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Abstract

Steel, M.A., Distributions on bicoloured binary trees arising from the principle of parsimony, Discrete
Applied Mathematics 41 (1993) 245-261.

The distribution of binary trees with bicoloured endpoints under the taxonomic principle of parsimony
is examined. Part one provides a constructive proof of an expression which describes the distribution
of binary trees for a fixed colouring in terms of simple tree-related quantities. The result relies on
Menger’s theorem and an invariance property of binary trees. In part two a second invariance property
gives the dual distribution, where the tree is fixed and the colourings vary. Applications to taxonomy,
and the extension of results to r-colourings (¥>2) are outlined briefly.

Keywords. Binary tree, forest, minimum-length tree, Menger’s theorem.

1. Introduction

A main taxonomic method for reconstructing evolutionary trees from genetic and
protein sequence data is the minimum-length tree method, based on the principle
of parsimony (see, for example, Felsenstein [6]).

Essentially, one regards aligned molecular sequence data D of length ¢ as se-
quences Dy, ..., D, of r-colourings of the taxa set (in applications r=2,4,20). Tak-
ing {1, ..., n} as the taxa set, each binary tree, 7, whose endpoints are labelled from
the set {l,...,n} represents a hypothetical hierarchical relationship between the
taxa, and each D; induces a colouring of the endpoints of T. The weight of D; on
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T, denoted w(D,, T), is then the minimum number of edges of T which must be
assigned differently-coloured ends so as to extend D, to a colouring of all the ver-
tices of 7. This weight, and a minimal colouring extension can be found by an O(n)
algorithm due to Fitch [7], which has been rigorously justified by Hartigan [11]. The
weight of D on T, denoted w(D,T) is then defined as the sum of the weights
w(D;, T) for i=1,...,c. This weight is regarded as an inverse measure of how well
T fits the data D. The principle of parsimony is to select the binary tree(s) which
best fits the data—that is which minimizes w(D, T)—to estimate the underlying
evolutionary tree linking the species. Such trees are referred to as minimum-length
trees. .

In considering the significance of the weight of the minimum-length tree it is
useful to consider ‘

(a) how well, compared with other trees, a minimum-length tree fits given data,
and

(b) how well the data, compared with other data sets, fits any binary tree; that
is, how ‘‘tree-like’’ is the data?

Variations on the second question have been considered by Archie [1]; and
Henderson, Hendy and Penny [12]; and Penny, Foulds and Hendy [15]. The last
of these devised a simple test of whether different sets of data fit a common binary
tree and applied this test in a study involving 11 taxa. Using a different approach
the authors of [1] and [12] developed tests of the tree-likeness of data, using respec-

tively simulation and computational methods.

For an analytical approach to questions (a) and (b) we con51der respectively two
dual distributions (in &= 0):

(a’) The number N(D, ¢, k) of binary trees having weight k& for fixed sequences
D of length c.

(b’) The number N*(T, ¢, k) of sequences of length ¢ having weight & for a fixed
binary tree 7.

Now N(D, ¢, k) depends in a complex way on D, indeed calculating the smallest
value of k for which N(D, ¢, k) #0 is NP-complete in # (see, for example, Foulds and
Graham [8]).

However the mean value, over k, of N(D, ¢, k) can be readily calculated from the
distributions N(D;, 1, k), giving a simple measure of how much better a minimum-
length tree fits D than a ‘‘randomly-chosen’’ binary tree.

Furthermore, when r=2, N(D;,1,k) is described by an elegant expression, re-
cently derived by Carter et al. [4]. Their proof is based on a lengthy, computer-
assisted application of the multivariate Lagrange inversion formula (as described by
Goulden and Jackson [9]). A simplified proof, based on a special case of this for-
mula, has been given by Steel [16], but neither proof sheds light on why the expres-
sion is a product of tree-related quantities. In view of this, and as a first step towards
extending the result to r-colourings, for r>2, the authors of [4] ask for a structural
proof of their theorem.

The first part of this paper provides such a proof, and shows how the result may
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be used to compute the mean of the distribution N. We then describe the dual
distribution, N* when c=1, r=2, and apply this to calculate the asymptotic average
weight of bicoloured sequences on their ‘‘best-fit”’ tree, as ¢ —» . The extension of
these results when r>2 is discussed briefly.

2. Counting trees

We adopt the terminology and notation of Bondy and Murty [3]. A binary tree
on a label set L is a tree consisting of zero or more unlabelled vertices of degree 3
and |L| vertices of degree 1 (or degree 0 if |L|=1), each of which is assigned a
distinct label from L. We refer to the degree-1 vertices as the endpoints of T and
the degree-3 vertices as the internal vertices of T. For an a/b colouring (an ordered
partition of L into two sets of size @ and b), each binary tree 7 on L has an induced
colouring of its endpoints. Let f,(a, b) be the number of binary trees of weight &k
(defined above) for a given a/b colouring. The main theorem from [4] gives a conve-
nient expression for f;(a, ) in terms of other tree-based quantities, which also have
simple expressions.

Specifically, let b(n) denote the number of binary trees on {1,...,n} and N(n,k)
the number of forests consisting of exactly k rooted binary trees on a total of exactly
n labels. Here a rooted binary tree is either a single labelled vertex or a tree with
labelled endpoints obtained by subdividing an edge of a binary tree (the new vertex
created by the edge subdivision is called a roor). It is well known (see Constantinescu
and Sankoff [5]) that

b(n)=C2n—-5"=2n-35xRn-7)x---x3x1, fornz=3,
while a standard argument, given in [4], shows:
Qn-k-1)!
N(n, k) = (n=k) (k=112 %’ v
0, if k>n.

if 1=k=<n,

We can now state the main result from [4].

The Bichromatic Binary Tree (BBT) Theorem.

(k=1 @2n—3k)N(a,k)N(b, k) b(n)
b(n—k+2) ’

Sila, b) = n=a+b.

We now proceed to a structural proof of this result, using Menger’s theorem to
express the weight of a bicolouring of the endpoints of a binary tree 7 in terms of
the maximal size of certain sets of disjoint paths in 7, and then showing how these
paths decompose T into an appropriate forest, F. We begin by establishing a strong
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invariance property required to enumerate the set of bicoloured binary trees which
decompose into F.

3. Tree extensions

For |L|=1, let U(L) and R(L) denote respectively the set of binary and rooted
binary trees on L, written U(n), R(n) for L={1,...,n}. If TeR(L), |L|=2, let T"
denote the unique binary tree from which T'is obtained by an edge subdivision. Sup-
pose Tye U(Ly), and for i=1,...,r, T,€ R(L;) where |L, =2, and Ly, ..., L, parti-
tions {l,...,n}. A tree Te U(n) is an extension of T, by T,..., T, of index k if:

(a) T contains one subdivision of each of Ty, Ti,..., 7, as disjoint subtrees, and
precisely k other internal vertices.

(b) When |L;|=2, any path in T joining vertices in (subdwmons of) To and T;
passes through the root of (subdivided) 7;, for i=1,.

This definition is illustrated (for k=1, r=4) in Fig. 1.

Let Ext,(Tp; 73, ..., 7,) denote the set of extensions of Ty by 7,...,7, of index &

and let Ext(To; Ty, ..., ;) = U, Ext, (T Ty, ..., T,).

Lemma 3.1.

(1) [Bxty (T Ty oo T ==

glk+r—1)! y 2n—r—k—4>
< r—k—1

where g, is the number of edges of Ty,.

Fig. 1.
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In particular, for fixed n, |Ext;(Ty; Ty, ..., T,)| is independent of T, ..., T,.

) gy b(n)
2 [Ext(Ty; Ty, -, T, )| = Dr—r12)

Proof. (1) We may suppose that for {Ty,...,T,}, Ty, ..., T, (0=<s=r) each have at
least two endpoints. Let V] denote the remaining r — s labelled vertices. By Menon’s
theorem (Moon [14]) the number of trees having s=0 labelled vertices vy, ..., v; of
degree d,, ..., d,, r—s labelled vertices of degree 1, and & labelled vertices wy, ..., wy
of degree 3 is

k+r-1)!
3 ( ) , if Y di=r+s—k,
2 HOsiss (di_l)! O<i<s
0, otherwise.

Ext (Ty; T3, ..., T;) is then constructed from these trees by
(i) unlabelling the vertices wy, ..., w,, and

~ - (ii) replacing each v; by T; for i=0,...,s, and choosing edge subdivisions of T; so

that each new vertex (in the subdivision of 7;) is one end of an edge formerly inci-
dent with v;. .

Let ¢;=|E(T};)|. For i=0, there are gy X - X (g +do—1)=(gg+dy—1)4, possible
choices for (ii), while for i >0, the number of possible choices for (ii) is 1 if d;=1,
and g X X(g;+d;—2)=(g; +d;—2)4,_; if d;>1. Thus |Ext,(Ty; Ty, ..., T;)| is the
sum of

k+r-1) 1 ’
X —X(gg+dy—1)4 X (g;+d;—2), _
2 [peia, (di—D)1 kL0770 ,-Zurgll,x PR At
over all positive choices of d, ...,d; for which ¥,_,_ d;=r+s—k.

Now fori=0,...,s, let n; denote the number of endpoints of 7;. Then g,=2n,-3,
and g;=2n,—2, for i>0. Then letting x; =d; —1, the above four-term product can
be written:

golk+r—1)! (2n,»—3+x,»>
k12% O<issixi=1 Xi '

This expression remains unchanged if the restriction x;=1 is modified to x;=0, by
the convention (§)=1, and |Ext,(Ty; T}, ..., 7,)| is then the sum of this (modified)
expression over all choices of xg,...,x,=0, for which ¥,_,. x;=r—k—1. Thus
[Exti (Ty; Tqs .-, T;)| equals &o(k+ r—11/(k!2%) multiplied by the coefficient of
x"%=1in .

ﬁ v <(2n,- —.3) +J > e fI (1= x)~@u=9+D _ (] _y)=@n-2r-2)

i=0 j=0 J i=0
which establishes the claim.

(2) By (), |[Ext(Ty; T3, ..., T,_})| is independent of ny, ..., n,_,. Thus we may assume

ny=n—ny—r+2, while n;=1 for j>1. Then |[Ext(To; Ty, ..., T,_1)| = |Ext(Tp; Ty)| X
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(b(n)/b(ny+ ny)), since, by [5, Theorem 1}, b(n)/b(m) is the number of trees Te
U(n) containing any given tree in U(m). Finally, Ext(Ty; T) =&, giving the re-
quired result. [

4. Bicoloured trees

For a bicoloured binary tree (a binary tree whose endpoints have each been as-
signed one of two colours), a proper path set for T is a collection of disjoint paths,
each connecting differently-coloured endpoints of 7. A maximal proper path set for
T is a proper path set of maximal cardinality amongst all such sets.

7(+) 12(-)

10(-) 3(+) 4(+)

lgl N

Fig. 2.
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Theorem 4.1. (1) Suppose a bicoloured binary tree T has a maximal proper path
set IT of size k. Then each path n eIl defines a unique forest F(T,n) of k rooted
subtrees such that:

(a) n lies in exactly one tree, denoted T(rn), in F(T, ).

(b) Deleting the root of any tree in F(T, n) and its edges from that tree in F(T, n)
gives two oppositely-coloured, monochromatic subtrees.

(¢) T is an extension of T(n)" by F(T,n)—{T(n)}.

(2) Suppose a bicoloured binary tree T, and forest F of k rooted binary trees, in-
cluding a tree Ty, satisfy (b) and (c) of (1) with F(T, ) and T(rn) replaced by F and
T,, respectively. Then,

() T has a maximal proper path set of size k, and

(i) for any such set I1,, exactly one path in I lies in T,

An example of this decomposition is given in Fig. 2, in which 1-7 are assigned
one colour (+) and 8-13 are assigned another colour (—).

Proof. (1) We use induction on |T|, the number of endpoints of 7. For |T| <4 the
result clearly holds, so suppose it holds for all |T|<n, n=35, let |T| = n and suppose
IT is a maximal proper path set for 7. Since T is binary and n=5 there exist at least
two internal vertices of T, each of which is adjacent to two endpoints. We denote
these pairs of endpoints as {v;, v,} and {w;, w,}, as indicated in Fig. 3(a). For n e I1,
distinguish two cases depending on the colour of vy, vy, w;, W;.

Case 1. One pair, say v, U,, have the same colour. Then v; or v, (or both) does
not lie on 7. Deleting one such vertex (say v,) and its incident edge gives a rooted
binary tree T'. Let T, =(T")", a binary tree, with |7;| =n—1, as in Fig. 3(b). Let [T,
be the maximal proper path set of size k obtained by restricting /7 to 7.

Case 2. Otherwise at least one pair is disjoint from 7z, for if not I7 fails to be a
maximal proper path set, since we could replace 7 by a (v;, v,)-path and a (wy, w,)-
path. Thus we may suppose v; and v, are a pair not on n. Delete these vertices and
their incident edges, together with the edge, e, adjacent to these edges to obtain a
rooted binary tree 72. Let T, =(T2)", a binary tree with |T;| =n—2, as in Fig. 3(c).
At least one of the vertices v;, v, lies on a path in /7. Deleting this path from /7,
and restricting to 7, gives a maximal proper path set I7, of size k—1.

In both cases, restricting 7 to T; distinguishes a path #; € I7;. Applying the induc-
tive hypothesis, there is a unique set F(7T}, n;) (of size k when i=1, and k—1 when
i=2) of rooted subtrees satisfying conditions (a)-(c) of the theorem for 7; and /7;.
In Case 1 suppose v, € V(T!), where T' € F(T}, n;). Subdivide that edge of 7' which
is incident with v;, and join the new vertex to v, by a new edge to obtain a binary
tree T2. In Case 2, T is an extension of 7, by the rooted tree T}, € R({v;, v,}) (sub-
dividing edge e, as indicated in Fig. 3(c), and joining the new vertex to the root
of T,). Thus taking F(T,n)=F(T;,m)U{T?} —{T"}, in Case 1, and F(T,n)=
F(T,,m,) U {T},}, in Case 2, we satisfy conditions (a)-(c) of the theorem for T.
Uniqueness of the trees in F(7, ) follows similarly by induction.



il i sl

252 M.A. Steel

(2) For each tree T;eF, choose any path which connects endpoints of 7; and
crosses the root of T;. These paths generate a proper path set, Iy, of T of size k.
Now for any proper path set I7’ for T, replacing each tree 7; in F by a labelled
vertex x; defines a graph G(/1’) (with possible loops) on {x,...,x,_} as follows:
join x; and x; if there is a path 7 € /7’ having endpoints in 7; and 7} (thus a vertex
can be joined to itself). Directing all edges of T not on T away from T, and giving
all loops of G(II’) an arbitrary direction converts G(I7’) into a digraph D(/T’).
Since T is a tree, D(I1’) has no cycles of length >1, and since I7’ is a proper path
set, conditions (b) and (c) imply that each vertex of D(/I’) has indegree equal to 0
or 1. Thus each component of D(IT’) consists of a tree directed away from some
vertex x;, together with at most one loop on x;. Thus the number of arcs in D(JT")
is <k with equality iff each component tree has an adjoined loop. But by construc-
tion D(IT') has |IT’| arcs. Thus |I1’| <k, so that the proper path set IT, constructed
above is maximal, giving (i), while if 77’ is maximal, (i.e., | /1’| = k) then x; has one
loop, so that there is a unique path lying in Tj, establishing (ii). U

We now exploit the link provided by Menger’s theorem between maximal proper
path sets of size k and a/b colourings of weight k to establish our main result.

T2

60(8

(a) e (c)

Fig. 3.
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Assign one colour to {1,...,4} and a different colour to {a+1,...,n}, n=a+b.
Under this colouring, consider the set F,(a, b) of trees Te U(n) having at least one
maximal proper path set, I7(T), of size k. Let

F¥*(a,b) = {(T,n): Te F(a,b), n e IT(T)}.

Denote by H(a, b, k) the collection of all forests on {l,...,n}, n=a+ b, consisting
of k rooted binary trees, such that for each tree deletion of the root partitions the
labels on the endpoints into a subset of {l,...,a}, and a subset of {a+1,...,n}.
Finally let

G,(a,b) = {(F,1,T): Fe H(a, b,k), t e F, Te Ext(t"; F— {t})}.

Theorem 4.2. (1) There is bijection v from F;(a, b) onto G,(a, b).

_(k=1)1@n-30)N@ NGB, Kb
@))] Jila, b) = b k+2) , n=a+b.

Proof. (1) For (T, n) e F¥(a, b) let w(T, ) = (F,t, T) where F=F(T,n) and ¢ =T(n),
with F(T,n) and T(r) as defined by Theorem 4.1(1), which provides that i is a well-
defined function from F}(a, b) into G, (a, b). Now if w (T}, n)=w(T»,n’) then T, =T,
by definition of y, and since = and 7’ both lie completely in the same component
of F, then m=n’, so that y is one-to-one.

If (F,t,T)e Gy(a,b), then Te Fy(a,b) by Theorem 4.1(2)(i), and if =n(F,7,T) de-
notes the path defined by Theorem 4.1(2)(ii), with /7, =IT(T) and Ty=1 then by (1)
of the same theorem, w(T,n(F,t,T))=(F,t,T), so that v is onto, as required.

(2) By a suitable variation of Menger’s theorem (see Harary [10, pp. 50-51]) it
is easily shown that the weight of a bicoloured binary tree T is the size of a maximal
proper path set for T. Thus, f,(a, b)=|F,(a,b)|, giving |F*(a, b)| = kf;.(a, b). Now,

|G, (a, b)| = Y |Ext(¢"; F—{t})|
FeH(a, b k), teF

_ @1 =3)b(n)
FeHa, bk), teF bn—k+2)

by Lemma 3.1(2) where || is the number of endpoints of ¢. Thus since ¥, . |{| =7,
we have
Q2n-3k)b(n)

GO = kv

X |H(a, b, k)|.

Now H(a, b, k) can be constructed as follows. Take a forest of k rooted binary
trees on label set {1,...,a}, (in N(a, k) ways) and a forest of k rooted binary trees
on label set {a+1,...,n}, (in N(b, k) ways), pair them up (in k! ways) and make
each pair of roots the ends of a new subdivided edge. In this way, |H(a, b, k)| =
k!'N(a,k)N(b, k). The result now follows from the bijection in (1). [J
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5. Counting r-coloured trees, r>2

The proof of Lemma 3.1 (above) is similar (though the transition to part (2) is
simpler) to the proof of [4, Theorem 2]. This result states:

P 1 N,

fr*l(al’ ""a’) - m I<isr

where f;(ay, ..., a,) is the number of binary trees of weight & for an a,/a,/---/a, col-
ouring, and n=Y,_,_, @;. We firstly show how this result follows directly from
Lemma 3.1, and then consider f,(a,...,a,).

Suppose T;e U(L)), |L;|=2, for i=1,...,r, where L,,...,L, partition L. Let
Ext(T}, ..., T,) denote the set of all trees in U(n) containing subdivisions of T}, ..., T,
as disjoint subtrees. For an edge e; of 7 let T;(e;) denote the rooted binary tree ob-
tained from 7; by subdividing e;. Then Ext(Ty,..., T,) is the union over all choices
of {e,,...,e,} of Ext(T}; Tx(ey), ..., T,(e,)). As this union is disjoint, Lemma 3.1(2)
gives:

b(n)
Ext(Ty,...,T,)| = ——X 2n;—3
r X( 1 r)| b(n—r+2) ]SI;‘IS’( n, )
where n;=|L;|, n=Y, n;. Thus letting

Ext(n,...,n,) = U Ext(T;, ..., T,)
{T,....T: T e UL}

we have
b(n)
Ext(ny, ..., Y 2n; =3 bini
| xt(m, nr)| b(l’l—r+2)xlsl;[5r( g )xlsI;[sr )
b(n)

 b(n—r+2) AL N 1),
since N(n;,1)=12n; —3)b(n,).

Now trees of weight r—1 for an a,/a,/--/a, colouring are precisely the trees ob-
tained by taking all extensions of trees 7, ..., T, where 7; has a; endpoints, all of
which are assigned the ith colour. Thus, f._(a,...,a,)=|Ext(a,...,q,)|, as re-
quired.

We now outline how these ideas may be extended to calculate f,(ay, ..., a,). We may
suppose a;>1 for each i, since if @, =1 (say) then f,(a;, ..., a,) =(2n—5) f,_1(@,, ..., a;).
Let S; denote the (disjoint) union of the sets Ext(Ty, ..., T, ) over all collections
{T;,..., T, .} for which :

(i) 7; and T,,, have between them a; endpoints, and

(ii) for 1<j=r, T; has a; endpoints.

Lemma 3.1(2) then gives:

b(n)
S;| = —————XN(a,,2) X N(a;,1
15! b(n—r+1) (@2) 15/2;#:‘ @1)

)
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b(n) ’
“h—rtD) lsr,-ler(a”l)’ ‘
since N(p,2)=N(p,1) for p=2.

Now regard the combined a; endpoints of 7; and 7,,; as ith coloured (that is,
assigned the ith colour), and the endpoints of 7; as jth coloured. Then Ulsis Y
consists precisely of those binary trees of weight r and r—1 for an a,/a,/--/a, col-
ouring, and a tree T in S; has weight r—1 precisely if 7; and 7, ,; each have a vertex
incident with the same edge of T.

This observation has two immediate consequences. Let S;* denote the subset of
S; of trees of weight r. »

(2) |Si+| = |S1| _(2ai_3)‘Ext(al’ "'sar)|'

(3) S NS, is the disjoint union over T* of Ext(T* F) where F is a forest of
r—2 rooted binary trees T, k #1,j, having a, (kth coloured) endpoints, and T* is
a binary tree obtained by twice subdividing the edge of a binary tree with a; (ith
coloured) endpoints and making the two new vertices adjacent to the roots of two
rooted binary trees having between them a total of a; (jth coloured) endpoints, by
introducing two new edges.

The number of such trees 7* is 2(2a; — 3) b(a;) N(a;, 2) which equals 2N(a;, 1) N(a;, 1).
Thus applying Lemma 3.1(2), gives

2(2(a;+a;)~ 3) b(n)
bn—r+3) AL M@ D-

@) |S,-+ﬁSj+| =

Also by (3), S N S;" NS¢ =@ for i, j, k distinct, so that by the principle of inclusion
and exclusion:
() fray,....a,) = lU Stl= Y ISI- T Isins;|.

I<isr {i,j}:i#j

Combining parts (1)-(5), and Lemma 3.1(2) gives

Theorem 5.1. For r=2 and a;=2 for i=1,...,r,

r-1)@@n-r)?-2n+r)bn)
b(n—r+3) x 1L N .

Solay,....a,) =

6. Application

Regarding aligned (binary-state) genetic sequence data D of length ¢ as a se-
quence, Dy, ..., D,, of bicolourings of {1, ..., n}, it is desirable to compare the weight
of D on its minimum-length tree(s) with the average weight of D on all trees in U(n).
Let u(D) denote this average, and for 1 =i<c, let m; denote the size of the smaller
(or smallest equal) subset in the two-set partition of {1,...,n} induced by D,.

Finally, set

k N —
fo@ = iz m=a)], @)= LD,
k=0 (n)
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Note that for any n, u,(1)=1, while for fixed a, lim, _, , u,(@)=a, by the BBT
Theorem (and the expression for N(n, k)).

Proposition 6.1. u(D) =YY f(a) u,(a).

Proof.

uD)=bmy" Y wDT)
{TeUn)}

=bm' Y Y wD,T)

{TeUm} i=0

b’y Y X Tk

a=0 k=0 {TeUm} {i:mi=awD,T)=k}

=bm)'Y ¥ Y kx|{TeU®): wD;,T)=k}
a=0 k=0 {iim;=a}
B kfy(a,n—a)
=) kzz:o b(n)
[n/2]

= T /@@,

X [{i: m;=a}|

since fp(2) =0 unless 0<2a<n, completing the proof. U

Thus u(D) can be readily calculated, even for moderately large values of n, since
Ji(a,n—a)/b(n) and hence {u,(a): 0<a<[n/2]} can be efficiently calculated by the
BBT Theorem. A further application of the BBT Theorem can be found in Steel,

Hendy and Penny [17].

7. Counting colourings

We now determine the number of bicolourings of weight k of a binary tree T,
denoted f,(T), and thereby derive the first two moments of the distribution N*,
for r=2. This is motivated by the desire to measure the extent to which genetic data
is ““tree-like’’ —that is whether the data can be fitted to a binary tree so as to induce
a weight significantly less than random data. '

Theorem 7.1. For any Te U(L), n=|L| =1,

((”;k>+<"”£—l>> 2k if0<2k<n,
Ji(T) = 2k, if n=2k,

0, : otherwise.
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Proof. We prove the theorem by induction on n=1. The result holds when n=1 so
suppose n=2. Choose a rooted binary subtree of 7 on two endpoints v;, v, of 7,
and represent 7T as in Fig. 4(a) (where 7, and edge e exist only when n>2). Let T}
be the binary tree obtained by deleting one of these vertices (say v,) and its incident
edge (as in Fig. 4(b)), and let 7, be the binary tree (or empty set if n=2) obtained
by deleting the whole rooted binary subtree on vy, v,, as in Fig. 4(c).

The colourings of T consist of two disjoint classes: C;, those for which v; and v,
have the same colouring, and C, the remainder. For a colouring of T of weight £,
if the colouring lies in C;, restricting the colouring to 7; gives a colouring of weight
k fori=1, and k—1 for i=2. Conversely, each colouring of weight &k of 7; is the
restriction of a unique colouring of weight k& of 7 in C,;, whilst each colouring of
weight k —1 of 75 is the restriction of exactly two colourings of T of weight & in C,.
In this way,

Ji(T) = fi(Th) + 2 _|(T2)- (1)
Since 7; and T, have respectively n—1 and n -2 endpoints, it follows by induction
that f,(T') depends only on n and k.

Let P=P(x,y) be the ordinary generating function for f,(T(n)), T(n)e U(n),
where x marks n=1 and y marks k=0. From the recurrence (1), which applies (and
for which 7| and T, are binary trees) except when #=2 and the endpoints of T are
differently coloured, or when n=1, we have P—2x— 2x2y=xP+2x%yP, so that
P(x, y)=(2x+2x*y)(1 —x—2x%y)~. Extracting the coefficient of x"y* gives the re-
quired result. [

Corollary 7.2. Let u(n,c), and a*(n, c) denote the mean and variance for the weight
of aligned binary-state sequence data, Dy, ...,D,., to any tree in U(n). Then,
_e(Bn=2)-(-2)'""

u(n,c) 9

Vi

Va2
(a)

T, (b) (c)
Fig. 4.
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and

s c(6n+2—(6n+1)(=2)}~"—-22-2n
ag“(n,c)= .
81

Proof. u(n,1) and o(n, 1) are the coefficients of x” in respectively, 2-"(3P/dy) \ y=1
and 27"(0>P/8y*) | =, + u(n) — u*(n). The result when c=1 now follows from the
expression for P(x, y) given in the proof of part (2) of the previous theorem. Since
the weight of a sequence is the sum of the weights of its component colourings,
u(n,¢)=cu(n,1), and a*(n,c)=ca*(n,1), as required. [

VEE

8. Remarks

(1) The invariance of f,(T) to T does not generalize to trees having a given num-
ber of labelled endpoints and a given number of unlabelled vertices of degree =3,
as the counterexample 7}, 7, in Fig. 5 shows.

(2) The invariance of f;(T) to T also does not generalize to r-colourings of 7,
for r>2. For consider a ‘‘caterpillar’’ tree J(n) € U(n), n=1, which has at most two
internal vertices having the property ‘that each is adjacent to at least two endpoints.
Let P,.(x, y) denote the ordinary generating function for the number of r-colourings
of J(n) of weight k, where x marks » and y marks k. In order to calculate P,(x, y),
label the endpoints of J(n) (for all n=1) so that deleting from J(») any internal
vertex and its incident edges partitions {l,...,n} into the sets {l,...,i—1}, {i},
{i+1,...,n} for somei: 2<i=<n—1 (such a labelling for J(9) is illustrated by the tree
T in Fig. 1). For an r-colouring x of {1,...,n} let

v(x) = min{j: j,j+1,...,n are all differently coloured by x}.

By a simple application of [11, Theorem 2 (part 3)] of Hartigan, if v(x)>1, and x’
is the restriction of x to {l,...,v(x)—1}, we have

w(6J (M) = w(x', J(v() = D) +n—v(X).

\ \/ / = L
8, k=1
19, k=2
/ \ 4, k=3
Ty
1 (T2) = 1, k=0
\ / 8, k=1
17, k=2
/ \ 6, k=3
T2
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Otherwise, if v(¥) =1, then n<r and all the endpoints of J(n) are assigned dif-
ferent colours (in n! X () possible ways). Using these results we can extend the type
of argument used in the proof of Theorem 7.1 to obtain the following:

x ¥ (’.)j!(xy)f'-'

P(x,y) = — == —.
) ( >j!(xy)f-l
l<j<r Jj—1

Let u,.(n) denote the average weight of r-colourings on J,. Then r"u,(n) is the
coefficient of x” in

r

rx
@Po V) |yor = % | 17y <i>j,xj-x

1<j=r \J
Applying [2, Theorem 2] from Bender (with B(z) =rz(1 —-rz)7?) gives

n r

le——"f for r=2.
S
Osjsr—l./!

lim

n—o n

However, using asymptotic methods similar to those employed by Meir, Moon
and Mycielski [13, pp. 146-147] the average weight of r-colourings, averaged over
U(n) can be shown to exceed u,(n) for r=3 and 4 as n— oo.

(3) Let u*(n, c) denote the average weight of aligned binary-state sequence data,
D,,...,D,, on their minimum-length tree(s). By the invariance of f(T) to T, and
the weak law of large numbers, lim *(n,c)/c=u(n,1). An exact expression for
u*(n,c) is not known.

(4) Regarding u(n,1) as the expected weight of a random bicolouring of a binary
tree, we can compare u(n,1) with the expected weight u(7,) of a random bicolour-
ing of a star tree T, consisting of n labelled endpoints all of which are adjacent to
one unlabelled vertex. Such trees have been suggested by Thompson [18] as a suit-
able null hypothesis in testing evolutionary hypotheses (see for example [15]).

Clearly,

2"uT) = X <:> x min{k,n—k}.

O<k=n

C—»mu

It can be shown (M.R. Carter, personal communication) that the summation term
is n(2""!'—1¢,) where

2k ) :
( )! lfn=2k+1,
k

In = 2%\
(2—(k+1)’1)<k>, if n=2k+2.

Thus, asymptotically in n, u(7,,) ~n/2, compared with u(n, 1) ~n/3 for binary trees.
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9. Conclusion

In this paper we have applied structural and inductive arguments to enumerate
bicoloured binary trees and bicolourings of binary trees by weight. This is motivated
by an attempt to understand the structure underlying the factorization of terms in
the BBT Theorem, and the desire to find a corresponding expression for r-colourings.
We have also obtained useful information about the biologically relevant distribu-
tions N and N * described in the introduction. In the case of two colours the results
give the mean u(n, ¢) and variance a*(n,c) of N*, while the mean u(D) of N can be
readily found, by using the BBT Theorem.

Two problems remain. Firstly, it would be desirable (for =2, say) to be able to
readily calculate the variance of N. This would make the comparison of u(D) with
the weight of D on the minimum-length tree considerably more meaningful. The
problem amounts to finding a suitable expression for N(D,2, k), when r=2.

A second problem is the enumeration of r-coloured trees by weight when r>2.
This would allow, for example, the calculation of u(D) for sequence data having
more than two character states. [4, Theorem 2], together with Theorem 5.1 suggest
that the product form of the BBT Theorem might carry over to r-coloured trees,
however the authors of [4] have found that this is not so.

The proof of Theorem 5.1, while it might be extended to calculate fi(ay, ..., qa,)
for k=r+1, say, does not readily generalize to give a useful formula for general
values of k. A structural proof along the lines of the BBT Theorem (using Lem-
ma 3.1 and a suitable extension of Menger’s theorem) could well hold more promise.
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