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a b s t r a c t

Bayesian inference is now a leading technique for reconstructing phylogenetic trees from aligned
sequence data. In this short note, we formally show that the maximum posterior tree topology provides a
statistically consistent estimate of a fully resolved evolutionary tree under a wide variety of conditions.
This includes the inference of gene trees from aligned sequence data across the entire parameter range of
branch lengths, and under general conditions on priors in models where the usual ‘identifiability’
conditions hold. We extend this to the inference of species trees from sequence data, where the gene
trees constitute ‘nuisance parameters’, as in the program nBEAST. This note also addresses earlier
concerns raised in the literature questioning the extent to which statistical consistency for Bayesian
methods might hold in general.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Bayesian inference has become a mainstream approach for
inferring phylogenetic tree topology from aligned DNA sequence
data (Lemey et al., 2009). The approach has a number of desirable
features, and there exist powerful software packages for analysing
genetic sequence data in this way. At the same time, some potential
theoretical limitations of Bayesian phylogenetics have been identified
and studied. These include potential problems with the convergence
of MCMC-based Bayesian methods (Mossel and Vigoda, 2005), and
properties that appear to be surprising at first, such as the Bayesian
star ‘paradox’ (Steel and Matsen, 2007; Susko, 2008; Yang, 2007).

A further property of Bayesian phylogentic inference was raised
in a simulation study of Kolackzkowski and Thornton (2009),
suggesting that Bayesian methods applied to unresolved four-leaf
trees (with a zero-length interior edge) with certain combinations
of long/short pendant branches tended to show increasing bias
towards one of the three particular resolved trees as the sequence
length increased. By contrast, maximum likelihood was found to
favour each of the three resolutions equally. Kolackzkowski and
Thornton (2009) initially suggested the possibility that for data
generated by a resolved four-leaf tree with a certain combination
of short and long edges, Bayesian inference might even be
statistically inconsistent (i.e. the tree with the highest posterior
probability for the data being different from the tree that gener-
ated the data, with a probability that does not tend to zero as the
sequence length grows) even for models for which maximum
likelihood is known to be statistically consistent (Chang, 1996).
While Kolackzkowski and Thornton (2009) stepped back from this
suggestion in a subsequent correction to their original paper, the
issue drew attention to a lack of a formal proof of the statistical
consistency of Bayesian inference for in molecular phylogenetics.
We provide this here by establishing a more general result that
includes the phylogenetic setting as a particular case.

This enhanced generality serves a further purpose, as it allows us
to establish formally the statistical consistency of Bayesian species

tree estimation directly from sequence data where the gene trees
(and their branch lengths) are treated as further ‘nuisance para-
meters’ (as in the program nBEAST, Heled and Drummond, 2010).

While it might be possible that these results could be derived
from other theoretical results in Bayesian statistics, we provide
here a self-contained and essentially elementary proof that is
tailored towards easy application in the phylogenetic setting. This
follows the spirit of Joseph Chang's tailored version of Wald's
theorem that provided a convenient tool to check and establish
the consistency of maximum likelihood in phylogenetics (Chang,
1996), and which curtailed an unproductive debate in the litera-
ture about whether the detailed theoretical assumptions of Wald's
original theorem applied.

2. A general result

Consider the general problem of identifying a discrete parameter
lying in an arbitrary finite set A from a sequence of independent and
identically distributed (i.i.d.) observations that take values in an
arbitrary finite set U. Suppose further that the probability distribution
on U is determined not just by the discrete parameter aAA but also
by some additional (nuisance) parameters. In this paper, we will
assume that these additional parameters are continuous, and we
denote the parameter space associated with each discrete parameter
aAA by ΘðaÞ. We assume throughout that ΘðaÞ is an open subset of
some Euclidean space.

In the usual phylogenetic setting, A is the set of fully resolved
(binary) phylogenetic tree topologies on a given leaf set, U is the
set of possible site patterns, and the parameter set ΘðaÞ specifies,
for the tree topology a the branch lengths of the tree each of which
lies in the range ð0;1Þ, and possibly other parameters relevant to
the model. Thus, if we are only concerned with branch lengths,
and trees are unrooted, then ΘðaÞ ¼ ð0;1Þ2n�3 where n is the
number of leaves of tree a. The trees in A may be either rooted or
unrooted, and for reconstruction we estimate the same type of
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tree (thus in the rooted case, the branch lengths are assumed to be
ultrametric).

Returning to the general set-up, let pða;θÞ denote the probability
distribution on some finite set U determined by the discrete-
continuous parameter pair ða;θÞ. Suppose we have a discrete
(prior) probability distribution π on A, and, for each aAA, a
continuous (prior) probability distribution on ΘðaÞ with a prob-
ability density function f aðθÞ. We will suppose that the following
conditions hold for all aAA:

(C1) πðaÞ40;
(C2) the density f aðθÞ is continuous, bounded and nonzero on

ΘðaÞ;
(C3) the function θ↦pða;θÞðuÞ is continuous and nonzero on ΘðaÞ

for each uAU;
(C4) for all θAΘðaÞ, and all baa, we have:

infθ′AΘðbÞdðpða;θÞ; pðb;θ′ÞÞ40.

In (C4) and henceforth, d denotes the L1 metric – that is, for any
two probability distributions p; q on U: dðp; qÞ≔∑uAU jpðuÞ�qðuÞj:

In the phylogenetic setting, if π is any of the usual nonzero
priors on binary phylogenetic trees (e.g. the uniform ‘proportional
to distinguishable arrangements’ or PDA distribution, or the Yule
distribution), then condition (C1) is satisfied. If we take the usual
exponential prior on branch lengths then condition (C2) is
satisfied. For all Markov processes on trees, condition (C3) holds
(the nonzero condition holds, since in any tree with pendant edges
of positive lengths all site patterns have a strictly positive prob-
ability). Finally, for all models for which identifiability holds (e.g.
the general time-reversible (GTR) model or any submodel down to
the highly restrictive Jukes–Cantor model), condition (C4) holds
(see e.g. Steel and Székely, 2009; a specific lower bound on d for
the two-state symmetric model is provided via Lemma 7.3 of Steel
and Székely, 2007).

Now, suppose we are given a sequence u¼ ðu1;…;ukÞAUk

generated i.i.d. by some unknown pair ða;θÞ and we wish to identify
the discrete parameter (a) from u given prior densities on A and the
continuous parameters. The maximum a-posteriori (MAP) estimator
selects the element bAA that maximizes the posterior probability
of b given u – that is, it maximizes πðbÞEθ′½Pðujb;θ′Þ�, where

Pðujb;θ0Þ ¼ ∏
k

i ¼ 1
pðb;θ′ÞðuiÞ; ð1Þ

which is the probability of generating the sequence of i.i.d.
observations ðu1;…;ukÞ from the underlying parameters ðb;θ′Þ,
and where Eθ′ refers to taking expectation with respect to the prior
probability distribution on ΘðbÞ.

Let Pða;θ; kÞ denote the probability that, for a sequence u1;…;uk

generated i.i.d. by ða;θÞ, the MAP estimator correctly selects a. The
following theorem establishes a sufficient condition for the statis-
tical consistency of the MAP estimator in this context.

Theorem 1. Provided conditions (C1)–(C4) hold for all aAA, then

lim
k-1

Pða;θ; kÞ ¼ 1

for all aAA, and θAΘðaÞ.

Proof. Our proof relies on a general but technical lemma, the
proof of which we defer to the Appendix. □

Lemma 2. For any ϵ1; ϵ240 there exists a value δ40 for which the
following holds: for any finite set U, and any four probability
distributions p; q; r; s on U that satisfy the three conditions:

(i) dðp; qÞZϵ1;
(ii) for all uAU with rðuÞ40, pðuÞZϵ2 and qðuÞ40;
(iii) dðp; rÞoδ and dðp; sÞoδ;

the quantity Q ¼∑uAU:rðuÞ40rðuÞ log ðsðuÞ=qðuÞÞ is well defined (i.e.
logarithms are applied to positive quantities) and QZ1

3ϵ
2
1.

2.1. Application to the proof of Theorem 1

To apply Lemma 2 we need to define the quantities mentioned
by it, and we will do this in the order p; s then q; r followed by ϵ1
and ϵ2. Notice first that the statement of Lemma 2 is sufficiently
general to allow (but not require) for q; r and s to depend on the
data (i.e. to be random variables), as will be the case in our
application of the lemma. This causes no problem for the argu-
ment, as we remark at the end of the proof.

We suppose throughout that the sequence u¼ u1;…;uk is
generated i.i.d. by ða;θ0Þ where θ0 is any particular element of
Θða). Then the MAP estimator will correctly select a from u if and
only if the Bayes Factor defined by

BFa=b ¼
πðaÞEθ ½Pðuja;θÞ�
πðbÞEθ′½Pðujb;θ′Þ�

is strictly greater than 1 for all baa. By the Bonferroni inequality,
it suffices to show that for each baa the probability that u is such
that BFa=b41 tends to 1 as k grows. To achieve this we first
observe that BFa=b ¼ ðπðaÞ=πðbÞÞ � Ra=b where

Ra=b≔
Eθ ½Pðuja;θÞ�
Eθ′½Pðujb;θ′Þ�

; ð2Þ

and where πðaÞ=πðbÞ is finite and strictly positive by (C1). Thus, it
suffices to show that, for each baa and for every finite constantM,
the inequality Ra=b4M holds with a probability that tends to 1 as
k-1. We will establish this inequality by providing an explicit
lower bound to the numerator of Ra/b and an explicit upper bound
to the denominator of Ra/b, and showing that, with probability
tending to 1 as k grows, their ratio exceeds M.

Before describing the lower bound, observe that we can re-
write Eq. (1) as follows:

Pðujb;θÞ ¼ ∏
uAU

pðb;θÞðuÞnu ; ð3Þ

where, for each uAU,

nu≔jfi : ui ¼ ugj:
For the lower bound on the numerator of Ra/b, consider the

subset Nτ of ΘðaÞ consisting of a closed ball centered on θ0 and of
radius τ40. Note that we can always select a sufficiently small
value of τ40 for which Nτ �ΘðaÞ by the assumption that ΘðaÞ is
an open subset of some Euclidean space. Letting
μðNτÞ ¼

R
Nτ

f aðθÞ dθ40 we have

Eθ ½Pðuja;θÞ� ¼
Z
ΘðaÞ

Pðuja;θÞf aðθÞ dθZ
Z
Nτ

Pðuja;θÞf aðθÞ dθ;

and so

Eθ ½Pðuja;θÞ�ZμðNτÞ � inf
θANτ

fPðuja;θÞg: ð4Þ

2.2. Lower bound and the distributions p and s

Let p¼ pða;θ0Þ (the generating probability distribution on the
true parameters) and let s be the probability distribution of the
form pða;θÞ that minimizes Pðuja;θÞ when θ is restricted to Nτ; such
a distribution s exists from the compactness of Nτ and the
continuity condition of (C3). Then, from (3) we have:
infθANτ

fPðuja;θÞg ¼∏uAUsðuÞnu : Applying this to (4) gives

Eθ ½Pðuja;θÞ�ZμðNτÞ � ∏
uAU

sðuÞnu : ð5Þ
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2.3. Upper bound and the distributions q and r

Regarding the upper bound on the denominator of Ra/b, we
have

Eθ′½Pðujb;θ′Þ�r sup
θ′AΘðbÞ

fPðujb;θ′Þg: ð6Þ

Given u, let θi be a sequence of elements of ΘðbÞ for which
limi-1Pðujb;θiÞ ¼ supθ′AΘðbÞfPðujb;θ′Þg.

Notice that pðb;θiÞ, iZ1, is a sequence in a bounded subset of
Euclidean space (the probability simplex) and so, by the Bolzano–
Weierstrass theorem, it has a convergent subsequence, with limit q
(a probability distribution on U).

It remains to specify the fourth distribution r, which is
determined purely by the data, and records the proportion of
occurrences of the various outcomes. That is, for each uAU let
rðuÞ≔ð1=kÞnu. Notice that r¼ ðrðuÞ : uAUÞ is a (empirical) prob-
ability distribution on U (i.e. its entries are nonzero and sum to 1).
In the phylogenetic setting r describes the frequency of site
patterns in the data.

2.4. Combining the two bounds

Eqs. (2), (5) and (6) give:

Ra=bZ
μðNτÞ �∏uAUsðuÞnu

∏uAUqðuÞnu
: ð7Þ

By (C3), pðuÞ40 for all uAU, and by the continuity condition (C4),
we can select τ40 sufficiently small so that sðuÞ40 for all uAU.
Suppose there exists some u0AU with rðu0Þ40 (i.e. nu0 Z1) and
with qðu0Þ ¼ 0. Then Eq. (7) implies that Ra=b ¼ þ1 and so
Bayesian inference will select a over b. Otherwise we may assume
that qðuÞ40 for all uAU for which rðuÞ40, in which case we can
take logarithms of both sides of Eq. (7) and so obtain the
fundamental inequality

log Ra=b
� �

Z log μ Nτð Þ� �þk ∑
uAU:rðuÞ40

r uð Þ log sðuÞ
qðuÞ

� �
: ð8Þ

2.5. Definitions of ϵ1 and ϵ2

Fix bAA�fag and let ϵ1≔infθ′AΘðbÞfdðp; pðb;θ′ÞÞg and let ϵ2≔
min fpðuÞ : uAU; rðuÞ40g: Notice that ϵ140 by (C4) and ϵ240
by (C3).

2.6. Completing the argument

Returning to the proof of Theorem 1, we are now in a position
to apply Lemma 2. First observe that parts (i) and (ii) of Lemma 2
hold by definition of ϵ1 and ϵ2, respectively.

Next, observe that the event that dðp; rÞrδ has probability
converging to 1 as k grows, by the law of large numbers. Thus,
with probability converging to 1 as k-1 the first half of part (iii)
of Lemma 2 holds (i.e. dðp; rÞoδ). Moreover, by the continuity
condition in (C3), we can select τ40 sufficiently small so that
dðp; sÞoδ, and so the second half of part (iii) of Lemma 2
also holds.

In summary, with probability converging to 1 as k grows, the
conditions of Lemma 2 are satisfied, in which case (by (8))

log Ra=b
� �

Z log μ Nτð Þ� �þk � 13ϵ21:
Thus, with probability converging to 1 as k grows, for any
finite value M, Ra=b4M. By the comments following Eq. (2), this
completes the proof.&

Remark. In the proof, notice that only the probability distribution
p¼ pða;θ0Þ is fixed; the other three distributions r; s; q depend on

the data u that is generated by p. However, Lemma 2 applies over all
choices of r, s, q once the ϵ1 and ϵ2 values have been specified, and
these two ϵi values depend ultimately just on p by definition.&

3. Inferring species trees directly from sequences with gene
trees treated as ‘nuisance parameters’

Consider a fully resolved species tree with branch parameters
corresponding to inter-speciation times, and ancestral population
sizes. Such a model induces a probability distribution on gene
trees under a process of incomplete lineage sorting that is
modelled by the multi-species coalescent model (Degnan and
Rosenberg, 2009). Suppose we generate k independent gene trees
under this process, and on each gene tree, we evolve sequence
sites under a time-reversible site substitution model in which the
branch lengths on the gene tree are (in expectation) an i.i.d. scalar
multiple of the branch lengths in the species tree (i.e. we allow
different genes to evolve at different rates, but assume that these
rates are chosen independently from a given distribution).

Now, for any fully resolved species tree T and any tree T ′ on the
same leaf set that has a different topology from T, there exists at
least one triplet of taxa x, y, z, say, for which T jfx; y; zg ¼ xyjz and
T ′jfx; y; zgaxyjz. Under the multispecies coalescent, if T is the
generating species tree, then the probability that the induced gene
tree has the topology xyjz is strictly greater than the probability it
has one of the other two topologies (which have equal probability)
(Degnan and Rosenberg, 2009). Moreover, for any time-reversible
site substitution process, the probability that two taxa are both in
a given state (say 0) is a continuous and strictly monotone
decreasing function of the temporal separation between them
(Aldous and Fill, 2010).

Consequently, if T is the generating species tree and if we let P1
(respectively P2) denote the probability that any given sequence
site (generated by the gene tree sampled from the species tree
under the multispecies coalescent) has the same state (0) for taxa
x and y (respectively, for taxa x and z), then P14P2. However for
the tree T ′ (for which T ′jfx; y; zgaxyjz) we have P1rP2, regardless
of the branch lengths of T ′. Thus (C4) holds (with a¼T and b¼ T ′).

If we now take A to be the finite set of species tree topologies
and U to be site patterns, then the conditions for Theorem 1 apply
and so the posterior probability of the generating species tree
converges to 1 as k-1.

4. Concluding comments

In certain Bayesian implementations, the output tree is not the
tree that is most frequently found; rather, a score is assigned to
each cluster (subset of taxa) according to its frequency as a clade in
the posterior distribution of trees, and a consensus tree is
constructed on the clusters with the highest posterior support
(Heled and Drummond, 2010). There are various options here as to
how this can be implemented, but it is clear that, in general, such a
tree could differ from the MAP tree on a given set of data. This
raises an obvious question: Is this consensus tree constructed from
the clusters with highest posterior support as clades a consistent
estimator of the true species tree? In the limit, any such tree will
converge on the true tree (and the MAP tree) as k (the sequence
length) grows, for the following reason: Since we are assuming
that the species tree T is fully resolved and that the posterior
probability of T converges to 1 (with increasing k), the only
clusters that will have a posterior probability greater than any
positive value ϵ40 for all k will be clades in T (and each clade in T
will have posterior support approaching 1 as k grows); otherwise,
if some cluster C not in T had this property, then another tree T ′
would exist for which the posterior probability of T ′ would be at
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least ϵ′40 for all k, contradicting the assumption that the poster-
ior probability of T converges to 1 as k-1 (we can take ϵ′ to be ϵ
divided by the number of fully resolved trees that contain the
cluster C as a clade).

For future work, the consistency of phylogenetic questions on
nonresolved trees could be of interest, as in that case condition
(C4) does not hold. Condition (C4) can also fail on resolved trees,
under site substitution models that allow too much flexibility in
rate variation across sites, or in certain phylogenetic ‘mixture
models’ (where various classes of sites evolve under different
branch lengths).
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Appendix A. Proof of Lemma 2

Proof. We will require at the outset that δomin ϵ1; 12ϵ2
� �

; later
we place a third upper bound on δ. Applying the triangle inequal-
ity to conditions (ii) and (iii), with δo1

2ϵ2 implies that r(u) and s(u)
are both at least 1

2ϵ2 for all uAU, and so Q is well-defined (i.e.
logarithms are only applied to positive entries). Let η¼min
fqðuÞ : rðuÞ40g. By condition (ii), η40. For each uAU, let
Δu≔rðuÞ�sðuÞ. Then

∑
uAU

r uð Þ log sðuÞ
qðuÞ

� �
¼ ∑

uAU
s uð Þ log sðuÞ

qðuÞ

� �
þ ∑

uAU
Δu log

sðuÞ
qðuÞ

� �
: ð9Þ

Now, the first term on the right hand-side of (9) is simply the
Kullback–Leibler separation of s and q and, by Pinsker's Inequality
(Cover and Thomas, 1991), this is bounded below by 1

2dðs; qÞ2.
Moreover, by the triangle inequality, dðs; qÞZdðp; qÞ�dðp; sÞZϵ1�δ
(by conditions (i) and (iii)) and since δoϵ1 (so ϵ1�δ40) the first
term on the right of (9) is bounded below by 1

2ðϵ1�δÞ2:
Concerning the second term on the right of (9), its absolute

value is bounded above by

∑
uAU

Δu
�� �� �max

uAU
jlog sðuÞ

qðuÞ

� �
j ¼ d r; sð Þ �max

uAU
jlog sðuÞ

qðuÞ

� �
j:

Again invoking the triangle inequality, dðr; sÞrdðr; pÞþdðp; sÞr2δ
(by condition (iii)). Moreover, since sðuÞZpðuÞ�δZϵ2�δ (by

condition (ii)) and since δoϵ2 (so ϵ2�δ40) and qðuÞZη

max
uAU

jlog sðuÞ
qðuÞ

� �
jrmax

uAU
jlog s uð Þð Þjþmax

uAU
jlog q uð Þð Þj

r jlog ðϵ2�δÞjþjlog ηj:

Thus we select δ40 sufficiently small (in addition to the earlier
two upper bounds on δ) so that

1
2 ðϵ1�δÞ2�2δ � ðjlog ðϵ2�δÞjþjlog ηjÞZ1

3ϵ
2
1:

then the bounds placed above on the terms in (9) ensure that
QZ1

3ϵ
2
1 as required. □
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