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a b s t r a c t

Distance-based approaches in phylogenetics such as Neighbor-Joining are a fast and popular approach

for building trees. These methods take pairs of sequences, and from them construct a value that, in

expectation, is additive under a stochastic model of site substitution. Most models assume a

distribution of rates across sites, often based on a gamma distribution. Provided the (shape) parameter

of this distribution is known, the method can correctly reconstruct the tree. However, if the shape

parameter is not known then we show that topologically different trees, with different shape

parameters and associated positive branch lengths, can lead to exactly matching distributions on

pairwise site patterns between all pairs of taxa. Thus, one could not distinguish between the two trees

using pairs of sequences without some prior knowledge of the shape parameter. More surprisingly, this

can happen for any choice of distinct shape parameters on the two trees, and thus the result is not

peculiar to a particular or contrived selection of the shape parameters. On a positive note, we point out

known conditions where identifiability can be restored (namely, when the branch lengths are clocklike,

or if methods such as maximum likelihood are used).

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic models that describe the evolution of aligned DNA
sequence sites are fundamental to most modern approaches to
phylogenetic tree reconstruction (Felsenstein, 2003). Making
these models more realistic usually requires introducing addi-
tional parameters. However, this raises the prospect that one
might lose the ability to estimate a tree if one has to rely on the
data to estimate all the parameters in the model. This could occur
for various reasons—for example, it may be that two different
trees could produce exactly the same probability distribution on
site patterns for two appropriately selected settings of the other
parameters in the model. Such a scenario would be a problem for
any method of tree reconstruction (including maximum like-
lihood and Bayesian methods) as it would mean that in some
cases, one could not distinguish between two trees even with
infinitely long sequences. This loss of statistical ‘identifiability’ has
been demonstrated for certain types of DNA substitution models,
including rates-across-sites models (Steel et al., 1994) and, more
recently, simple mixture models (Matsen and Steel, 2007). On the
positive side, a number of identifiability results have also been
established for suitably constrained models (see, for example,
ll rights reserved.
Allman et al., 2008; Allman and Rhodes, 2006; Allman and
Rhodes, 2008a, b; Chang, 1996; Steel, 1994; Steel and Penny,
2000).

In this paper, we are interested in a phenomenon that is related
to, but different from the loss of statistical identifiability, since it is
method-dependent. We will describe a situation where pairwise
sequence comparison methods can fail to distinguish between
trees, even though more sophisticated methods such as ML can.
Thus, the models are statistically identifiable, as far as the tree
parameter is concerned, but only if one uses the full matrix of
aligned sequence information and not just pairwise sequence
comparisons. Specifically we consider tree reconstruction when
sequences evolve under a model in which site rates have a gamma
distribution, but where the (shape) parameter of the gamma
distribution is not known. In this case, if one uses all the aligned
sequence data, or at least 3–way sequence comparisons then, for
DNA sequences one can recover the shape parameter in a
statistically consistent way, and thereby the underlying phyloge-
netic tree, by a recent result of Allman et al. (2008). However, if
one just uses pairwise sequence comparisons we show that two
different trees can produce exactly the same pairwise sequence
comparisons; moreover, this can happen for any different choice
of shape parameters for the two trees (by selecting the branch
lengths on the two trees appropriately).

The intuition behind this limitation on pairwise sequence
comparisons has been nicely summarized by Felsenstein (2003,

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.10.010
mailto:m.steel@math.canterbury.ac.nz
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p. 175): the rate at which a site is evolving affects all the taxa, but
this constraint is not reflected by a method that is based on
pairwise comparisons, and so, for example, ‘‘once one is looking at
changes within rodents it will forget where changes were seen
among primates.’’

Before describing our results we mention some earlier papers
that described related but different phenomena. Baake (1998)
considered a model in which half the sites are invariable and the
remaining sites evolve under a general Markov model. Although
this model (and the tree) is generically identifiable using all the
sequence information (as recently shown in Allman and Rhodes,
2008a) Baake showed that two trees can produce identical
pairwise sequence comparisons. The non-indentifiability of
divergence times on a fixed tree under various rates-across-sites
models has also been recently investigated by Evans and Warnow
(2004). Finally we note that our result that distance-based
methods can be misleading for tree inference complements some
earlier work (Bandelt and Fischer, 2008; Huson and Steel, 2004)
which highlighted a different result in which distances can
perfectly ‘fit’ one phylogenetic tree when the full sequence data
support a different tree.
2. Definitions and observations

In sequence-based approaches to phylogenetics, the data
usually consists of a collection of n sequences s1; s2; . . . ; sn, each
of length N, where each sequence site takes values in some state
space. We will suppose that there are r states, and denote them by
greek letters m; n throughout—for example, for aligned DNA
sequence data r ¼ 4 and the state space is the four DNA bases
(A,C,G,T). Given the aligned sequences, biologists seek to infer a
phylogenetic tree T, whose leaves are labeled by f1; . . . ;ng and
which describes the evolution of the sequences from some
unknown common ancestral sequence (leaf i corresponds to the
extant taxon from which sequence si has been obtained). For
further background on phylogenetics, the reader may consult
Felsenstein (2003) and Semple and Steel (2003).

Given two sequences si ¼ ðs1; s2; . . . ; sNÞ and sj ¼ ðs01; s
0
2; . . . ; s

0
NÞ

let Ĵij be the r � r matrix whose mn-entry is the proportion of sites
where sequence si is in state m and sequence sj is in state n.
The proportion of sites where sequence si and sj differ, dij

(the normalized sequence dissimilarity) is therefore the sum
of the off-diagonal entries of Ĵij; more formally, dij ¼ ð1=NÞ

PN
k¼1

fk : si
kasj

kg ¼ 1� trðĴijÞ; where tr refers to matrix trace (the sum of
the diagonal entries).

Given a collection of sequences s1; s2; . . . ; sn, each of length N,
one can easily derive the collection of pairwise Ĵ—matrices
Ĵij : i; j 2 f1; . . . ;ng. This reduction process, from aligned sequences
to pairwise comparisons, is highly redundant (for typical values
of n) since it reduces the frequencies of rn site patterns to ðn2Þ
comparisons of r2 sites pattern frequencies. The further reduction
to the d values involves even more redundancy (Steel et al., 1988).
Despite this, it is well known that these reduced matrices (and
sometimes just the d values) provide a statistically consistent way
to estimate the underlying tree, under simple models of DNA site
substitution. This follows by combining two well-known facts.

Fact one: Under the assumption that the aligned sequence sites
evolve i.i.d., the law of large numbers tells us that the Ĵij matrices
(and thereby the dij values) converge in probability to their
expected values as the sequence length N becomes large.

To explain this further we introduce two key definitions: For
i; j 2 X:¼f1;2; . . . ;ng, let Jij be the expected value of Ĵij—thus, Jij is
an r � r matrix whose mn-entry is

Jmnij :¼Pðs
i
k ¼ m; sj

k ¼ nÞ,
for each pair of states m; n, and any given k; and let

dij:¼Pðs
k
i ask

j Þ,

for any given k. In words, Jij is the matrix whose entries describe
the joint probability that at any given site the sequences si and sj

are in specified states, while dij is simply the probability that these
states are different at a given site. By definition, dij ¼ 1� trðJijÞ.

With this notation, Fact one can be restated as the condition
that, for all i; j 2 X:

Ĵij!
p

Jij and dij!
p

dij,

where !
p

denotes convergence in probability as N!1.
The second result required to show that the Ĵij values estimate

the tree consistently is that for many models the Jij values can be
transformed to obtain a function on pairs of leaves that is additive.
Recall that a function lij on pairs of leaves of a tree is said to be
additive on a tree T if one can assign a positive real number le to
each edge e of T so that lij is the sum of the numbers assigned
to the edges on the path connecting the two leaves on the tree.
That is

lij ¼
X

e2pðT;i;jÞ

le, (1)

where pðT; i; jÞ denotes the edges on the path in T connecting i

and j. This additivity condition implies that the tree T can be
uniquely recovered from the lij values (see e.g. Semple and Steel,
2003). With this in mind we have:

Fact two: Under various models of sequence evolution, a
distance function l on X that is additive on the underlying tree can
be computed from the J matrices (and sometimes just the d

values).
The two main models for which Fact two is known to

apply are (i) the general Markov process, for which the function
fi; jg/� logðdetðJijÞÞ is additive, and (ii) the general time-reversible
(GTR) model with any known distribution of rates across sites. In
this latter case—which is the one of interest in this paper—one can
transform the J matrices to obtain an distance function l on X that
corresponds to the expected number of substitutions (‘evolutionary
distance’) between i and j—and which is therefore additive. For a
GTR model, with a distribution D of rates across sites this
transformation (Waddell and Steel, 1997) is

lij ¼ �trðPM�1
D ðP

�1JijÞÞ,

where MD is the moment generating function of the distribution
of rates across sites, and where P ¼ diagðpÞ is the diagonal matrix
whose leading diagonal is the vector p ¼ ½pm� of the frequencies of
the r states. For the GTR model (or any submodel) the matrix Jij is
symmetric (Waddell and Steel, 1997) and Jii ¼ P for each i.

Combining Facts one and two gives:

�trðPM�1
D ðP

�1 ĴijÞÞ!
p

lij

and so the Ĵij values allow us to reconstruct the underlying tree
from sufficiently long sequences. Indeed even if we do not know
the stationary frequencies of the states (the matrix P) we can still
recover the tree, since P is determined by (the row sums of) Jij,
and so if we let P̂ij denote the corresponding empirical state
frequencies (determined by the corresponding row sums of Ĵij)
then we have

�trðP̂M�1
D ðP̂

�1
ĴijÞÞ!

p
lij.

Thus, if for each pair i; j we derive an estimate l̂ij of evolutionary
distance (lij) by either maximum likelihood estimation or by the
‘corrected distance’ formula:

l̂ij ¼ �trðP̂M�1
D ðP̂

�1
ĴijÞÞ (2)
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then these estimated values will converge to the true lij values as
the sequence length N grows, allowing for statistically consistent
reconstruction of the tree by using fast distance-based tree
reconstruction methods.

For some GTR models it is also possible to transform just the dij

to obtain lij—for example, under the simple symmetric 4-state
model (the Jukes–Cantor model) the transformation is

lij ¼ �
3

4
M�1

D 1�
4

3
dij

� �
. (3)

For models in which lij can be expressed as a function of dij one
can use d in place of d to estimate lij (for certain models, such as
the Jukes–Cantor model, this leads to the same lij estimates as a
pairwise maximum likelihood estimate, but for more complex
models this need not be the case).

The snag in this otherwise appealing story is that it assumes
that we know the distribution D of rates across sites—what
happens if D is unknown or has parameters that require
estimation? If no constraints are placed upon D then identifia-
bility of the tree can be completely lost (Steel et al., 1994). It is
therefore fortunate that in molecular systematics D is typically
described by a simple parametric distribution. In particular, the
gamma distribution has a long and popular history in models that
describe the variation of substitution rates across DNA sequence
sites (Yang, 1993). Today, a common default option is the
‘GTR þGþ I’ model in which each site is either invariant (with
some probability), or it evolves according to a GTR Markov process
that proceeds at a rate selected randomly from a gamma
distribution. In this paper we will ignore the invariable sites,
since our main result (Theorem 3.1) will automatically imply a
corresponding result when invariable sites are present. Moreover,
we may (without loss of generality) assume that the gamma
distribution is normalized so that its mean is equal to 1 and so
there remains just one parameter—the ‘shape’ parameter, k.

We will show that any two different shape parameters can
provide exactly the same J matrices on a pair of topologically
distinct trees (with appropriately assigned branch lengths).
Consequently, using just pairwise comparisons (the Ĵ matrices)
to infer phylogeny from the resulting data, without prior knowl-
edge of the shape parameter is potentially problematic—either of
the two trees could describe the data much better than the other if
one were to select the shape parameter appropriate for that tree.
Thus, a biologist exploring data by seeing the effect of varying k

might note that for one value of k his/her data fit a tree perfectly.
The result described here shows that it could be dangerous to stop
at this point and report the tree, as there may well be another
value of k for which the pairwise sequence data (or distance data)
fit a different tree perfectly. Using all the data (i.e. not reducing to
pairwise comparisons) will overcome this problem for a gamma
distribution as established recently by Allman et al. (2008) (who
also pointed out errors in an earlier approach from Rogers, 2001).
3. Results

In this paper we consider a particular type of reversible
stationary Markov process, called the equal input model. In this
model, the rate of substitution does not depend on the current
state, and when a substitution event occurs, the new state is
selected according to the stationary distribution of states, which
we encode by the vector p. Thus the rate matrix R is defined by the
condition Rmn ¼ pn for all nam. In the case of r ¼ 4 states, this
model has been called the ‘Tajima-Nei equal input model’ or the
‘Felsenstein 1981 model’; when, in addition, p is uniform, it is the
known as the ‘Jukes–Cantor’ model. For more mathematical
background on the equal input model, see, for example, Semple
and Steel (2003). Although the equal-input model is a special case
of the GTR model, we have chosen it because it is simple enough
to allow tractable exact calculations, yet without being overly
simplistic (for example, it allows arbitrary stationary frequencies
for the states).

Under the equal input model, and with constant-rate site
evolution we have

Jmnij ¼
pmpnð1� expð�lij=gÞÞ if man;
pmðpm þ ð1� pmÞ expð�lij=gÞÞÞ if m ¼ n;

(
(4)

where lij is the expected number of substitutions on the path
connecting i and j in T (an additive distance) and g ¼ 1�

P
mp2

m
(this number is the expected normalized sequence dissimilarity
for stationary random sequences—for example, in the Jukes–
Cantor model, it takes the value 1� 4 � ð14Þ

2
¼ 3

4. More briefly we
can write

Jmnij ¼ amn þ bmn expð�lij=gÞ, (5)

where amn; bmn are constants that depend on the pair m; n and the
vector p.

If we now impose an associated distribution D of rates across
sites on this equal-input model, in which case each site evolves
according to the same equal input model, but with a rate selected
randomly according to D. In this case (5) becomes

Jmnij ¼ amn þ bmnMDð�lij=gÞ, (6)

where MDðxÞ is the moment generating function for D. When D is
a gamma distribution of rates across sites with shape parameter k

and mean 1 we have

MDðxÞ ¼ 1�
x

k

� ��k

,

and so Eq. (6) becomes

Jmnij ¼ amn þ bmn 1þ
lij
kg

� ��k

. (7)

Now, suppose we have two topologically distinct binary phyloge-
netic trees T and T0 on the same leaf set, where T has
branch length l and gamma distribution of rates across sites (with
mean 1) with shape parameter k, while T0 has branch lengths
l0 and gamma distribution of rates across sites (with mean 1) with
shape parameter k0, where k0ak. We can now state the main result
of this paper.

Theorem 3.1. Consider a fixed equal input model on rX2 states.
Then for any k; k040 with kak0 and for any binary phylogenetic tree

T on a set X of four or more leaves there exists a topologically

distinct binary phylogenetic tree T0 on leaf set X, and strictly positive

branch lengths l for T and l0 for T0, respectively, so that the matrices

of joint pairwise distributions Jij and J0ij agree for all i; j 2 X.

Remarks. The significance of this result for phylogenetic recon-
struction is that it shows that even if one uses pairwise sequence
comparisons, the choice of the correct shape parameter for the
gamma distribution is essential—if we selected shape parameter
k, the corrected distances (obtained by pairwise ML estimation or
by (2)) would fit T perfectly as the sequence lengths become
large; while if we selected shape parameter k0, the corrected
distances would fit T0 perfectly for sufficiently long sequences.
Notice that the pair ðT; kÞ and ðT0; k0Þ fit the data produced by
either tree (with its associated shape parameter) equally well (i.e.
perfectly in the limit as the sequence lengths become large).
Moreover, our result assumes that the base frequency vector (p) is
known and the same for both trees. Notice also that Theorem 3.1
automatically implies that any distance correction method that
transforms the sequences dissimilarities (the d values) will be
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unable to distinguish between T and T0 if the shape parameter is
unknown.

Proof of Theorem 3.1. For a given assignment of branch lengths l

and gamma shape parameter k for T let Jij denote the induced
pairwise distribution matrix, defined by Eq. (7), for each i; j.
Similarly, for a given assignment of branch lengths l0 and gamma
shape parameter k0 for T0 let J0ij denote the induced pairwise
distribution matrix for each i; j. By symmetry, we may assume
(without loss of generality) that k4k0. Let

tij:¼1þ
lij
kg , (8)

t0ij:¼1þ
l0ij

k0g
, (9)

and let

r ¼ k

k0
41.

From Eq. (7) and the notation of (8) and (9), we have the
following fundamental identity:

Jij ¼ J0ij if and only if t0ij ¼ ðtijÞ
r. (10)

We will first prove Theorem 3.1 in the case where jXj ¼ 4, and
then extend the proof to the general case.

The case jXj ¼ 4: Consider the tree T with branch lengths given

in Fig. 1(a), and the tree T0 with branch lengths given in Fig. 1(b).

By (1) we have, for example, l12 ¼ l1 þ l2, and l13 ¼ l1 þ l3 þ l5. Let

l0ij be the corresponding l0 values induced by T0.

Notice that if we set

xi:¼
1

2
þ

li
kg

for i ¼ 1; . . . ;4, (11)

and set

�:¼
l5
kg

, (12)

then for each distinct pair i; j we have

tij ¼
xi þ xj if fi; jg ¼ f1;2g or f3;4g;

xi þ xj þ � otherwise:

(
(13)

thus tij is additive on T (similarly, t0ij defined by (9) is additive

on T0).

We will describe an assignment of positive branch lengths for

T, and then an assignment of branch lengths for T0. Firstly,

however we state a convexity lemma; for completeness a proof is

provided in Appendix A.

Lemma 3.2. Suppose f is twice-differentiable, and that f 00 is strictly

positive on the positive reals. If u0oupvov0 and uþ v ¼ u0 þ v0 then:

f ðu0Þ þ f ðv0Þ4f ðuÞ þ f ðvÞ:
Fig. 1. (a) Tree T with branch lengths l; (b) tree T0 with branch lengths l0 .
We will apply Lemma 3.2 twice during the proof, using the

function f ðxÞ ¼ xr which satisfies the hypotheses of this lemma,

since f 00ðxÞ ¼ rðr� 1Þxr�2 and r41.

Returning to the assignment of branch lengths for T, let L41
2

and s 2 ð0;1�, and select l1; . . . ; l5 so that ðx1; x2; x3; x4; �Þ defined by

(11) and (12) satisfy the following system of inequalities:

minfx1; x2; x3; x4g ¼ L, (14)

x3Xx4 þ s, (15)

x2ox4, (16)

x1 þ x3px2 þ x4, (17)

x1 þ x4px2 þ x3, (18)

jxi � xjjp1 for all i; j, (19)

and

ðx1 þ x4 þ �Þr þ ðx2 þ x3 þ �Þr ¼ ðx1 þ x2Þ
r
þ ðx3 þ x4Þ

r. (20)

We pause to observe that this system (for the five li values) is

feasible for arbitrarily large values of L. For example, we can take

x1 ¼ L; x2 ¼ Lþ 1
3; x3 ¼ Lþ 1; x4 ¼ Lþ 2

3 and s ¼ 1
3, to satisfy

(14)–(19), and then for i ¼ 1; . . . ;4 let li ¼ kg xi �
1
2

� �
, which is

strictly positive since xiXL41
2; then for l5 there exists a positive

value of � satisfying (20). To see this last claim regarding �, let

u ¼ x1 þ x4; v ¼ x2 þ x3,

and

u0 ¼ x1 þ x2; v0 ¼ x3 þ x4.

Notice that the inequalities (16) and (18) imply that

u0oupvov0 and, since uþ v ¼ u0 þ v0, Lemma 3.2 applied to f ðxÞ ¼

xr gives f ðuÞ þ f ðvÞof ðu0Þ þ f ðv0Þ. Since f is strictly increasing, this

implies that there is a finite and strictly positive value of �40 (and

thereby of l5 by (12)) for which f ðuþ �Þ þ f ðvþ �Þ ¼ f ðu0Þ þ f ðv0Þ, as

claimed.

Next we show that the branch lengths we have assigned for T

allows us to assign positive branch lengths to T0 so Jij ¼ J0ij holds

for all i; j. Define lij:¼f ðtijÞ where f ðxÞ ¼ xr. We will show that

there exists an assignment of positive branch lengths l0 to T0 for

which the associated vector t0 defined by (9) satisfies:

lij ¼ t0ij. (21)

In view of (10) this will establish the theorem in the case jXj ¼ 4.

Let

S012j34:¼l12 þ l34; S
0
13j24:¼l13 þ l24 and S014j23:¼l14 þ l23. (22)

If we let

u ¼ x1 þ x3 þ �; v ¼ x2 þ x4 þ �,

and

u0 ¼ x1 þ x4 þ �; v0 ¼ x2 þ x3 þ �,

then (15) and (17) imply that u0oupvov0 and, since

uþ v ¼ u0 þ v0, Lemma 3.2 gives f ðuÞ þ f ðvÞof ðu0Þ þ f ðv0Þ. In view

of (22) and (13) this implies that:

S013j24oS014j23. (23)

Moreover, Eq. (20) implies that

S012j34 ¼ S014j23. (24)
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Eqs. (23) and (14) imply that lij can be realized as a sum of real-

valued branch lengths on T0 by assigning a positive interior

branch length (call it �0), and real-valued (possibly negative)

pendant branch lengths (by Hakimi and Patrinos, 1972). We will

first show that these four pendant branch lengths are not only

positive, but also strictly greater than 1
2 provided L is chosen suffi-

ciently large. For i 2 f1;2;3;4g if we let li denote the branch length

of the edge incident with leaf i, then li ¼
1
2ðlij þ lik � ljkÞ for any

choice j; k for which jfi; j; kgj ¼ 3. Now, from (14) and (19), we have

lij þ lik � ljkXf ð2LÞ þ f ð2LÞ � f ð2Lþ 2þ �Þ,

and so we can select a value of L that is sufficiently large to ensure

that li41
2 for i ¼ 1 . . . ;4. We can now assign the positive branch

lengths to T0 as follows. Let l05 ¼ k0g�0 and for i 2 f1; . . . ;4g let

l0i ¼ k0gðli �
1
2Þ40.

With these branch lengths we have (from (9) and (21)),

t0ij ¼ lij ¼ ðtijÞ
r,

for all i; j. By Eq. (10), this establishes the theorem in the case

where jXj ¼ 4.

The case jXj44: To extend the proof to larger trees we require a

further lemma, which is based on the following definition. Given a

rooted phylogenetic tree, t with root vertex r (which we assume is

a vertex of degree at least two) and associated branch lengths l, we

say that the branch-lengths on t are clock-like if the sum of the

branch lengths from r to any leaf takes the same value for each

leaf, which we will denote by hðt; lÞ (the ‘height’ of r). We will use

the following lemma, for which a proof is provided in Appendix A.

Lemma 3.3. Let t be a rooted phylogenetic tree with at least two

leaves. Suppose that the branch-lengths for t are clock-like, and that

we have a gamma distribution of rates across sites (with mean 1) and

with shape parameter k. For any other shape parameter k0 there exists

a unique associated vector of branch lengths l0 for t that are clock-like

and such that the induced J0 matrices satisfy the condition:

J0ij ¼ Jij for all leaves i; j of t. (25)

Moreover, for this vector l0, we have

hðt; l0Þ ¼
1

2
k0g �1þ 1þ

2hðt; lÞ

kg

� �r� �
. (26)

Returning to the proof of the theorem, let T be any binary

phylogenetic tree with more than four leaves, and select any interior
edge e of T. Consider the four subtrees (each of which could be an

isolated leaf) t1; t2; t3; t4 of T that result from deleting this edge and

its two endpoints, as shown in Fig. 2(a). Let T0 be the tree obtained

from T by interchanging the subtrees t2 and t3, as shown in

Fig. 2(b). Let l and l0 be strictly positive branch lengths for the two

quartet trees of Fig. 1 for which we have Jij ¼ J0ij for all i; j 2 f1;2;3;4g

(by the case of the theorem established already for jXj ¼ 4).

We now assign branch lengths to T and T0. For tree T assign

length l5 to edge e indicated in Fig. 2(a), and for the tree T0 assign

length l05 to edge e of T0 indicated in Fig. 2(b). If ti consists of just a

single leaf, we assign length li in T and l0i in T0 to edge ei. Thus it

remains to specify how to assign branch lengths to ti and to the

edge ei that connects ti to e whenever ti contains more than one

leaf. In that case, if we regard ti as a rooted binary phylogenetic

tree (for which the root ri is the vertex adjacent to an endpoint of

e, as shown in Fig. 2), we assign branch lengths to ti that are clock-

like and for which hðti;rÞ ¼ xi, where xi is any strictly positive

number that is less than li and which satisfies the condition:

1

2
k0g �1þ 1þ

2xi

kg

� �r� �
ol0i. (27)

Then assign edge ei length li � xi40. Note that we can select xi

to satisfy (27) since the left-hand side of (27) converges to zero as

xi ! 0. For tree T0 assign t0i branch lengths that are clock-like and

satisfy (25) of Lemma 3.3 (for t ¼ ti; t
0 ¼ t0i), and assign edge ei

length l0i � hðt0i;rÞ which is strictly positive by (27). We claim that

Jij ¼ J0ij for all i; j. We have just shown that this holds whenever fi; jg

are leaves in the same subtree (t1; t2; t3 or t4Þ, thus it remains to

check the claim when i and j lie in different subtrees, say tr ; ts. In

this case the condition that ðT; lÞ and ðT0; l0Þ satisfy the theorem

in the case jXj ¼ 4 and the fact that the distance between i and j in

T is lrs and in T0 is l0rs (according to the way the branch lengths

have been assigned) establishes case (ii). This completes the

proof. &

4. Concluding comments

Our result shows that rate variation across sites can indeed
provide an ‘‘inherent limitation that is worrisome’’ (Felsenstein,
2003) for methods that rely solely on pairwise sequence
comparisons. Despite the limitation of distance-based phyloge-
netic reconstruction imposed by Theorem 3.1, there is one
situation where distances suffice to recover a tree under a gamma
rate distribution across sites, even when the shape parameter is
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unknown. This is when the underlying branch lengths on the tree
are clock-like (i.e. obey a ‘molecular clock’). The reason the
d-values allow us to reconstruct the tree in this setting is as
follows: the clock-like condition is equivalent to requiring that the
lij values are ultrametric and additive on the underlying tree, and,
since dij ¼ gð1�MD ð�lij=gÞÞ, which is a monotonic function of lij
(for any D), the d values will also be ultrametric and additive on
the underlying tree.

We note also that our result does not imply that tree
reconstruction is hopeless without prior or independent knowl-
edge of the shape parameter, since Allman et al. (2008) have
established that identifiability holds for this model (generically
for all rX2, and exactly when r ¼ 4 which is the case that applies
for DNA sequence data) and so methods such as maximum
likelihood will be statistically consistent. Moreover, their result
shows that just 3–way sequence comparisons are sufficient to
identify the shape parameter. This suggests that it may be possible
to develop statistically consistent but fast modifications of
distance-based tree reconstruction methods (such as neighbor
joining) that some allow triple-wise calculations.

Finally, it would also be interesting to check whether Theorem
3.1 remains true if one replaces the equal input model by the GTR
model with any fixed (and given) rate matrix R. This seems quite
likely, though the calculations appear to be more involved when
the rate matrix has many different eigenvalues. The question of
whether T0 can have an arbitrary topology different to T in
Theorem 3.1 (i.e. not just a nearest-neighbor interchange of T)
could also be of interest.
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Appendix A. Proof of Lemmas 3.2 and 3.3

Proof of Lemma 3.2. By a Maclaurin series expansion, we have,
for s ¼ u� u0 ¼ v0 � v:

f ðu0Þ ¼ f ðu� sÞ ¼ f ðuÞ � sf 0ðuÞ þ
1

2
s2f 00ðyÞ,

where y 2 ½u0;u� and:

f ðv0Þ ¼ f ðvþ sÞ ¼ f ðvÞ þ sf 0ðvÞ þ
1

2
s2f 00ðy0Þ,

where y0 2 ½v; v0�. Thus:

f ðu0Þ þ f ðv0Þ ¼ f ðuÞ þ f ðvÞ þ sðf 0ðvÞ � f 0ðuÞÞ þ
1

2
s2ðf 00ðyÞ þ f 00ðy0ÞÞ.

Now f 0ðvÞ � f 0ðuÞ40 since f 0 is increasing (by the positivity of f 00),
and so, since s40:

f ðu0Þ þ f ðv0Þ4f ðuÞ þ f ðvÞ þ
1

2
s2ðf 00ðyÞ þ f 00ðy0ÞÞ4f ðuÞ þ f ðvÞ

where the last inequality follows from the positivity of f 00. &
Proof of Lemma 3.3. Since the branch lengths of t are clock-like,
it follows that l and hence t is an ultrametric, i.e. for any three
leaves (i:j; k) of t we have

tijpmaxftik; tjkg.

It follows that tr (where r ¼ k=k0) satisfies precisely the same
ultrametric conditions as t and so we can assign (unique) positive
branch lengths to t that realize tr and which are clock-like.
From (10), these branch lengths satisfy (25) of Lemma 3.3.
Moreover, since t has at least two leaves, we can select two
leaves (say i; j) so that the path connecting i and j contains r. Then
lij ¼ 2hðt; lÞ, and l0ij ¼ 2hðt; l0Þ. Now t0ij ¼ ðtijÞ

r and so, by (8) and (9),
we have

1þ
2hðt; lÞ

kg

� �r
¼ 1þ

2hðt; l0Þ

k0g
,

from which equality (26) of Lemma 3.3 now follows. &
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