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Abstract This paper presents new results from a detailed study of the structure of

autocatalytic sets. We show how autocatalytic sets can be decomposed into smaller

autocatalytic subsets, and how these subsets can be identified and classified. We

then argue how this has important consequences for the evolvability, enablement,

and emergence of autocatalytic sets. We end with some speculation on how all this

might lead to a generalized theory of autocatalytic sets, which could possibly be

applied to entire ecologies or even economies.

Keywords Origin of life � Autocatalytic sets � Evolvability � Emergence �
Functional organization

1 Introduction

Origin of life research seems divided between two paradigms: genetics-first and

metabolism-first. However, a common theme in both is the idea of autocatalysis. In

fact, a third alternative, that of collectively autocatalytic sets, was introduced more
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or less independently several times (Dyson 1982; Eigen and Schuster 1977;

Kauffman 1971), and used in later origin of life models (Gánti 1997; Letelier et al.

2006; Rosen 1991; Wächterhäuser 1990). The idea of autocatalytic sets has not been

without its criticism (Lifson 1997; Orgel 2008; Vasas et al. 2010), but recent

experimental advances in creating such sets in a laboratory setting (Ashkenasy et al.

2004; Hayden et al. 2008, Sievers and von Kiedrowski 1994; Taran et al. 2010)

have sparked a renewed interest in autocatalytic sets. Moreover, there is growing

evidence that simple autocatalytic cycles may indeed have been at the core of the

origin of life (Braakman and Smith 2012).

In this paper, we continue our own (theoretical) studies of autocatalytic sets. In

previous work (Hordijk et al. 2010, 2011; Hordijk and Steel 2004, 2012; Kauffman

1971, 1986, 1993; Mossel and Steel 2005; Steel 2000), we used a mathematical

framework to investigate the probability of existence of autocatalytic sets under

various conditions (model parameters), to answer questions about the required level

of catalysis needed for autocatalytic sets to emerge, and we considered various

model variants. We also compared and contrasted our own work with other, related

models and methods (which we will not repeat here, but see, e.g., Hordijk et al.

2010), and presented results that complement, but also go beyond what has been

reported elsewhere so far.

Here, we present new results from a detailed study of the actual structure (as

opposed to merely the existence) of autocatalytic sets. In particular, we show

empirically, theoretically, and through an illustrative example, that autocatalytic sets

can often be decomposed into smaller subsets which themselves are autocatalytic, and

how these subsets can be identified and classified. We then argue that this structural

decomposition of autocatalytic sets has important consequences for their potential

evolvability, how they can enable their own growth and also the coming into existence

of other autocatalytic (sub)sets, and how this can possibly give rise to higher-level,

emergent structures. Finally, we end the paper with some provoking but plausible

ideas of how the theory of autocatalytic sets, having started in the context of the origin

of life, might be generalized to a theory of functional organization and emergence.

Such a generalized theory of autocatalytic sets could, as we hope and envision,

perhaps even be applicable to ecology and economics.

2 Chemical Reaction Systems and Autocatalytic Sets

In previous work we introduced and studied a formal model of chemical reaction

systems and autocatalytic sets in the context of the origin of life problem (Hordijk

et al. 2010, 2011; Hordijk and Steel 2004, 2012; Kauffman 1971, 1986, 1993;

Mossel and Steel 2005; Steel 2000). Here, we will only briefly review the relevant

definitions and results.

A chemical reaction system (CRS) is defined as a tuple Q ¼ fX;R;Cg consisting

of a set of molecule types X, a set of reactions R (where each reaction transforms a

set of reactants into a set of products), and a catalysis set C indicating which

molecule types catalyze which reactions. We also consider the notion of a food set

F � X; which is a subset of molecule types that are assumed to be freely available
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from the environment. In one particular model of a CRS, known as the binary

polymer model (Kauffman 1971, 1986, 1993), molecule types are represented as bit

strings up to a certain length n, reactions are simply ligation (‘‘gluing’’ two bit

strings together into one longer one) and cleavage (splitting one bit string into two

shorter ones), and catalysis is assigned at random according to some parameter

p (the probability that a molecule type catalyzes a reaction). The food set consists of

all molecule types up to a certain length t � n.

Informally, an autocatalytic set (or RAF set, in our terminology) is now defined

as a subset R0 � R of reactions (and associated molecule types) which is:

1. Reflexively autocatalytic (RA): each reaction r 2 R0 is catalyzed by at least one

molecule type involved in R0; and

2. Food-generated (F): all reactants in R0 can be created from the food set F by

using a series of reactions only from R0 itself.

A more formal definition of RAF sets is provided in (Hordijk et al. 2011; Hordijk

and Steel 2004), where we also introduced a polynomial-time (in the size of the

reaction set R) algorithm for finding RAF sets in a general CRS Q ¼ fX;R;Cg:
Figure 1 shows an example of an RAF set that was found by our algorithm in an

instance of the binary polymer model with parameter values n = 5, t = 2, and

p = 0.0045.

In (Hordijk and Steel 2004) we showed computationally, and then proved

theoretically in (Mossel and Steel 2005), that only a linear growth rate in the level of

catalysis f (i.e., the average number of reactions catalyzed per molecule type) with

the size of the largest molecules n, suffices to get RAF sets with high probability in

instances of the binary polymer model. Furthermore, the level of catalysis only
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Fig. 1 An example of an RAF
set that was found by the RAF
algorithm in an instance of the
binary polymer model. Molecule
types are represented by black
dots and reactions by white
boxes. Solid arrows indicate
reactants and products coming in
and out of a reaction, while
dashed arrows indicate
catalysis. The food set is
F = {0, 1, 01, 10, 11}
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needs to be roughly 1 \ f \ 2, i.e., between one and two reactions catalyzed per

molecule (for n at least up to 20), which is a chemically realistic number. In Hordijk

et al. (2011), Hordijk and Steel (2012) we studied a variant of the binary polymer

model where catalysis is based on a more realistic template-matching constraint.

However, the main results from the basic model remain the same and, moreover,

can be mathematically predicted (Hordijk and Steel 2012).

Finally, we note that the RAF sets that are found by our algorithm are what we

refer to as maximal RAF sets (maxRAFs). However, a maxRAF could possibly

consist of several smaller (independent or overlapping) subsets which themselves

are RAF sets (subRAFs). If such a subRAF cannot be reduced any further without

losing the RAF property, we refer to it as an irreducible RAF (irrRAF). In Hordijk

and Steel (2004) we presented an extension of the RAF algorithm to find one

(arbitrary) irrRAF within a given maxRAF. These notions of subRAFs are relevant

for what follows below.

3 The Structure of Autocatalytic Sets

In the original argument for the existence of autocatalytic sets in the binary polymer

model, it was assumed that when the probability of catalysis p is slowly increased

(for a given n), at some point an autocatalytic set will occur as a ‘‘giant component’’,

i.e., containing all (or most of) the reactions in the reaction set R (Kauffman 1971,

1986, 1993). This is similar, it was claimed, to the sharp phase transition observed in

percolation networks or random graphs. Furthermore, the proof that only a linear

growth rate in the level of catalysis f is sufficient to get RAF sets with arbitrary high

probability assumes that RAF sets contain the entire molecule set X (Mossel and

Steel 2005). However, as was already shown in Hordijk et al. (2011), Hordijk and

Steel (2004), in practice these assumptions are stronger than necessary. Here, we

investigate this issue of the size and structure of RAF sets in more detail.

3.1 Empirical Results

First, we look at the relative size of RAF sets. For maxRAFs, we calculate the relative

size as the size (in number of reactions) of a maxRAF divided by the size of the full

reaction setR it was found in. For irrRAFs, we calculate the relative size as the size of

an irrRAF divided by the size of the maxRAF it is part of. For various values of n in the

binary polymer model, we measured these relative sizes of maxRAFs and irrRAFs at a

level of catalysis for which the probability of finding (max)RAF sets (using our RAF

algorithm) is around Pn = 0.5. We then averaged this over a sample of instances of

the model (given the practical computational limitations, as the size of the reaction set

R increases exponentially with n). Figure 2 shows the results.

This plot clearly shows that maxRAFs are not necessarily giant components. In

fact, for smaller values of n the maxRAFs are only about 15 % of the size of the full

reaction set, decreasing to about 6 % for n = 16. Furthermore, irrRAFs tend to be

about half the size of a maxRAF for smaller values of n, quickly decreasing to close to

one quarter for n = 16 (with a continuing decreasing trend). This seems to imply that

382 W. Hordijk et al.

123



maxRAFs indeed consist of multiple (possibly overlapping) irrRAFs, plus perhaps a

number of reactions that are part of the maxRAF but not necessarily of any irrRAF.

3.2 Theoretical Results

Next, we state several mathematical results (see Theorem 1 below) concerning the

structure of RAF sets, which confirm and formalize the implications that follow

from the empirical results. The first result shows that an RAF set may indeed

contain many irreducible RAF sets, in fact, possibly exponentially many (see Fig. 3

for a simple example). One immediate consequence of this is that there is no hope of

devising a polynomial-time algorithm that can guarantee to find all irrRAFs in an

arbitrary RAF set (though an interesting, but still open question is whether irrRAFs

can be merely counted in polynomial time, or can be listed by an algorithm which

runs in polynomial time in the number of irrRAFs and the size of the RAF set). We

will return to this issue with another, but more positive consequence (from an

evolutionary point of view) with the example in Sect. 3.3

For the second part we first need to introduce one more definition. A maximal

proper subRAF R00 of an RAF R0 is a proper subRAF R00 � R0 (i.e., R00 is an RAF

and is contained in but not equal to R0) such that there is no other proper subRAF

R� � R0 with R00 � R� � R0: Part 2 of Theorem 1 shows that the number of

maximal proper subRAFs of an RAF can only grow linearly with the size of the

RAF. Thus, although an RAF can have many minimal (i.e., irreducible) proper

subRAFs, it cannot have too many maximal proper subRAFs.

The third part of Theorem 1 includes three related points. The first point will be

used (in Sect. 3.4) to show how we can represent all the subRAFs of an RAF by

constructing a (Hasse) diagram; this provides a convenient way to visualize how the
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Fig. 2 The (average) relative size of maxRAFs and irrRAFs for increasing n and Pn & 0.5
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subRAFs sit inside each other. Next, we show there is an efficient (polynomial-time)

method to determine whether any given RAF set can be decomposed into two

(overlapping or disjoint) subRAFs. Together these two results provide a way to

describe the possible pathways through which any particular RAF set might be built

up by allowing subRAFs to combine in pairs, or to co-opt other reactions (see also

the example in Sect. 3.3). As a third point, we show that it is possible to efficiently

determine whether or not any particular reaction or, more generally, any non-empty

set of reactions, is ‘‘essential’’ within any given RAF, in the sense that any subRAF

of the original RAF must contain this given set of reactions.

The results described above are stated formally in the following theorem, the

proof of which is provided in the ‘‘Appendix’’.

Theorem 1

1. There exist RAF sets R0 for which the number of irreducible RAF subsets is

exponential in the number of molecules and reactions in R0:
2. For any RAF set R0; the number of maximal proper subRAFs of R0 can never

exceed jR0j:
3. Given a catalytic reaction system, Q ¼ ðX;R;CÞ; a food set F � X; and an

RAF R0 � R; there exist polynomial time (in |Q|) algorithms that solve the
following problems:

(i) generate a list of all the maximal proper subRAFs of R0;
(ii) determine whether or notR0 is the union of two proper subRAFs, and if so

find all such pairs of subRAFs;

Fig. 3 An RAF set containing eight (overlapping) irreducible RAF sets, which illustrates the type of
construction used to create 2k irrRAFs (for k = 3) in the proof of Theorem 1(1)
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(iii) for any given non-empty subset of R0; determine whether that subset is

contained in every subRAF of R0:

3.3 An Illustrative Example

To illustrate this idea of the decomposition of an RAF set into smaller subsets, we

provide a simple but illustrative example. Recall the maxRAF shown in Fig. 1,

which consists of the following five reactions (the catalysts are shown above the

reaction arrows):

r1 : 10þ 0 �!01100
100

r2 : 01þ 100 �!0 01100

r3 : 10þ 1 �!0 101

r4 : 11þ 10 �!101
1110

r5 : 1110þ 0 �!101
11100

The food set is F = {0, 1, 00, 01, 10, 11}, i.e., all molecules up to length t = 2.

This maxRAF can actually be decomposed into two independent subsets, both of

which are RAF sets themselves. The first subRAF is R1 ¼ fr1; r2g and the second

subRAF is R2 ¼ fr3; r4; r5g: These two subRAFs are shown in Fig. 4.

The subRAFs R1 and R2 are independent in the sense that they do not share any

reactions. The only overlap is in the two food molecules 0 and 10 which are used in

both subRAFs as reactants and a catalyst. Note, furthermore, that subRAF R1 is an

irreducible RAF. None of the two reactions r1 or r2 can be removed without losing

the RAF property. However, subRAF R2 is not an irrRAF, as first r5 and then r4 can

100
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01100
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 r 2  r 1
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 r 5

 r 4

Fig. 4 The two independent subRAFs R1 (left) and R2 (right) of which the maxRAF shown in Fig. 1 is
composed
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be removed without losing the RAF property, leaving an irrRAF consisting of just

one reaction (r3, in which both reactants and the catalyst are food molecules).

We discuss further details and implications of this example in Sect. 4 below.

3.4 Classifying Autocatalytic Subsets

The collection of subRAFs of any RAF R form a partially ordered set (i.e., a poset)
under inclusion, and it is convenient to visualize this poset by its associated Hasse
diagram (Cameron 1995). This is a directed graph whose nodes are labeled by

subRAFs of R; with the top node (root) labeled R and the bottom nodes (leaves)

labeled by the irrRAFs of R: In this diagram we place an (upward oriented) edge

from node R00 to node R0 precisely if R00 is a maximal proper subRAF of R0: For

example, the Hasse diagram of the subRAFs of the 5-reaction maxRAF (from

Fig. 1) is shown in Fig. 5. This Hasse diagram displays all the possible ways that the

maxRAF can be built up from simpler subRAFs, starting from one or more irrRAFs.

In general, the poset of subRAFs of an RAF set can be very large. For example,

as we have shown in Theorem 1(1), an RAF set may have exponentially many

irrRAFs, and each will appear as a separate node at the bottom of the Hasse

diagram. Thus, there is no algorithm for constructing the Hasse diagram of the

subRAFs that is guaranteed to run in polynomial time in |Q| for all cases. However,

Theorem 1(3(i)) provides us with the next best thing—namely, an algorithm that

will be fast when the Hasse diagram is not too large. We formalize this as follows; a

proof is provided in the ‘‘Appendix’’.

Corollary 1 Given a catalytic reaction system, Q ¼ ðX;R;CÞ; a food set F � X;

and an RAF R0 � R; there is an algorithm for constructing the Hasse diagram of

the poset P of subRAFs of R0 whose running time is polynomial in the size of P and

R0:

Fig. 5 The Hasse diagram of the poset of subRAFs of the maxRAF shown in Fig. 1
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4 Evolvability, Enablement, and Emergence

The ‘‘decomposability’’ of RAF sets, as detailed in the previous section, actually

gives rise to a possible mechanism for evolution to happen in autocatalytic sets. As

was convincingly shown only very recently (Vasas et al. 2012), the process of

combining, splitting, and recombining different subRAFs can give rise to

inheritance, mutation, and competition, i.e., indeed evolvability. For example, the

first subset R1 ¼ fr1; r2g is what is called a ‘‘viable core’’ in (Vasas et al. 2012).

This subset actually needs to be ‘‘seeded’’ by either the molecule type 100 or 01100,

but once that happens, it will be able to sustain itself. This seeding can happen, for

example, by one of the two reactions {r1,r2} happening spontaneously (i.e.,

uncatalyzed, which can always happen but at a much lower rate), or one of the two

required molecules being produced by perhaps another subRAF (assuming that the

5-reaction RAF of Fig. 1 is itself a subset of a larger RAF set).

The second subset R2 ¼ fr3; r4; r5g depends only on food molecules, and so will

always exist (given that food molecules are always available). However, imagine

that molecule type 11 is not a food molecule, but is a product of some other

subRAF. Then, once this molecule is available, the subset R2 forms another viable

core (once r3 and r4 can happen, r5 will automatically happen as well). Now, these

subRAFs (viable cores) can be combined and recombined in various combinations.

In this case, we can have {r3}, {r1, r2, r3}, {r3, r4, r5}, and {r1, r2, r3, r4, r5} as

possible combinations. This, as argued and shown in (Vasas et al. 2012), is exactly

what allows adaptation and evolution to happen. And it is in this context that a

possibly exponential number of irrRAFs that can exist within a given maxRAF has

an important (and positive, in terms of evolvability) consequence.

Next to evolvability, the example above also illustrates how RAF (sub)sets can

enable their own growth or, more importantly, each others coming into existence.

Returning to subRAFR2 in Fig. 4, once reactions r3 and r4 can happen (e.g., seeded

by molecule type 11), reaction r5 is automatically added to the set as well, given that

it depends on one food molecule and the products of r3 and r4. So, existence of the

subset {r3, r4} automatically enables its own growth to the 3-reaction subRAF R2:
Furthermore, as the example implies, subRAFs can be (possibly mutually)

dependent on each other, and the existence of one subRAF can create the required

conditions (act as a ‘‘seeder’’) for another to come into existence.

Finally, taking this one step further, one could imagine a collection of mutually

dependent RAF sets forming a meta-RAF set: one set enabling (catalyzing) the

existence of another, in mutually beneficial ways. In other words, self-sustaining,

functionally closed structures can arise at a higher level (an autocatalytic set of

autocatalytic sets), i.e., true emergence. And this, in turn, opens up the possibility of

open-ended evolution.

5 A Generalized Theory of Autocatalytic Sets

We end this paper by discussing an as yet speculative, but potentially powerful and

far-reaching idea. By definition, RAF sets are self-sustaining entities (supported by
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a food set) that exhibit catalytic closure. As we have argued here (largely inspired

by Vasas et al. 2012), they can give rise to evolvability, by virtue of their property

of being decomposable into (possibly exponentially many) subsets. As such, the

Hasse diagram of a (maximal) RAF set, as described above, can be interpreted as

containing possible ‘‘paths’’ that evolution could potentially follow by combining,

splitting, and recombining RAF subsets into different variants. Furthermore, as also

argued here, RAF sets can enable their own growth, or even the coming into

existence of other RAF sets, creating mutually dependent collections of RAF

sets, and possibly emergent meta-RAF sets, thus giving rise to open-ended

evolution.

So, if collections of molecules and chemical reactions between them, ‘‘facilitated’’

by catalysis, can form autocatalytic sets, perhaps even at several emergent levels, then

this begs the question: ‘‘Could we consider a complete cell as an (emergent)

autocatalytic set?’’ We argue that this may indeed be the case, particularly for

autotrophs. And once autotrophs existed, they enabled the coming into existence of

heterotrophs, i.e., collections of mutually dependent cells that feed on each other’s

waste or side products (or simply on each other). Perhaps it is not too far-fetched to

think, for example, of the collection of bacterial species in your gut (several hundreds

of them) as one big autocatalytic set.

Taking this a step further, why not consider any ecology of mutually dependent

organisms as an emergent autocatalytic set, with one (group of) species enabling the

evolution of (i.e., creating niches for) other, new, species. And what about the

economy? If we view the process of transforming raw materials (reactants) into

products as a ‘‘production function’’ (the equivalent of a chemical reaction), with

objects like hammers, conveyor belts, and factory machines as ‘‘facilitators’’ (the

equivalent of catalysts, which themselves are products of other production

functions), perhaps we can also view the economy as an (emergent) autocatalytic

set, exhibiting some sort of functional closure. And, as with an ecology, the

existence of one or more autocatalytic subsets (economic agents such as companies

or government organizations) enables the coming into existence of new ones.

We admit, once more, that all this is perhaps rather speculative, but at the same

time we believe that these ideas are worth pursuing and developing further. In fact,

the theory of autocatalytic sets, as we have only begun to formulate in the context of

the origin of life, could perhaps be generalized into a theory of functional

organization, and possibly also of emergence (collections of autocatalytic sets

forming meta-autocatalytic sets). The notion that certain aspects of networks are

universal to life is quite common (see e.g. Dorogovtsev and Mendes 2003; Newman

2010), but the specific ideas presented here would seem to provide a new and

potentially powerful approach. As such, a ‘‘generalized theory of autocatalytic sets’’

might well play an important role in understanding living systems and their

organization and evolution.
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Appendix

Proof of Theorem 1: Part 1: First, consider a directed graph G that has 2k vertices

r1, r2,…, rk, and r01, r02,…, r0k. For each i ¼ 1; 2; . . .; k � 1; place a directed edge

from ri to ri?1 and also one from ri to r0i?1. Next, for each i = 1, 2, …, k - 1, place

a directed edge from r0i to ri?1 and also one from r0i to r0i?1. Finally place directed

edges from rk back to r1 and to r01; similarly place directed edges from r0k back to r1

and to r01.

Notice that the number of minimal directed cycles in this digraph is 2k, since we

have complete freedom to select ri or r0i at each step in the cycle, and we must select

one of them (to get a cycle) but not more than one (to get a minimal cycle).

We now use this graph to construct an RAF set that has exponentially many

irrRAFs as follows. Associate with ri the reaction ai þ bi ) ci and with r0i the

reaction a0i þ b0i ) ci; where:

(i) the ai, bi, a0i, b0i and ci are all distinct from each other (and across different

choices of i there is no repetition), and

(ii) the ai, bi, a0i, b0i are all in the food set F (for all i).
For the catalysis set C, we let ci catalyze ri?1 and r0i?1 (for i ¼ 1; 2; . . .; k � 1). In

addition, let ck catalyze r1 and r01. Figure 3 illustrates this RAF set for the case

k = 3.

The irrRAFs in this resulting RAF set are now in one-to-one correspondence with

the minimal directed cycles of the graph G described above, and there are 2k such

minimal cycles, but only 2k reactions and 5k molecules. So, the number of irrRAFs

is exponential in the size of the RAF set. Notice that this construction can be carried

out within the binary polymer model.

Part 2: For an arbitrary subset R00 � R; let sðR00Þ denote the (possibly empty)

subset of R obtained by applying the RAF algorithm to R00 and F, and let R006¼; be

the set of reactions r in R00 for which sðR00�{r}) = [. We first establish the

following result:

Claim 1: If R0 is any RAF, then R00 is a maximal proper subRAF of R0 if and

only if

(a) R00 ¼ sðR0 � frgÞ for some reaction r 2 R06¼;; and

(b) R00 is not strictly contained within any other set of type (a).

To verify this claim, suppose that A is a maximal proper subRAF of R0: Then

there is at least one reaction r 2 R0 � A: Notice that, since A � R0 � frg; sðAÞ ¼ A

is a non-empty subset of sðR0 � frgÞ; moreover sðR0 � frgÞ is a strict subRAF of

R0 since sðR0 � frgÞ does not include r while R0 does. Thus, since A is a maximal

proper subRAF of R we have

A ¼ sðAÞ ¼ sðR0 � frgÞ;

and so (a) holds. Property (b) now follows by the maximality assumption.

Conversely, suppose that (a) and (b) hold for R00: Then R00 ¼ sðR0 � frgÞ is

nonempty and so sðR0 � frgÞ is a proper subRAF of R0; and if it were not a
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maximal proper subRAF of R0 then, from the first part of the proof sðR0 � frgÞ
would need to be strictly contained within sðR0 � fr0gÞ for some reaction r0 2 R06¼;;
and this is impossible since we are assuming that (b) holds.

From Claim 1, the number of maximal proper subRAFs is at most the number of

sets of the form sðR0 � frgÞ for r 2 R0; and there are at most jR0j such sets across

the possible choices of r from R:0
Part 3: Part (i) follows directly from Claim 1, since the collection of RAF

sets fsðR0 � frgÞ : r 2 R06¼;g can be computed in polynomial time, and property

(b) in Claim 1 can then also be checked in polynomial time.

Part (ii) also follows from Claim 1, since this shows that R0 is the union of two

proper subRAFs if and only if

R0 ¼ sðR0 � fr1gÞ [ sðR0 � fr2gÞ ð1Þ

for some pair of distinct elements r1, r2 of R06¼;:
From this, it is clear how to obtain a polynomial time algorithm: first construct

the setR06¼;; and, provided this set is non-empty, search for all pairs r1; r2 2 R06¼; for

which Eqn. (1) holds; for each such pair we can set Ri :¼ sðR0�{ri}), for i = 1, 2

so that R0 ¼ R1 [ R2: If no such pair r1, r2 exists (or if R06¼; is empty), then report

that R0 cannot be decomposed further. This completes the proof of the part (ii).

For part (iii), it suffices to verify the following:

Claim 2: If R0 is any RAF set and R0 is any non-empty subset of R0 then R0 is

contained within every subRAF of R0 if and only if sðR0 � frgÞ ¼ ; for all r 2 R0:

To verify this claim, first suppose there exists r 2 R0 with sðR0 � frgÞ 6¼ ;:
Then sðR0 � frgÞ is a subRAF ofR0 and yet RAF sðR0 � frgÞ does not containR0;

since sðR0 � frgÞ is a subset of R0 � r and so does not contain r 2 R0: Conversely,

suppose there exists a subRAF R00 of R0 which does not contain R0: Select any

reaction r 2 R0 �R00: Then R00 � sðR0 � frgÞ and so sðR0 � frgÞ 6¼ ;: This

establishes Claim 2, as required, and completes the proof. h

Proof of Corollary 1 The algorithm constructs the Hasse diagram from the top

down, starting from the single node R0: We apply Part 3(i) of Theorem 1 to list all

the maximal proper subRAFs of R0; and then place edges from each of these to R0
(if R0 has no maximal proper subRAFs then R0 is irreducible and we leave the node

as it is). Now we repeat this step recursively on these subRAFs, introducing edges as

before, and also identifying any two (or more) nodes labeled by the same subRAF.

We continue in this way until the network can be extended no further, in which case

all the nodes with no children comprise the set of irrRAFs of R0:
The resulting network N that we have constructed contains all the nodes of the

Hasse diagram of the poset (i.e. it contains all the subRAFs of R0); moreover, the

edge set is a subset of the edges in the Hasse diagram. This last claim needs a short

proof: if we have constructed an edge in N fromR1 toR2; whereR1 � R2 we need

to show that there is no other path in N from R1 to R2 via a sequence of increasing

subRAFs (which would make the edge ðR1;R2Þ redundant). Suppose there were

such a second path, and let ðR3;R2Þ be the last edge on this path. Then, referring to
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Claim 1 (in the proof of Part 2 of Theorem 2), R1 ¼ sðR2 � frgÞ would be strictly

contained in R3 ¼ sðR2 � fr0gÞ for some reactions r, r0 and this is forbidden in

allowing R1 to be selected as a maximal proper subRAF of R2:
Thus, each edge in N will be present as an edge in the Hasse diagram. Moreover,

all edges in the Hasse diagram are present in N, for suppose that in the Hasse

diagram there is an edge from R1 to R2: where R1 � R2: Then R1 must be a

maximal subRAF of R2 and so, by construction, the algorithm inserts an edge from

R1 to R2 during the step at which the subRAF R2 and its maximal subRAFs are

considered.

In summary, we have verified that the algorithm described constructs exactly the

Hasse diagram of subRAFs of R0: h
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