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Abstract. An assignment of colors to objects induces a natural integer weight on each tree
that has these objects as leaves. This weight is called “parsimony length” in biostatistics and is the
basis of the “maximum parsimony” technique for reconstructing evolutionary trees. Equations for the
average value (over all binary trees) of the parsimony length of both fixed and random colorations are
derived using generating function techniques. This leads to asymptotic results that extend earlier
results confined to just two colors. A potential application to DNA sequence analysis is outlined
briefly.
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1. Introduction. Let B(n), n ≥ 2, denote the set of (unrooted) trees with n
leaves (vertices of degree 1) labeled 1, 2, . . . , n and with all remaining vertices unla-
beled and of degree 3. Such trees, which we will simply call binary trees, are use-
ful representations of evolutionary relationships in taxonomy. In that case, the set
[n] = {1, 2, . . . , n} represents the extant taxa being classified, while the remaining
vertices in the tree represent ancestral taxa. It is often convenient to represent the
(global) ancestral taxon of all these taxa by a root vertex obtained by subdividing
an edge (the “most ancient” edge) of the tree. Let R(n), n > 1, denote the set of
all such edge-rooted binary trees on leaf set [n]. We define R(1) as the singleton set
consisting of an isolated (root) vertex labeled 1. Note for n ≥ 2 the bijection

ψ : B(n) → R(n− 1),

where, if T ∈ B(n), ψ(T ) is the edge-rooted binary tree which results when leaf n and
its incident edge are deleted, as in Figure 1. Edge subdivision also gives a bijection,

ψ′ : {(T, e) : T ∈ B(n), e ∈ E(T )} → R(n),

as in Figure 1. We let

B(n) := |B(n)| and R(n) := |R(n)|
for n ≥ 2 and n ≥ 1, respectively. Since |E(T )| = 2n−3, for each T ∈ B(n), it follows
(from ψ and ψ′) that, for n ≥ 3,

R(n) = (2n− 3)B(n) = (2n− 3)!! = 3× 5× · · · × (2n− 3)

=
(2n− 2)!

2n−1(n− 1)!
,(1)
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Fig. 1. Bijections between rooted and unrooted binary trees.

a result dating back at least as far as 1870 to a paper by Schröder [9]. Thus, by
applying Stirling’s formula to R(n),

R(n)

n!
∼ 1

2
√
π

2nn−3/2.(2)

(A definition of “asymptotic” (∼) appears at the beginning of section 3.)
Let χ be a coloration of [n] by a set C of r ≥ 2 colors. For example, in phylogenetic

analysis each site j in a collection of n aligned DNA/RNA sequences (where r = 2
or 4) gives a coloration χ = χj of [n] for which χj(i) is the actual nucleotide (when
r = 4) or its purine/pyrimidine classification (when r = 2) that occurs at site j in the
ith sequence.

Given a tree T in B(n) or R(n) and a coloration χ of [n] let `(T, χ) be the minimal
number of edges of T that need to be assigned differently colored ends in order to
extend χ to a coloration of all the vertices of T (any such minimizing extension is called
a minimal extension of χ for T ). The number `(T, χ) is called the parsimony length
of χ on T , and it is the basis of the widely used “maximum parsimony” technique
for reconstructing evolutionary trees from aligned genetic sequences. This approach
selects the tree(s) T which minimizes (minimize) the sum of `(T, χj) over all sites j in
the sequences—this sum is the length of T on the sequences. Such a tree—a maximum
parsimony tree—requires the fewest mutations to account for the variations in the
aligned sequences.

The aim of this paper is to develop analytic techniques that would allow the
length of the maximum parsimony tree on the original sequences to be compared
with the average length of all binary trees on either (i) the original sequences or (ii)
randomized versions of the original sequences (i.e., sequences generated randomly with
the same expected frequencies of colors as the original sequences, as in Steel, Lockhart,
and Penny [11]). These two average values are obtained by evaluating, respectively,
certain functions µn and µ′n (which we describe in section 2) at each sequence site and
summing up the resulting values across the sites. An asymptotic formula for µ′n is
described in section 3 and since, as we show, µn and µ′n are asymptotically equivalent,
this provides an asymptotic formula for µn as well. Our results exploit some special
properties of the generating functions which count various classes of leaf labeled trees
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Fig. 2. A rooted tree with sets assigned to vertices by the parsimony operation.

according to their parsimony length. In this sense the exact and asymptotic analyses
complement and extend the approaches of Carter et al. [2] and Butler [1], respectively,
both of which analyzed similar systems of generating functions with just two colors
(although the problems these authors considered were slightly different from ours).

First we describe a convenient technique for computing `(T, χ) known as the (first
pass of) Fitch’s algorithm (Fitch [3], Hartigan [5]). If T ′ ∈ B(n), subdivide any edge
of T ′ to obtain a tree T ∈ R(n). Note that `(T, χ) = `(T ′, χ). Now direct all edges of
T away from the root and recursively assign nonempty subsets of colors to the vertices
of T beginning with the leaves and progressing toward the root, as follows:

(1) leaf i ∈ [n] is assigned the singleton set {χ(i)},
(2) once the descendants of vertex v have both been assigned sets A,B, then

assign vertex v the set A ∗ B, where ∗ is the (nonassociative, binary) “parsimony
operation” defined on 2C − φ,

A ∗B =

{
A ∩B if A ∩B 6= φ,
A ∪B if A ∩B = φ.

The set assigned to the root of T is called the root set. (In the case T ∈ R(1) the
root set is just {χ(1)}.) These concepts are illustrated in Figure 2. A fundamental
property of this procedure is the following.

Lemma 1.1 (Hartigan [5]). `(T, χ) is the number of times an empty intersection
(option 2 in the above description of ∗) is encountered in this assignment of sets of
colors to the vertices of T . Furthermore, the root set is precisely the set of those colors
that occur in at least one minimal extension of χ for T .

We will use both of these properties in section 2.
Notation.
(1) For convenience, we write

x to denote (x1, x2, . . . , xr),

xa to denote the monomial xa1
1 x

a2
2 . . . xarr ,

and

a! to denote a1!a2! . . . ar!.

(2) We also write

[xa]f(x) to denote the coefficient of xa1
1 x

a2
2 . . . xarr in f(x),
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as in Goulden and Jackson [4].
(3) C = {α1, . . . , αr} will denote the set of colors which are assigned to the

elements of the set [n] = {1, . . . , n}. If ai = |χ−1(αi)|, i = 1 . . . r, we say χ is of type
a = (a1, . . . , ar). Thus, ai ≥ 0 and

∑r
i=1 ai = n.

2. Calculations (exact). The aim of this paper is to calculate the two averages
that we now define.

Definition 1 (µn and µ′n). Let µn(a) be the average, over all trees T ∈ B(n), of
the length of a fixed coloration of [n] of type a on T .

For probability distribution φ = (φ1, φ2, . . . , φr), φ1 ≥ 0, φ2 ≥ 0, . . . , φr ≥ 0,∑r
i=1 φi = 1, let µ′n(φ) be the average, over all trees T ∈ B(n), of the expected length

of a random coloration of [n] on T . In this random coloration each element of [n] is
independently assigned color αi with probability φi.

Note that µ′n(φ) is the average, over all trees T ∈ B(n), of

∑
χ

`(T, χ)
n∏
j=1

φχ(j),

and so

µ′n(φ) =
∑
a

(
n

a

)
φa µn(a).(3)

Here and elsewhere a summation over a ranges over all nonnegative r-tuples
a1, . . . , ar with

∑r
i=1 ai = n. Also, note that µn and µ′n are symmetric functions

in a1, . . . , ar and φ1, . . . , φr, respectively. The following generating function forms

the basis for our calculations. For φ 6= A ⊆ C, let TA(x, z) =
∑

a,`
fA(a,`)

a! xaz`,

where fA(a, `) is the number of trees in R(n), n ≥ 1, of parsimony length ` ≥ 0
and root set A for a fixed r-coloration of [n] of type a. By Lemma 1.1, the set
{TA(x, z), ∅ 6= A ⊆ C} satisfies the system of simultaneous quadratic equations
described in Steel [10],

TA(x, z) =∑
(B,C):B∩C=A

1

2
TB(x, z)TC(x, z) +

∑
(B,C): B∩C=∅

B∪C=A

z

2
TB(x, z)TC(x, z) + δA(x),

(4)

where

δA(x) =

{
xi if A = {αi},
0 if |A| > 1.

(5)

For r = 2 this system can be treated by the multivariate Lagrange inversion formula
(Goulden and Jackson [4]) to give an explicit closed-form expression for fA(a, `)—see
Carter et al. [2], Steel [10].

Theorem 2.1 (exact formulae). Let TA(x) := TA(x, 1).
(i)

µn(a) =
a!

R(n)
[xa]

∑
(A,B):A∩B=∅

1

2
TA(x)TB(x)

(
1− 2

r∑
i=1

xi

)− 1
2

.
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(ii)

µ′n(φ) =
n!

R(n)
[xn]

∑
(A,B):A∩B=∅

1

2
TA(φx)TB(φx)(1− 2x)−

1
2 ,

where φx = (φ1x, . . . , φrx).
(iii)

µ′n(φ) = µ′n−1(φ) +
∑
i,A:
αi 6∈A

φi
(n− 1)!

R(n− 1)
[xn−1]TA(φx).

Proof of Theorem 2.1. Let

R(x, z) :=
∑
A6=∅

TA(x, z),(6)

R(x) := R(x, 1).

First observe that, from (4), we have the fundamental identity

R(x, z) =
1

2
R2(x, z) + (z − 1)

∑
(B,C):
B∩C=∅

1

2
TB(x, z)TC(x, z) +

r∑
i=1

xi.(7)

Putting z = 1 in (7), we obtain

R(x) =
1

2
R2(x) +

r∑
i=1

xi,(8)

so that

R(x) = 1−
√√√√1− 2

r∑
i=1

xi .(9)

In particular,

R(φx) = 1−√1− 2x,(10)

and so

[xn]R(φx) =
R(n)

n!
.(11)

Let

Q(x) :=
∂

∂z
R(x, z)|z=1.(12)

Then, from (7),

Q(x) = Q(x)R(x) +
∑

(B,C):
B∩C=∅

1

2
TB(x)TC(x).
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Hence

Q(x) =
∑

(B,C):B∩C=∅

1

2
TB(x)TC(x) · (1−R(x))−1.

Applying (9) gives

Q(x) =
∑

(B,C):B∩C=∅

1

2
TB(x)TC(x)

(
1− 2

r∑
i=1

xi

)− 1
2

.(13)

Now from (12) a![xa]Q(x) is the sum
∑

` `f(a, `), where f(a, `) =
∑

A6=∅ fA(a, `), the
total number of trees T ∈ R(n) of length ` for a coloration χ of [n] of type a. Thus
a!

R(n) [x
a]Q(x) is the average length over all trees in R(n) of the length of χ. However,

each edge rooting of a binary tree leads to an identical parsimony length (i.e., the
position of the root is irrelevant to the length), so this quantity is also the average
length over all trees in B(n) of the length of χ, which in view of (13) establishes part
(i).

(ii) Applying part (i) to (3) we obtain

µ′n(φ) =
∑
a

(
n

a

)
φa

a!

R(n)
[xa]F (x),(14)

where F (x) =
∑

(A,B):A∩B=∅
1
2TA(x)TB(x)(1− 2

∑r
i=1 xi)

− 1
2 .

Rewriting (14), we have

µ′n(φ) =
n!

R(n)

∑
a

φa[xa]F (x) =
n!

R(n)
[xn]F (φx),

as required.
(iii) For any tree T ′ ∈ R(m) with root vertex ρ and subject to a random coloration

of [m] according to φ, let S(T ′) denote the (random variable) root set of T ′ (as defined
in section 1).

Suppose T ∈ B(n) and χ is a coloration of [n]. By the bijection ψ : B(n) →
R(n− 1) and Lemma 1.1 (rooting T on the edge incident with the leaf labeled n), we
have

`(T, χ) = `(ψ(T ), χ′) + δ(T, χ),(15)

where

δ(T, χ) =

{
1 if χ(n) 6∈ S(ψ(T )),
0 otherwise,

and where χ′ is the restriction of χ to [n− 1].
Let µ(T ) denote the expected value of `(T, χ) for a random χ (generated according

to φ). Then from (15) we have

µ(T ) = µ(ψ(T )) + Prob[δ(T, χ) = 1].(16)

Now

Prob[δ(T, χ) = 1] = Prob[χ(n) 6∈ S(ψ(T ))]

=
∑
i,A:
αi 6∈A

φiProb[S(ψ(T )) = A].(17)
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Also, by definition,

µ′n(φ) =
1

B(n)

∑
T∈B(n)

µ(T ),(18)

while

µ′n−1(φ) =
1

B(n− 1)

∑
T ′∈B(n−1)

µ(T ′) =
1

B(n)

∑
T ′∈B(n−1)

(2n− 3)µ(T ′)(19)

=
1

B(n)

∑
T∈B(n)

µ(ψ(T )).

Thus, combining (16)–(19) we have

µ′n(φ) = µ′n−1(φ) +
∑
i,A:
αi 6∈A

φi
1

B(n)

∑
T∈B(n)

Prob[S(ψ(T )) = A].(20)

Now

1

B(n)

∑
T∈B(n)

Prob[S(ψ(T )) = A] =
1

R(n− 1)

∑
T ′∈R(n−1)

Prob[S(T ′) = A].(21)

Also, n![xn]TA(φx) =
∑

a

(
n
a

)
φafA(a), and so

n![xn]TA(φx) =
∑
a

φa
∑
χ:χ has
type a

∑
T∈R(n)
S(T,χ)=A

1

=
∑

T∈R(n)

∑
a

∑
χ:χ has type a

andS(T,χ)=A

φa

=
∑

T∈R(n)

∑
χ:S(T,χ)=A

Prob[χ]

=
∑

T∈R(n)

Prob[S(T, χ) = A].

Thus, the term on the right of (21) is just

(n− 1)!

R(n− 1)
[xn−1]TA(φx),

which, together with (20), establishes part (iii), thereby completing the proof of The-
orem 2.1.

3. Calculations (asymptotic). In this section we obtain asymptotic results
concerning µ′n(φ) and µn(a). Theorem 3.1 below shows that µ′n(φ) and µn(a) are
asymptotically equivalent since they both grow linearly with n, and their difference
(when φ = 1

na) is bounded by a term of order n
1
2 . The theorem also provides a

prescription for calculating, in principle, their asymptotic values by solving a system
of simultaneous quadratic equations involving real numbers. In the case of two colors
this can be done analytically, but generally numerical techniques would seem to be
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required. However, in the case of equifrequency colorations (φi = 1
r ) the resulting

system is considerably simpler, being of dimension r rather than 2r − 1, and we
solve this for r ≤ 4 in Corollary 3.1. A second corollary provides a biology-oriented
application.

We adopt the standard notation f(n) ∼ g(n) if limn→∞
f(n)
g(n) = 1 and

f(n) = O(g(n)) if f(n)
g(n) is bounded as n→∞.

Theorem 3.1 (asymptotic formulae). (i) µ′n(φ) ∼ µ′n, where µ′ = µ′(φ) is given
by

µ′ =
∑

(A,B):A∩B=∅
tAtB

and where the numbers tA = TA(x)|
x= 1

2
φ
, ∅ 6= A ∈ C form the unique nonnegative

solution to the simultaneous system

tA =
∑

(B,C):B∗C=A

1

2
tBtC +

1

2
δA(φ)

with δA given by (5).
(ii) For r = 2 colors,

µ′ =
2

3

(
1−

√
1− 3φ1φ2

)
.

(iii) µn(a) ∼ nµ′(φ) for φ = 1
na. Indeed, |µn(a) − µ′n(φ)| ≤ √n(r − 1)/2 for all

n.
Proof of Theorem 3.1. (i) We first recall a special case of Lemma 1(i) of Meir,

Moon, and Mycielski [6]: suppose F (x) and G(x) are power series in x and that

[xn]F (x) = O(ρ−nn−
3
2 ),

[xn]G(x) ∼ bρ−nn−
1
2 ,

and F (ρ) 6= 0. Then

[xn]F (x)G(x) ∼ F (ρ)[xn]G(x).(22)

Taking G(x) = (1− 2x)−
1
2 we have from (2) that

[xn]G(x) =
R(n+ 1)

n!
= (2n− 1)

R(n)

n!
∼ 1√

π
ρ−nn−

1
2 ,(23)

where ρ = 1
2 . Now take F (x) = TA(φx)TB(φx) for any pair of nonempty sets A,B ⊆ C.

Since for all C ⊆ C, C 6= ∅ the power series TC(φx) has all nonnegative coefficients,
we have

|[xn]F (x)| = |[xn]TA(φx)TB(φx)|

≤ [xn]

∑
C 6=∅

TC(φx)

2
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= [xn]R(φx)2 from (6)

= [xn](2R(φx)− 2x) from (8)

= 2
R(n)

n!
from (11)

∼ 1√
π
ρ−nn−

3
2

for ρ = 1
2 from (2).

Thus [xn]F (x) = O(ρ−nn−
3
2 ), and so, from (23) and the fact that F has nonneg-

ative coefficients (so that F (ρ) 6= 0), we can apply (22) to Theorem 2.1 (ii) to deduce
that

µ′n =
n!

R(n)

∑
(A,B):A∩B=∅

1

2
TA(φx)TB(φx)|

x= 1
2

[xn](1− 2x)−
1
2

∼ n
∑

(A,B):A∩B=∅
TA

(
1

2
φ

)
TB

(
1

2
φ

)
,

as claimed.
The prescribed system for tA := TA( 1

2φ) follows from (4) by putting z = 1 and

x = 1
2φx.

Now tA = TA( 1
2φ) is clearly nonnegative. Thus, applying induction on |A| to the

simultaneous system described in (i) shows that, moreover, tA > 0 for all A. We now
show that there is only one such solution to this system.

Let t = [tA] and t′ = [t′A] be two solutions of the system of simultaneous quadratic
equations described in Theorem 3.1, with tA, t

′
A > 0 for all A. We wish to show that

t = t′. First, note that
∑

A tA =
∑

A t
′
A = 1 since

∑
A tA = 1

2 (
∑

A tA)2 + 1
2 .

Let ε =
∑

A |tA − t′A|. We have

ε =
1

2

∑
A

∣∣∣∣∣∣
∑
B,C:

B∗C=A

tBtC − t′Bt
′
C

∣∣∣∣∣∣
≤ 1

2

∑
A

∑
B,C:

B∗C=A

|tBtC − t′Bt
′
C |

≤ 1

2

∑
A

∑
B,C:

B∗C=A

tB |tC − t′C |+ t′C |tB − t′B |

(since |tBtC − t′Bt
′
C | ≤ |tBtC − tBt

′
C |+ |tBt′C − t′Bt

′
C |)

=
1

2

∑
B,C

tB |tC − t′C |+
∑
B,C

t′C |tB − t′B |

=
1

2
ε

(∑
B

tB +
∑
C

t′C

)
= ε.

It follows that both inequalities in the above derivation must, in fact, be equalities.
In particular, the second inequality becomes an equality only if, for all B,C : B ∗C =
A, tBt

′
C lies between tBtC and t′Bt

′
C . Since t and t′ both have positive coordinates
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we either have

tB ≤ t′B and tC ≤ t′C
or

tB ≥ t′B and tC ≥ t′C whenever B ∗ C = A.

Thus, if we let

∆A : =
∑
B,C:

B∗C=A

(tB − t′B)(tC − t′C)

we have ∆A ≥ 0 with equality precisely if

tB = t′B or tC = t′C for each (B,C) : B ∗ C = A.(24)

Now tA = 1
2

∑
B,C:

B∗C=A
tBtC + 1

2δA(φ) and similarly for t′A, so expanding out ∆A

we obtain

∆A = 2tA − δA(φ) + 2t′A − δA(φ) −
∑
B,C:

B∗C=A

(t′BtC + tBt
′
C),

so ∑
A

∆A = 2
∑
A

tA − 1 + 2
∑
A

t′A − 1−
∑
B,C

(t′BtC + t′Bt
′
C)

= 2−
(∑

B

t′B

)(∑
C

tC

)
−
(∑

B

tB

)(∑
C

t′C

)
= 0.

It follows that ∆A = 0 for all A (since ∆A ≥ 0 for all A and
∑

A ∆A = 0). From (24)
this implies that for any pair B,C we have

tB = t′B or tC = t′C .

In particular, taking B = C we obtain that tB = t′B , and so t = t′, as claimed.
(ii) This result follows from part (iii) of Theorem 3.1, and the analogous result for

µn(a) from Moon and Steel [7]. However, it can also be derived more directly from
Theorem 3.1 (i). We have, for C = {α, β},

µ′ = 2T{α}T{β},(25)

where T{α} = T{α}( 1
2φ), T{β} = T{β}( 1

2φ), and T{α,β} = T{α,β}( 1
2φ) satisfy the system

T{α} =
1

2
T 2
{α} + T{α}T{α,β} +

φ1

2
,

T{β} =
1

2
T 2
{β} + T{β}T{α,β} +

φ2

2
,

T{α,β} =
1

2
T 2
{α,β} + T{α}T{β}.

Butler [1] solved this system, and from his equation (26) we have

T 2
{α} =

1

3
(−2 + 3φ1 + 2

√
P ),

T 2
{β} =

1

3
(1− 3φ1 + 2

√
P ),



PARSIMONY LENGTH OF A RANDOM BINARY TREE 369

where P = 1− 3φ1φ2, and from this we can obtain µ′ directly from (25).
(iii) We first claim that

|µn(a)− µn(a′)| ≤ 1

2
|a− a′|1,(26)

where | |1 denotes the l1 norm on Rr. Since the components of a and a′ both sum to
n, |a− a′|1 = 2k for some integer k. In this case we can find two colorations χ, χ′ of
[n] of types a, a′, respectively, and such that χ and χ′ agree on all but k elements of
[n].

Now, for any binary tree T , it is easily checked that `(T, χ′) ≤ `(T, χ) + k since
any minimal extension of χ for T produces an extension χ′′ of T by just changing
the colors of the (at most k) leaves of T for which χ and χ′ disagree (and thereby
increasing the number of edges of T with differently colored ends by at most k).
Although χ′′ may not be a minimal extension of χ′ for T , we nevertheless obtain the
claimed inequality. Conversely, `(T, χ) ≤ `(T, χ′) + k, and so

|`(T, χ)− `(T, χ′)| ≤ k,

which, upon averaging over all binary trees, gives

|µn(a)− µn(a′)| ≤ k,

which establishes (26).
Now from (3),

µ′n = E[µn(A)],

the expected value of µn(A), where A = (A1, . . . , Ar) is drawn from a multinomial
distribution with parameters n and φ1, . . . , φr.

Then

|µn(a)− µ′n| = |E[µn(a)− µn(A)]|
≤ E[|µn(a)− µn(A)|]
≤ 1

2
E[|a−A|1] from (26)

=
1

2

r∑
i=1

E[|ai −Ai|].(27)

Now Ai has a binomial distribution with parameters n and φi, and since

E[Ai] = nφi = ai,

we have, applying the convex version of Jensen’s inequality (Rényi [8]),

E[|ai −Ai|] ≤
√
E[(ai −Ai)2]

=
√
V ar[Ai]

=
√
nφi(1− φi),

so that, from (27), |µn(a) − µ′n(φ)| ≤ 1
2

∑r
i=1

√
nφi(1− φi), which, by the concave

version of Jensen’s inequality, is at most
√
n(r − 1)/2.
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Corollary 3.1 (equifrequency colorations). Suppose φi = 1
r for i = 1, . . . , r.

Then

µ′ =
∑

(j,k):j+k≤r; j,k≥1

r!

j!k!(r − j − k)!
tjtk,

where the ti satisfy the system

ti =
∑
(j,k)

1

2
πijktjtk + δi,1

1

2r

for i = 1, . . . , r and where δi,1 = 1 if i = 1 and 0 otherwise and where πijk is
the number of sets of sizes j and k which, under the parsimony operation (*), give a
specific root set of size i for the tree; i.e.,

πijk =


(
i
j

)
if j + k = i,(

r−i
j−i
)(

r−j
k−i
)

if j, k ≥ i,

0 else.

Examples. For r = 2 we have

t1 =
1

2
t21 + t1t2 +

1

4
,

t2 =
1

2
t22 + t21,

which gives t1 = 1√
6
, t2 = 1− 2√

6
, and so from Corollary 3.1 we obtain µ′ = 1

3 , which

agrees with Theorem 3.1 (ii). For r > 2 it seems necessary to solve the system {ti}
by numerical methods. For r = 3 and 4, the equations become

t1 =
1

2
t21 + 2t1t2 + t1t3 + t22 +

1

6
,

t2 = t21 +
1

2
t22 + t2t3,

t3 = 3t1t2 +
1

2
t23

and

t1 =
1

2
t21 + 3t1t2 + 3t22 + 3t1t3 + 3t2t3 + t1t4 +

1

8
,

t2 = t21 +
1

2
t22 + 2t2t3 + t23 + t2t4,

t3 = 3t1t2 +
1

2
t23 + t3t4,

t4 = 4t1t3 + 3t22 +
1

2
t24,

respectively, and we find that t = (0.24855, 0.06755, 0.051705) and µ′ = 0.4714 for
r = 3 and t = (0.17656, 0.0339, 0.01843, 0.01660) and µ′ = 0.5507 for r = 4.

As a second and biologically-oriented application of Theorem 3.1, let us, as in
section 1, regard a collection of n aligned DNA sequences of length c as a collection
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χ1, . . . , χc of r-colorations of [n] (for r = 2 or 4). Let `(T ) denote the length of
T ∈ B(n) for this data; that is,

`(T ) =
c∑

j=1

`(χj , T ),

and let ` be the average value of `(T ) over B(n). We also consider a randomized
version of ` as follows. Let `∗(T ) be the expected length of a given binary tree T on
sequences randomly generated by assigning each of the c sites in sequence i a color αj
with probability φij , as in Steel, Lockhart, and Penny [11]. Let `

∗
denote the average

value of `∗(T ) over B(n). Finally, let P(n) denote the set of partitions of n into at
most r-parts (thus P(n) = {(p1, . . . , pr) : p1 ≥ p2 ≥ · · · ≥ pr ≥ 0,

∑r
i=1 pi = n}).

Corollary 3.2. Asymptotically (as n→∞),
(i)

` ∼ n
∑

p∈P(n):N(p)>0

µ′
(

1

n
p

)
N
(
p
)
,

where N(p) is the number of sites j for which the type of χj, arranged in decreasing
order, gives partition p.

(ii)

`
∗ ∼ cnµ′(φ), where φ =

1

n

n∑
i=1

φi.

Proof of Corollary 3.2.
(i)

` =
1

B(n)

∑
T∈B(n)

`(T )

=
1

B(n)

∑
T∈B(n)

c∑
j=1

`(χj , T )

=
c∑

j=1

1

B(n)

∑
T∈B(n)

`(χj , T )

=
c∑

j=1

µn(a(j)),

where aj is the type of χj . Thus

` =
∑

p∈P(n):N(p)>0

µn(p)N(p),

and the result now follows from parts (i) and (iii) of Theorem 3.1.
(ii)

`
∗

= cE′[µn(A)],(28)
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where E′ denotes expectation at a single site in the probability space described above.
Since Aj is a sum of n independent (but not necessarily identical) 0 − 1 random
variables Dij , with Prob[Dij = 1] = φij , we have that

1

n
A→p φ,(29)

where →p denotes convergence in probability (as n→∞) and

φ =
1

n

n∑
i=1

φi.

Now from (3), (26), and (29) it can be checked that∣∣∣∣ 1nµ′n
(

1

n
A

)
− 1

n
µ′n(φ)

∣∣∣∣→p 0(30)

as n→∞.
Also, by Theorem 3.1, parts (i) and (iii), respectively,∣∣∣∣ 1nµ′n(φ)− µ′(φ)

∣∣∣∣→ 0,

∣∣∣∣µn(A)

n
− 1

n
µ′n

(
1

n
A

)∣∣∣∣→p 0

as n→∞; thus

µn(A)

n
→p µ

′(φ)(31)

as n→∞.
Now, from (28),

`
∗

= cnE′
[
µn(A)

n

]
,

which, together with (31), establishes part (ii).
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