see
this consider Fig. 4. We can construct two pedigrees P;Q
on X :¼ fx; y; zg from this graph as follows. To form P
identify vertex p and p0. To form Q identify vertex p and p00.
Note that PðX Þ and QðX Þ are not isomorphic, however
Pðx1;x2Þ is isomorphic to Qðx1; x2Þ for all x1;x2 2 X . Note
also that, in this example, a consistent assignment of sexes
is possible in both cases, but since we are dealing with
isomorphism and not gender isomorphism the details are
not relevant.

3. Reconstructing pedigrees from ‘link’ and ‘lasso’ data

Theorem 2.1 requires as input entire pedigrees for pairs
of extant individuals. In this section, we show that a
pedigree can be reconstructed (up to gender isomorphism)
from more atomic information—namely from gender
information about certain circuits in the pedigree. To
describe this we begin with some definitions.
Let P ¼ ðV ;AÞ be a pedigree on X. Given vertices
ðu; u0Þ 2 V � V a pedigree link for ðu; u0Þ, is a pair ðW ;W 0Þ

where W ¼ ðw0;w1; . . . ;wjÞ;W
0 ¼ ðw00;w

0
1; . . . ;w

0
kÞ are se-

quences of vertices, with j; kX0 and for which the
following two conditions apply:
�
 wj ;wj�1; . . . ;w0 is a directed path from wj to w0 ¼ u, and
w0k;w

0
k�1; . . . ;w

0
0 is a directed path from w0k to w00 ¼ u0,

and in addition wj ¼ w0k.

�
 These two directed paths share no arcs, and the only

vertices they share are wj ¼ w0k, and, in the special case
where u ¼ u0, w0 ¼ w00.

Informally, a pedigree link for ðu; u0Þ can be viewed as two
separate lines of ancestry that trace back in time from v and
w to some common ancestor. A generic pedigree link
is shown schematically in Fig. 5(a). Note the definition
allows for a pedigree link for the pair ðu; uÞ, including
the trivial link ððuÞ; ðuÞÞ. The depth of a pedigree link
ððw0;w1; . . . ;wjÞ; ðw00;w

0
1; . . . ;w

0
kÞÞ is maxfj; kg.

A pedigree lasso on a vertex u is an ordered triple
ðU ;W ;W 0Þ where
�
 U ¼ ðu0; u1; . . . ; ukÞ, with kX1; u0 ¼ u and ðuiþ1; uiÞ 2 A

for each i 2 f0; . . . ; k � 1g;

�
 ðW ;W 0Þ is a pedigree link for ðuk; ukÞ.

The depth of this pedigree lasso is k þ depthðW ;W 0Þ, and
in case depthðW ;W 0Þ ¼ 0 we say the lasso is trivial.
Informally, a pedigree lasso on u can be viewed as a line
of ancestry that travels back in time from u to some
ancestor, and that then either ends or splits into two
separate lines of ancestry that eventually meet again at a
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Fig. 5. Generic pedigree link (a), and pedigree lasso (b).
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more distant ancestor. A generic pedigree lasso is shown
schematically in Fig. 5(b).

3.1. Gender sequences

We will be interested just in the gender sequences
associated with pedigree links and lassos, and the following
definitions make this precise.

Let G denote the collection of finite sequences over
fM ;Fg, and for g 2 G, let jgj denote the length of g. Given
any sequence Z ¼ ðz0; z1; . . . ; zrÞ of vertices of P let gðZÞ 2
G denote the ‘pruned’ gender sequence ðgðz1Þ; . . . ; gðzrÞÞ (we
say ‘pruned’ because we omit gðz0Þ; in case r ¼ 0 we will
simply write gðZÞ ¼ �).

For an ordered pair ðx; yÞ of elements of X, let Lkðx; yÞ
denote the set of pairs ðg1; g2Þ 2 G� G of (pruned) gender
sequences ðgðW Þ; gðW 0ÞÞ over all pedigree links ðW ;W 0Þ for
ðx; yÞ. Note that ðg1; g2Þ 2 Lkðx; yÞ if and only if
ðg2; g1Þ 2 Lkðy; xÞ.

To illustrate this concept consider the two pedigrees
shown in Fig. 2. The pedigree shown on the left has:

Lkðx; yÞ ¼ fððM ;MÞ; ðF ;MÞÞ; ððM ;F Þ; ðF ;F ÞÞ,

ððF ;F Þ; ðM ;F ÞÞ; ððF ;MÞ; ðM ;MÞÞg,

while the pedigree shown on the right has:

Lkðx; yÞ ¼ fððM ;MÞ; ðM ;MÞÞ; ððM ;F Þ; ðF ;F ÞÞ,

ððF ;F Þ; ðM ;F ÞÞ; ððF ;MÞ; ðF ;MÞÞg.

Similarly, for an element x of X, let LðxÞ denote the set of
triples ðg1; g2; g3Þ 2 G3 of (pruned) gender sequences
ðgðUÞ; gðW Þ; gðW 0ÞÞ over all pedigree lassos ðU ;W ;W 0Þ on
x. For example, for the pedigree graphs in Fig. 2, LðxÞ and
LðyÞ consist just of (trivial) triples such as ððF Þ;�;�Þ and
ððM ;F Þ;�;�Þ.

Given a pedigreeP on X we refer to an element ðg1; g2Þ of
Lkðx; yÞ as a gender link for ðx; yÞ (of depth maxfjg1j; jg2jg)
and the associated function Lk : X � X ! 2G as the
link function of the pedigree. Similarly we refer to an
element ðg1; g2; g3Þ of LðxÞ as a gender lasso on x (of
depth jg1j þmaxfjg2j; jg3jg) and the associated function:
L : X � X ! 2G as the lasso function of the pedigree.
Note that for pedigrees with discrete-step generations the

description of a link and lasso can be simplified. Namely,
one does not need to specify separately the gender type of
the two arc-disjoint paths from the ancestral vertex, and
can instead use the sequence of genders encountered in a
(necessarily even length) cycle from one element of X to
another.

Theorem 3.1. Let P be any (general) finite pedigree, P, on

X. Then PðX Þ is determined up to gender isomorphism by the

pair ðL;LkÞ (the link and lasso functions of P).

Proof. First observe that the link and lasso function ofP is
exactly the same as the link and lasso function of PðX Þ and
so we may assume for the remainder of this proof that
P ¼ PðX Þ.
We use induction on the number k ¼ kðPÞ of arcs P.

The idea for the inductive step will be to remove one
carefully-chosen arc from P, and show how the link and
lasso functions on the resulting pedigree are determined by
the original link and lasso functions (working over general,
rather than strict pedigrees is useful for the proof, since
removing an arc may create an individual with just one
parent).
First note that for k ¼ 0 we have P ¼ PðX Þ ¼ ðX ;;Þ

and clearly we can determine that k ¼ 0 from L. Thus in
case k ¼ 0 we can reconstruct PðX Þ, from L. For the
induction step, suppose that Theorem 3.1 holds for all P
with kðPÞ less than KX1 and that P is a finite pedigree on
X with kðPÞ ¼ K .
Note that a parent of an element of X may not

necessarily have depth 1 (unless one assumes discrete-step
generations). Nevertheless we claim that when kðPÞ40
there always exists a vertex v of P that has depth precisely
1—indeed we may take v to be any vertex in P that does
not lie in X, and that has minimal depth d. Clearly dX1
and to see that we must have d ¼ 1, suppose that d41.
Select a shortest path from v to an element of X, and let v0

be the penultimate vertex of P in this path. By assumption,
the depth of v0 is at least d, and v0 is different to v. However
this implies that the depth of v is at least d þ 1, a
contradiction. It follows that there is indeed a vertex v of
P of depth 1; that is, an individual all of whose children
either lie in X or do not leave any descendants in X.
Note that the elements x 2 X that have a parent of depth

1 are precisely the elements x 2 X that satisfy the following
condition for some gx 2 fM;Fg:

For all y 2 X ; g 2 G; if ððgxÞ; gÞ 2 Lkðx; yÞ then g ¼ ðgxÞ.

Thus by using just Lk we can select an element x satisfying
this last condition (for a particular gx)—as we have shown,
such an x must exist. In addition, we say that x is gx-solo if
x is the only child of the gx-parent of x, and we say that x is
a miracle if x has only one parent (i.e. the gx-parent). Now,
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Fig. 6. Two pedigrees with identical link and lasso functions of depth at

most 1, yet with non-isomorphic restriction to vertices of depth at most 1.
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consider the general pedigree P0 obtained from P by
deleting the arc from the gx-parent of x to x, and in
addition (i) if x is a miracle, delete x; and (ii) if x is gx-solo
then assign a label (not present in X) to the gx-parent, for
example z ¼ zðx; gxÞ. Let X 0 denote the set of vertices of P0

of out-degree 0. Then X � fxg � X 0 � X [ fzg. Moreover,
X 0 contains x iff x is not a miracle, and X 0 contains z iff x is
gx-solo. We will regard P0 as a pedigree on the labelled
set X 0.

We claim that the lasso and link functions for P0—call
them L0 and Lk0, respectively—are determined by L and
Lk. To see this observe that for u;w 2 X � fxg we have

Lk0ðu;wÞ ¼ Lkðu;wÞ,

L0ðuÞ ¼ LðuÞ.

Also if z 2 X 0 (i.e. x is gx-solo) then

ðg1; g2Þ 2 Lk0ðz; zÞ3ððgxÞ; g
1; g2Þ 2 LðxÞ; (1)

and

ðg1; g2; g3Þ 2 L0ðzÞ3ðgx � g
1; g2; g3Þ 2 LðxÞ,

where � denotes concatenation; while for w 2 X � fxg we
have

ðg1; g2Þ 2 Lk0ðz;wÞ3ðgx � g
1; g2Þ 2 Lkðx;wÞ.

Now suppose that x 2 X 0 (i.e. x is not a miracle). Then,

ðg1; g2; g3Þ 2 L0ðxÞ3ðg1; g2; g3Þ 2 LðxÞ and g11agx

and for y 2 X 0 � fzg,

ðg1; g2Þ 2 L0ðx; yÞ3ðg1; g2Þ 2 Lðx; yÞ and g11agx

(where g11 refers to the first term of g1). Finally, if both
x; z 2 X 0 then

ðg1; g2Þ 2 L0ðx; zÞ3ðg1; gx � g
2Þ 2 Lðx; xÞ.

Thus, since kðP0Þ ¼ kðPÞ � 1, it follows by the inductive
hypothesis that P0ðX 0Þ is determined up to gender
isomorphism by L0;Lk0 and so by L, Lk. Now, the pedigree
obtained from P0ðX 0Þ by (i) re-introducing x if x is not an
element of X 0, and (ii) adding an arc from z to x, is (gender
isomorphic to) PðX Þ. This establishes the induction step,
and thereby the proof of Theorem 3.1. &

Remarks.
�
 Although Theorem 3.1 is related to Theorem 2.1(i)
neither result follows immediately from the other, and
the type of induction used in both cases is quite
different. In particular, Theorem 3.1 makes no claim
concerning a polynomial-time algorithm for recon-
structing P since LðxÞ can clearly be of exponential size
in the number of vertices of P. Furthermore, the
analogue of Theorem 2.1(ii) (i.e. depth-restriction) does
not hold in the setting of Theorem 3.1; for example the
two pedigrees P and P0 in Fig. 6 have the same link and
lasso functions for links and lassos of depth at most 1,
yet PðX ;Dp1Þ is not gender isomorphic to P0ðX ;Dp1Þ.
�
 It is clear that both L and Lk are required in order to
reconstruct P; nevertheless it is interesting to ask how
much can be determined about a pedigree from just its
link function. Specifically, for a general pedigree P on X,
let VL denote the set of all vertices ofP that lie on at least
one pedigree link for a pair of elements of X (including
pairs for the form ðx;xÞ). It might be conjectured that
PjVL can be reconstructed just from the Lk, however a
counterexample can be constructed to show that in
general this is not the case (the problem with extending
the inductive argument employed for Theorem 3.1 is that
Eq. (1) requires the lasso function L for determining a
value of Lk0). How much that Lk determines concerning
PjVL remains an interesting question.

4. Pedigree enumeration and limits to pedigree

reconstruction from segregating sequence sites for X

In this section, we derive a lower bound on the number
of isomorphism classes of pedigrees on X that have the
property that each individual in the pedigree has depth at
most d. We then describe some consequences for pedigree
reconstruction. We show that the number of isomorphism
classes of such pedigrees on X grows at least as fast as the
function nbnd where n ¼ jX j and b is a positive constant,
and that this bound applies even if one imposes further
restrictions (e.g. a bound on the number of children each
individual can have). To obtain this lower bound we will
see that we need only consider a very particular sub-class of
pedigrees over X. Note that in this section we use
isomorphism in the more general sense; that is, we do not
distinguish between sexes.

Theorem 4.1. The number of isomorphism classes of

pedigrees on X of depth d grows at least at the rate nbnd

for a positive constant b, and n ¼ jX j. Furthermore, this

bound holds even if we further insist that any combination of

the following hold:
�
 Each individual vertex in the pedigree has at least one

descendant in X,

�
 The number of vertices at any given depth is at most

(a constant (X1) times) jX j,

�
 The pedigree has discrete-step generations,

�
 The number of children each individual has is at most 3.
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To prove this result we first note that since we are
concerned with lower bounds it suffices to count any
subclass of pedigrees of depth d satisfying the four extra
conditions specified in the theorem, and our choice is
dictated largely by computational convenience. Thus,
consider discrete generation pedigrees of depth d and
constant population size n ¼ 3k and which satisfy the
following requirement:
(3X)
Fig. 7.

details
In each generation the population can be partitioned
into k sets of size 3, so that the following conditions
hold: within each triple, two individuals share the
same parents—say p; p0—while the third individual
has just one of these as a parent—say p—as well as a
second parent, say p00.
An example for k ¼ d ¼ 2 is shown in Fig. 7 for X ¼

f1; 2; 3; 4; 5; 6g partitioned into the triples f1; 2; 3g and
f4; 5; 6g. The three circled vertices at depth one form a
triple in the partition at that level. Condition (3X) may
appear strange, however it suffices to provide a computable
lower bound on the number of isomorphism classes of
pedigrees on X.

Theorem 4.1 follows as an immediate consequence of the
following result (noting that pedigrees that satisfy (3X)
satisfy all four extra conditions mentioned in Theorem 4.1).

Proposition 4.2. Let Nðd; kÞ denote the number of iso-

morphism classes of discrete generation pedigrees of depth d

and constant population size n ¼ 3k and that satisfy

condition (3X). Then

jNðd; kÞj ¼
ð3kÞ!

2kk!

� �d

.

Furthermore, jNðd; kÞjXðk2bÞkd where b ¼ 27e�2=2ffi 1:83.

Proof. We use induction on d to establish the result.
For d ¼ 1 first note that the number of ways of

partitioning the set X (of size 3k) into k sets of size 3 is
ð3kÞ!

ð3!Þkk!
(Ross and Wright, 1999, p. 305). For each set of size 3

we must select one individual as the candidate in the triple
for the third individual mentioned in condition (3X) (with
parents p; p00). The selection of these triples and such an
individual for each triple specifies the pedigree up to
1 2 3 4 5 6

Condition (3X) for k ¼ d ¼ 2 and X ¼ f1; 2; 3; 4; 5; 6g (see text for
).
isomorphism, and so

Nð1; kÞ ¼
ð3kÞ!

ð3!Þkk!
� 3k ¼

ð3kÞ!

2kk!

� �1

,

which establishes the result for d ¼ 1.
Now suppose d41 and let P be a pedigree on X that

satisfies (3X) and has depth d. Note that a labelling of the
individuals at depth d 0 � 1 2 f0; . . . ; d � 1g specifies a
labelling of individuals at depth d 0 which is dependent
only on the isomorphism class. This labelling associates to
each individual at depth d 0 the set of labels of children it
has at height d 0 � 1 (beginning with the labelled set X at
d 0 ¼ 0). For example, the third, fifth and sixth vertices
(from left to right) in the top layer of Fig. 7 receive the
labels,

ff2; 3g; f4; 5gg; ff2; 3g; f4; 5g; f6gg; and ff6gg.

Since the labels at level d � 1 are all distinct, and this
labelling depends only on (and also determines) the
isomorphism class of P it follows that

Nðd; kÞ ¼ Nðd � 1; kÞ �Nð1; kÞ,

which establishes the induction step.
The inequality in the second part of Theorem 4.2 follows

from the equality by using a form of Stirling’s formula
that states that m! ¼ cðmÞmme�m

ffiffiffiffiffiffiffiffiffi
2pm
p

where 1ocðmÞo
expð1=12mÞ (Robbins, 1955) applied to m ¼ k; 3k. &

Note that the bound in Theorem 4.1 (or Proposition 4.2)
would also apply to counting gender isomorphism classes,
but here we are using the weaker notion of isomorphism
(defined earlier) which does not distinguish sexes.
Proposition 4.2 has the following implication for the

reconstruction of pedigrees from segregating sites. Suppose
we have s sites in DNA that show variation across a
population (such sites are called ‘segregating sites’).
Suppose that we have some model describing how the
structure of a pedigree influences the segregating sites (for
example a model that combines mutation and recombina-
tion). Then we can ask how many segregating sites we need
in order to reconstruct a pedigree back d generations. This
will in general depend very much on the details of the
model, however we can set generic lower bounds (inde-
pendent of the details of the model) by simply comparing
the number of possible data sets involving s segregating
sites with the number of pedigrees of depth d for a
population of size n. An upper bound on the former
number is 4ns (the value 4 since DNA has four bases)
while a lower bound on the latter number is given by
the second part of Proposition 4.2. Applying then an
information-theoretic argument (Steel and Székely, 1999,
Theorem 2.1(ii)) we obtain the following.

Corollary 4.3. Suppose s is the number of segregating DNA

sequence sites that are required (by any method and any

model of site evolution) to reconstruct correctly with

probability larger than 0.5 each pedigree of depth d and
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constant population size n. Then,

sX
d

3
log2

n

3

� �
.

For example, to reconstruct the pedigree of a human
population of constant size 3 million for 300 generations
(approx. 7000 years) would require an absolute minimum
of 2000 segregating sites. In reality the number is likely to
be much higher due to the under-counting of pedigree
isomorphism classes by imposing condition (3X), and due
to stochastic aspects of any model of site evolution.
5. Concluding comments

The results described above raise many questions; both
combinatorial and stochastic.

One combinatorial question (concerning compatibility)
is to determine for a set of pedigrees on Y 1; . . . ;Y k whether
there exists a pedigree P on X ¼

Sk
i¼1Y i that contains each

of the input pedigrees as an isomorphic copy.
Remark (2.1) suggests another combinatorial question.

Does there exists some value r42 for which, for any two
pedigrees P;Q on X,

PðX Þ ffi QðX Þ3PðSÞ ffi QðSÞ for all S � X ; jSjpr?

An enumeration question would be to find better lower
(or upper) bounds for the number of isomorphism classes
of pedigrees on X; or perhaps even exact formulae. For
this, the ideas developed in (Thomas and Cannings, 2003,
2004) may be useful.

In practice, pedigree reconstruction is likely to be based
on sequences that have evolved under models of site
evolution (involving recombination and mutation). The
bound we have described in terms of the number of
segregating sites is likely to be a considerable underestimate
for the number of segregating sites that may be required for
accurate pedigree reconstruction, however we can ask
whether the same rate of growth of s, namely d logðnÞ, can
be achieved. There is a curious parallel in the field of
phylogeny reconstruction where equally primitive counting
arguments showed that sequences must grow at the rate (at
least) logðnÞ in order to accurately reconstruct trees with n

leaves. Yet it turned out that under certain models this
lower bound was indeed the actual rate of growth required,
at least for most trees (Erdös et al., 1999). Whether such a
fortuitous outcome is the case for pedigrees is unlikely,
though a reasonable topic for further investigation.
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