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H I G H L I G H T S

� When are phylogenetic tree branch lengths determined by tree split probabilities?
� We prove that this holds for any tree when the branch lengths are sufficiently small.
� We prove that it also holds for trees with up to four leaves, without further assumptions.
� Our results extend to certain models with more than 2 states.
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a b s t r a c t

The evolution of aligned DNA sequence sites is generally modeled by a Markov process operating along
the edges of a phylogenetic tree. It is well known that the probability distribution on the site patterns at
the tips of the tree determines the tree topology, and its branch lengths. However, the number of
patterns is typically much larger than the number of edges, suggesting considerable redundancy in the
branch length estimation. In this paper we ask whether the probabilities of just the ‘edge-specific’
patterns (the ones that correspond to a change of state on a single edge) suffice to recover the branch
lengths of the tree, under a symmetric 2-state Markov process. We first show that this holds provided
the branch lengths are sufficiently short, by applying the inverse function theorem. We then consider
whether this restriction to short branch lengths is necessary. We show that for trees with up to four
leaves it can be lifted. This leaves open the interesting question of whether this holds in general. Our
results also extend to certain Markov processes on more than 2-states, such as the Jukes–Cantor model.

& 2015 Elsevier Ltd. All rights reserved.

1. Background

When a discrete character evolves on a tree under a Markov
process, the probability distribution on site patterns at the leaves
of the tree is determined by the tree and its branch lengths
(Felsenstein, 2004; Semple and Steel, 2003). What is less obvious
is that this process is invertible for many models – that is, the
probability distribution on site patterns at the leaves uniquely
identifies both the tree and its branch lengths.

This fundamental property underlies all statistical approaches
for inferring evolutionary relationships from aligned genetic
sequence data. In this setting, the ‘discrete character’ refers to
the pattern of nucleotides across the species at each site, and the
frequency of this pattern across the sequences provides some
estimate of the probability of that pattern. In this paper we are
interested in what the probability distribution says about the

branch lengths of the underlying tree (we will assume this
topology is known). Notice that the number of site patterns grows
exponentially with the number n of leaves, yet the number of
branches of the tree (for which the branch lengths are being
estimated) grows linearly with n. For example, in the case of a
symmetric 2-state model, there are effectively 2n�1 site patterns,
while the number of edges is between n (for the star tree) to 2n�3
(for a completely resolved binary tree).

This suggests a basic question – do we need all the site pattern
probabilities to infer the branch lengths? More precisely, if a tree has k
edges (branches), are there k site patterns whose probabilities under
the model might identify the lengths of these branches?

One motivation for this question is that in practice, many site
patterns will simply never occur (indeedmost will not, if our sequence
length grows at most polynomially with n, since the number of site
patterns grows exponentially with n). This is a problem if we try to
estimate pattern probabilities from their relative frequency.

There is an natural candidate for a particular choice of k site
patterns – for each edge we take the site pattern in which all the
leaves on one side of the edge are in one state, and all the leaves
on the other side of the edge are in a different state – we refer to
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such a site pattern as a tree split for this edge. From a practical
perspective, the tree splits are patterns that are likely to be
observed in the data, since they require just one change of state
in the tree. They also correspond to the primary divisions of the
species into two groups (e.g. vertebrates vs. invertebrates) and so
have a clear phylogenetic meaning.

The question of whether the tree split probabilities determine
the branch lengths is a delicate one – we prove that for the 2-state
symmetric model, the answer is yes for 4-leaf resolved (binary)
trees and for 4-leaf star trees, and we conjecture that it holds true
for arbitrary phylogenetic trees. This conjecture is supported by
our proof that the branch lengths are determined by the tree split
probabilities for any tree (on any number of leaves) when these
branch lengths are close to zero.

Our approach exploits the Hadamard representation for the 2-
state model (Hendy and Penny, 1989, 1993), as well as computa-
tional (symbolic) algebraic analysis tools. In the concluding com-
ments we point out how our results also extend to certain 4-state
model, including the Jukes–Cantor and Kimura 2ST models, or
more generally to certain models with an even number of states.
Our results also complement other recent algebraic analysis of
models on trees with a small number of leaves, including Klaere
and Liebscher (2012) and Sumner and Jarvis (2009).

2. Model and notations

In the Neyman 2-state model (Neyman, 1971), each character
admits one out of two states, for example, purines and pyrimi-
dines. Without loss of generality, we denote these states by 0 and
1. We use the symmetric Poisson model, where for each edge e of
the tree T, there is a corresponding probability pe ð0rpeo1=2Þ
that the character states at the two incident vertices of e differ, and
this probability is independent of the state at the initial vertex. For
a 2-state character, this probability pe that the endpoints of e at a
site are in different states is the same as the probability of having
an odd number of substitutions per site across the edge e. The
expected number of substitutions per site across the edge e equals
qe ¼ �1

2lnð1�2peÞ. The value qe is referred to the (branch) length of
edge e. Measuring the tree edges by qe ð0rqeo1Þ, we get an
additive measure on the tree, namely the expected number of
substitutions between each pair of leaves (because expected
values are additive). Such a phylogenetic tree with branch lengths
is a probabilistic model that emits any given pattern of states at its
leaves with a well defined probability. Notice that the limits qe-0
and qe-1 correspond to the limits pe-0 and pe-

1
2, respectively.

The observed sequences at the leaves can be represented by a
matrix, ψ, where the number of rows equals the number of species
(n¼4 in our case), and the number of columns equals the common
length of the sequences. In biological terms, this matrix is just a
data alignment – that is, each column consists of an aligned site of
(binary) character states across the n species. For 2-state char-
acters, it is convenient to ‘summarize’ the observed data ψ by a
vector of observed frequencies of splits, ŝ. This vector simply
counts how many sites share any specific pattern. Under a fully
symmetric 2-state model, the probability of a pattern is equal to
that of its complement (where all 0 and 1 are interchanged). We
make the following convention about indexing the patterns
obtained in the sequences over n¼4 species, labeled 1, 2, 3, and
4, with the sequences x1; x2; x3; x4Af0;1gn: We identify a site
pattern by the subset of species 1, 2, 3 whose character at that
site is different from that of species 4. More generally (i.e. for any
value of n) for every αDf1;…;n�1g, an α-split pattern is a pattern
where all taxa in the subset α have one character (0 or 1), and the
taxa in the complement subset have the second character (there
are two such patterns). The value ŝα equals the number of times

that α-split patterns appear in the data. For n¼4 there are 23 ¼ 8
possible patterns, and the vector of observed sequence frequencies
is ŝ ¼ ½ŝ∅; ŝ1; ŝ2; ŝ12; ŝ3; ŝ13; ŝ23; ŝ123�.

3. The tree split probabilities determine the branch lengths
locally

In this section, we show that the (multivariate) inverse function
theorem implies that branch lengths can be recovered from tree split
probabilities provided the branch lengths are not too large. Recall that
the inverse function theorem provides a sufficient condition for a
function f from an N-dimensional space A to another N-dimensional
space B to be invertible in the neighborhood of some point aAA. This
condition is that the function f be continuously differentiable in a
neighborhood of a, and its Jacobianmatrix (of first derivatives) be non-
singular at a. In this paper, a phylogenetic tree refers to an unrooted
tree with labeled leaves, and with every internal vertex having degree
strictly greater than 2 (Semple and Steel, 2003).

Theorem 3.1. Let T be any phylogenetic tree, on any number of
leaves. Under the 2-state symmetric model, the probabilities of the
tree splits determine the branch lengths of T in some neighborhood of
the origin. That is, provided all the branch lengths are sufficiently
small then they can be uniquely recovered from the tree split
probabilities they induce.

Proof. To simplify notation in this section, given a phylogenetic
tree T with k edges, label the edges e1; e2;…; ek. For each
iAf1;…; kg, let αi denote the tree split corresponding to ei; let si
be the probability of generating the pattern αi on T under the
symmetric 2-state model; let qi be the branch length of edge ei,
and let pi ¼ 1

2ð1�e�2qi Þ, which is the probability of a change of
state on edge ei ¼ ðvi1; vi2Þ. Consider the two subtrees of T which
result from removing the edge ei (but not the nodes vi1; v

i
2). Let

T1; T2 denote the resulting subtrees, rooted at vi1; v
i
2, respectively.

Let Qi
1 be the probability of the event ‘all leaves of T1 are in the

same state as v1i ’, and Qi
2 be the probability of the event ‘all leaves

of T2 are in the same state as v2
i ’. Let Ri1 denote the probability of

the event ‘all leaves of T1 are in the same state and they differ from
the state of v1

i ’, and Ri
2 denote the probability of the event ‘all

leaves of T2 are in the same state and they differ from the state of
v2
i ’. We note that under the 2-state symmetric model, changes of

state on different edges are independent events. By considering
whether or not there is a change of state on edge ei, the following
identity holds for all i:

si ¼ piQ
1
i Q

2
i þð1�piÞðQ1

i R
2
i þR1

i Q
2
i Þ: ð1Þ

Note that Q1
i ;Q

2
i ;R

1
i ;R

2
i involves only the terms pj for ja i, and

that when all the pj terms are zero we have

R1
i j p ¼ 0 ¼ R2

i j p ¼ 0 ¼ 0 and Q1
i j p ¼ 0 ¼ Q2

i j p ¼ 0 ¼ 1: ð2Þ

Now, consider the Jacobian matrix of partial derivatives

J¼ ∂si
∂pj

" #
:

From Eq. (1) and the fact that pi does not appear in Q1
i ;Q

2
i and

R1
i ;R

2
i we have

∂si
∂pi

¼ Q1
i Q

2
i �ðQ1

i R
2
i þR1

i Q
2
i Þ

and from Eq. (2) this equals 1 when p¼ 0.
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Similarly, for ja i, Eq. (1) gives

∂si
∂pj

¼ pi
∂
∂pj

Q1
i Q

2
i þð1�piÞ

∂
∂pj

ðQ1
i R

2
i þR1

i Q
2
i Þ;

and so, when p¼ 0 the first term on the right vanishes (since
pi ¼ 0Þ and we have

∂si
∂pj

j p ¼ 0 ¼
∂
∂pj

ðQ1
i R

2
i þR1

i Q
2
i Þj p ¼ 0:

Now, notice that Q1
i R

2
i þR1

i Q
2
i is a multinomial polynomial of

the variables pk, ka i. We argue that this polynomial has no term
of the form cpj for a constant ca0. Suppose otherwise, then
setting pj ¼ 1

4 and pk¼0 for all ka j, Eq. (1) shows that the pattern
αi occurs with probability 1

4ca0 under such an edge probability
assignment. However, since there is no vertex of degree 2 in T,
edge ei is the only edge for which αi has positive probability when
all but one p-term is set to zero. This contradicts the assumption
that we are in the setting where ja i. Since Q1

i R
2
i þR1

i Q
2
i has no

term of the form cpj (ca0) it follows that:

∂
∂pj

ðQ1
i R

2
i þR1

i Q
2
i Þj p ¼ 0 ¼ 0:

Summarizing, we have ∂si=∂pi j p ¼ 0 ¼ δij (Kronecker delta), and
so at p¼ 0, J is the k� k identity matrix. Since the map
p↦ðs1;…; skÞ is a polynomial map, and therefore continuously
differentiable, and since the Jacobian of this map is invertible at
p¼ 0, the conditions for the multivariate inverse function theorem
apply at this point. Thus, for some neighborhood of p¼ 0, the
function ðp1;…; pkÞ↦ðs1;…; skÞ is invertible. Finally, observe that
the map from [0, 1)k onto [0, 1/2)k defined by ðq1;…qkÞ↦ðp1;…pkÞ
is invertible, and so the theorem now follows. □

Theorem 3.1 begs the question: how small do the branch
lengths need to be in order for invertibility to hold? In the next
section we show that we can obtain invertibility holds for all finite
branch lengths for trees with at most four leaves.

4. Exact analysis for small trees

For phylogenetic trees with two and three leaves it is easily
verified that the tree splits determine the branch lengths with no
restriction required on the size of these branch lengths. Thus we
will consider trees with four leaves, of which there are two types –
the resolved binary tree and the star tree. We will show that the
probability distribution on tree splits determines the branch
lengths of the binary tree for all non-negative branch lengths,
and then establish that the same holds for the star tree.

A useful tool in this analysis is the Hadamard representation of
the 2-state symmetric model, which we first recall.

4.1. Hadamard representation

Given a tree T with n leaves and edge probabilities
p¼ ½pe�eAEðTÞð0rpeo1

2Þ, the probability of generating an α-split
pattern (αDf1;…;n�1g) is determined (and is equal for all sites).
Denote this probability by sα ¼ Prðα-split∣T ;pÞ.

Using the same indexing scheme as above,when n¼4, we
define the vector of pattern generation probabilities s¼
½s∅; s1; s2; s12; s3; s13; s23; s123�. This vector is termed the expected
sequence spectrum in Hendy and Penny (1993), where the index-
ing scheme is explained as well.

Even though in principle, the edge lengths qe ¼ ½qe�eAEðTÞ
determine the vector s of pattern generation probabilities, it is

not obvious how to actually compute this vector, given the edge
lengths. This is where the Hadamard conjugation (Hendy and
Penny, 1993; Hendy et al., 1994) comes in. This transformation
yields a powerful tool, which greatly simplifies and unifies the
analysis of phylogenetic data.

Definition. A Hadamard matrix of order ℓ is an ℓ� ℓ matrix A
with 71 entries such that AtA¼ ℓIℓ, where Iℓ is the identity ℓ� ℓ
matrix.

We will use a special family of Hadamard matrices, whose
sizes, ℓ, are powers of 2 (MacWilliams and Sloane, 1977), defined
inductively for nZ0 by H0 ¼ ½1� and Hnþ1 ¼ Hn

Hn

Hn
�Hn

h i
. It is con-

venient to index the rows and columns of Hn by lexicographically
ordered subsets of f1;…;ng. Denote by hαγ the ðα; γÞ entry of Hn,
then hαγ ¼ ð�1Þj α\γ j . This implies that Hn is symmetric, namely
Ht

n ¼Hn, and thus by the definition of Hadamard matrices
H�1

n ¼ 2�nHn.

Proposition 4.1 (Hendy and Penny, 1993). If po1=2 then
s¼ sðqÞ ¼H�1expðHqÞ where H¼Hn�1, namely for αDf1;… ;n�1g,

sα ¼ 2�ðn�1ÞX
γ
hαγ exp

X
δ

hγδqδ

 ! !
:

We note that the transformation is reversible, so if Hs40 (all
entries are positive) then q¼ qðsÞ ¼H�1lnðHsÞ. Thus, when n¼4, the
eight components in the expected sequence spectrum uniquely
determine the five edge lengths of the corresponding four taxa tree.

The question we explore is if the five components that
correspond to splits in the tree, namely s1; s2; s12; s3; s123 also
determine the five edge lengths q1; q2; q12; q3; q123. In other words,
is the mapping ðq1; q2; q12; q3; q123Þ↦ðs1; s2; s12; s3; s123Þ one to one?

4.2. Resolved tree on four leaves

In this case, the tree has five edges with non-negative lengths,
0rqαo1. To describe the mapping ðq1; q2; q12; q3; q123Þ↦
ðs1; s2; s12; s3; s123Þ, let us first denote

a1 ¼ e�2q1 ; a2 ¼ e�2q2 ; a12 ¼ e�2q12 ; a3 ¼ e�2q3 ; a123 ¼ e�2q123 ;

where the aα are in the interval ð0;1� (corresponding to edge
lengths 0rqαo1). Then by the Hadamard transform (with the 8-
by-8 matrix, H3)

8s1 ¼ 1þa123a3�a1a2þa12a2a3þa12a123a2�a1a12a3�a1a12a123
�a1a123a2a3

8s2 ¼ 1þa123a3�a1a2�a12a2a3�a12a123a2þa1a12a3
þa1a12a123�a1a123a2a3

8s12 ¼ 1þa123a3þa1a2�a12a2a3�a12a123a2�a1a12a3
�a1a12a123þa1a123a2a3

8s3 ¼ 1�a123a3þa1a2�a12a2a3þa12a123a2�a1a12a3
þa1a12a123�a1a123a2a3

8s123 ¼ 1�a123a3þa1a2þa12a2a3�a12a123a2
þa1a12a3�a1a12a123�a1a123a2a3

while the pattern probabilities of the three non-tree splits are

8s13 ¼ 1�a123a3�a1a2�a12a2a3þa12a123a2þa1a12a3�a1a12a123

þa1a123a2a3
8s23 ¼ 1�a123a3�a1a2þa12a2a3�a12a123a2�a1a12a3

þa1a12a123þa1a123a2a3
8s∅ ¼ 1þa123a3þa1a2þa12a2a3þa12a123a2þa1a12a3

þa1a12a123þa1a123a2a3
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For example, for the tree in Fig. 1, in the special case where all
five edges have the same branch length q let a¼ e�2q. Then
s1 ¼ s2 ¼ s3 ¼ s123 ¼ 1

8ð1�a4Þ, and s12 ¼ 1
8ð1þ2a2�4a3þa4Þ. For the

two non-tree splits we have s13 ¼ s23 ¼ 1
8ð1�2a2þa4Þ, and, in

addition, s∅ ¼ 1
8ð1þ2a2þ4a3þa4Þ.

Returning to the general setting, notice that

1�2s1�2s2�2s3�2s123 ¼ a1a123a2a3A ð0;1�: ð3Þ
Moreover, it can be checked, using the above mentioned identities,
that

s13þs23 ¼ 1
4 ð1�a1a2�a3a123þa1a2a3a123Þ;

and

s∅þs12 ¼ 1
4 ð1þa1a2þa3a123þa1a2a3a123Þ;

and so the following linear inequality holds:

s∅þs12�s13�s23 ¼ 1
2 ða1a2þa3a123ÞZ0: ð4Þ

This inequality will be used shortly to identify which one of two
solutions to a quadratic equation is valid. Moreover, the following
two inequalities (used in the next section) can also be readily
verified from the eight sα identities, mentioned above:

s∅þs23�s12�s13 ¼ 1
2 ða1a12a123þa12a2a3ÞZ0: ð5Þ

s∅þs13�s12�s23 ¼ 1
2 ða1a12a3þa12a123a2ÞZ0: ð6Þ

Since the Hadamard transformation s¼ sðqÞ ¼H�1expðHqÞ
is one-to-one, to show that the mapping ðq1; q2; q12; q3; q123Þ↦
ðs1; s2; s12; s3; s123Þ is one to one for all choices of non-negative branch
lengths, it suffices to show that s12, s23 and s∅ can be determined by
the five remaining s-values, corresponding to tree splits.

The Hadamard transformation allows us to express each qα in
terms of the seven values ðs1; s2; s12; s3; s13; s23; s123Þ (s∅ equals
1 minus the sum of these seven sα). For the tree T of Fig. 1, two
splits are not realized by any edge of T and this corresponds to the
identities q13 ¼ q23 ¼ 0. This gives rise to two invariants involving
the seven sα (Cavender and Felsenstein, 1987). After some manip-
ulation and simplification, we derive the following two invariants
(Chor et al., 2000):

0¼ 1�2s1�2s2�2s3�2s123
� �1þ2s1þ2s2þ2s13þ2s23ð Þ �1þ2s3þ2s13þ2s23þ2s123ð Þ

0¼ �1þ2s1þ2s12þ2s13þ2s123ð Þ �1þ2s2þ2s12þ2s3þ2s13ð Þ
� �1þ2s2þ2s12þ2s23þ2s123ð Þ �1þ2s1þ2s12þ2s3þ2s23ð Þ

From the first equation, we get a quadratic equation for x¼ s13þs23:

0¼ 1�2s1�2s2�2s3�2s123
� �1þ2s1þ2s2þ2xð Þ �1þ2s3þ2s123þ2xð Þ

Let u¼ 1�2s1�2s2, v¼ 1�2s3�2s123 andw¼ 1�2s1� 2s2�2s3�
2s123. The quadratic equation for x can now be written as

0¼w�ð�uþ2xÞð�vþ2xÞ;
or

4x2�2xðuþvÞ�ðw�uvÞ ¼ 0:

Solving this equation gives

x¼ 1
4 ðuþvÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþvÞ2þ4ðw�uvÞ

q� �
: ð7Þ

Although there are two possible real solutions for x, only the negative
square root provides a valid solution. To see this notice that

ðuþvÞ=4¼ ð1�s1�s2�s3�s123Þ=2¼ ðs∅þs12þs13þs23Þ=2;

and since, by inequality (4), x¼ s13þs23rs∅þs12 it follows that
xr ðuþvÞ=4, and thus only the negative square root term can apply
in (7). For this solution of x¼ s13þs23, the second invariant can be
rewritten as a quadratic equation in y¼ s13�s23, where all coeffi-
cients are known

0¼ �1þ2s1þ2s12þ2s123þxþyð Þ
� �1þ2s2þ2s12þ2s3þxþyð Þ
� �1þ2s2þ2s12þ2s123þx�yð Þ
� �1þ2s1þ2s12þ2s3þx�yð Þ

In fact, this is really just a linear equation in y, since the y2 terms
cancel, to give

y¼ ðAB�CDÞ=ðAþBþCþDÞ;
where

A¼ �1þ2s1þ2s12þ2s123þx;

B¼ �1þ2s2þ2s12þ2s3þx;

C ¼ �1þ2s2þ2s12þ2s123þx;

D¼ �1þ2s1þ2s12þ2s3þx:

In summary, we have a unique solution for x¼ s13þs23, and for this
we have a unique solution for y¼ s13�s23. These two uniquely
determine s13 ¼ 1

2ðxþyÞ and s23 ¼ 1
2ðx�yÞ. Once s13; s23 are deter-

mined, the final value s∅ is determined by the linear invariant

s∅þs1þs2þs12þs3þs13þs23þs123 ¼ 1:

Returning again to the special case of the tree in Fig. 1 with all five
branch lengths equal to q, and a¼ e�2q, the above analysis yields
u¼ v¼ 1

2ð1þa4Þ and w¼ a4, so that the negative root of Eq. (7) is

x¼ 1
4 ð1þa4Þ ¼ s13þs23:

Then A¼ B¼ C ¼D and so y¼0, which gives s13 ¼ s23 ¼
1
2x¼ 1

8ð1þa4Þ.

4.3. The star tree on four leaves

The star tree is a special case of the resolved tree on four nodes,
where the internal edge q12 is of length 0. However, the unique-
ness result we have for the resolved tree does not directly imply a
similar one for the star, as we have one fewer observed pattern
probability. We want to show that in this case, the mapping
ðq1; q2; q3; q123Þ↦ðs1; s2; s3; s123Þ is one to one. While this does not
directly follow from the previous result, a similar algebraic
approach does work here as well:

8s1 ¼ 1þa123a3�a1a2þa2a3þa123a2�a1a3�a1a123�a1a123a2a3
8s2 ¼ 1þa123a3�a1a2�a2a3�a123a2þa1a3þa1a123�a1a123a2a3
8s3 ¼ 1�a123a3þa1a2�a2a3þa123a2�a1a3þa1a123�a1a123a2a3
8s123 ¼ 1�a123a3þa1a2þa2a3�a123a2þa1a3�a1a123�a1a123a2a3

In case of the star tree on n¼4 leaves, only the four edges with
pendant leaves, q1; q2; q3; q123, could have non-zero lengths. The
splits corresponding to internal edges are not present in this tree
and this leads to the identities: q12; q13; q23 ¼ 0. Expressing these
edges in terms of s, slightly manipulating and simplifying the
expressions, we get the following three quadratic invariants:

ðI1Þ ð�1þ2s1þ2s2þ2s3þ2s123Þ
¼ ð�1þ2s1þ2s12þ2s13þ2s123Þ � ð�1þ2s2þ2s12þ2s3þ2s13Þ:

ðI2Þ ð�1þ2s1þ2s2þ2s3þ2s123Þ
¼ ð�1þ2s2þ2s12þ2s23þ2s123Þ � ð�1þ2s1þ2s12þ2s3þ2s23Þ:
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ðI3Þ ð�1þ2s1þ2s2þ2s3þ2s123Þ
¼ ð�1þ2s1þ2s2þ2s13þ2s23Þ � ð�1þ2s3þ2s13þ2s23þ2s123Þ:

Let x¼ s12þs13, y¼ s12þs23, and z¼ s13þs23. Note that
xþyþz¼ 2s12þ2s13þ2s23. The three equations (I1)-(I3) become
three quadratic equations, each in one of these variables, which
can therefore be solved separately. Recall that s1; s2; s3; s123 are
known.

ðI1Þ ð�1þ2s1þ2s2þ2s3þ2s123Þ
¼ ð�1þ2s1þ2s123þ2xÞ � ð�1þ2s2þ2s3þ2xÞ:

ðI2Þ ð�1þ2s1þ2s2þ2s3þ2s123Þ
¼ ð�1þ2s2þ2s123þ2yÞ � ð�1þ2s1þ2s3þ2yÞ:

ðI3Þ ð�1þ2s1þ2s2þ2s3þ2s123Þ
¼ ð�1þ2s1þ2s2þ2zÞ � ð�1þ2s3þ2s123þ2zÞ:

Now all of these equations are of the same quadratic form as
those used to determine x in the resolved tree setting. Indeed, Eq.
(I3) is exactly the same (with z playing the role of the earlier x) and
the inequality (4) required to exclude one of the two roots of the
quadratic equation applies just as validly for the star tree; as do
inequalities (5) and (6) These latter two inequalities show that the
quadratic equations for x and y in Eqs. (I1) and (I2) (respectively)
have unique solutions. Having uniquely determined x; y and z,
notice that

s12 ¼ 1
2 ðxþy�zÞ; s13 ¼ 1

2 ðxþz�yÞ and s23 ¼ 1
2 ðyþz�xÞ:

Finally, as in the resolved tree case, s∅ is determined by the linear
constraint:

s∅þs1þs2þs12þs3þs13þs23þs123 ¼ 1:

4.3.1. The star tree and the inverse function theorem
Let Tn denote the star tree on n leaves. If pi denotes the

probability of a state change (0 to 1 or visa versa) on the edge
incident with leaf i, i¼ 1;2;…;n, then the probability si of obtain-
ing the tree split pattern that separates leaf i from the other leaves
(i.e. the probability that leaf i has a different state to all the other
leaves) is given, in terms of p1; p2;…; pn (0rpio1=2) by

si ¼ pi∏
ja i

ð1�pjÞþð1�piÞ∏
ja i

pj: ð8Þ

This formula is easily verified by observing that there are two ways
to obtain the tree split that separates leaf i from the other leaves –
either there is a change on the edge incident with leaf i, and no
changes on any of the other edges (the first term), or there is no
change on the leaf incident with leaf i but there are changes on all
the other edges (the second term).

In the special case with n¼4, consider the 4-by-4 Jacobian
matrix:

J¼ ∂si
∂pj

" #
1r i;jr4

:

Suppose J is invertible (the determinant is non zero) in a certain
domain, and the underlying functions (s1; s2; s3; s4 in our case) are
differentiable. Then by the (multivariate) inverse function theo-
rem, these functions are locally invertible.

We employed the symbolic mathematical software Maple
(version 17) to compute the Jacobian and its determinant. It turns
out that the determinant can be expressed as a product of three
simple multivariate polynomials:

detðJÞ ¼ 2p1p2�p1þ1�p2�p3þ2p3p4�p4
� �

� 2p1p3�p1þ1�p2�p3þ2p2p4�p4
� �

� 2p1p4�p1þ1�p2þp2p3�p3�p4
� �

Each factor has a similar structure, and can be represented as
follows:

2p1p2�p1þ1�p2�p3þ2p3p4�p4
� �

¼ 1
2 ð2p1�1Þ � ð2p2�1Þþ1

2 ð2p3�1Þ � ð2p4�1Þ:

It is clear that if all pi are in the range 0rpio1=2, then each factor
is strictly positive, so the determinant is positive, as desired. So by
the (multivariate) inverse function theorem, under these condi-
tions, the functions are locally invertible for any neighborhood in
the domain 0rp1; p2; p3; p4o1=2. By contrast, the invertibility
results in the previous section are global.

5. Concluding comments

We have made the first steps towards settling the question of
whether the probability distribution of tree splits suffices to
determine the branch lengths in the 2-state symmetric model.
We have shown that this holds in two cases:

� for any tree if the branch lengths are sufficiently short, and
� the branch lengths are strictly positive and the tree has at most

four leaves.

We conjecture that invertibility holds for any phylogenetic tree
(with any number of leaves) and across the space of all non-
negative branch lengths, however a proof will require a different
or modified approach. The algebraic approach may be extended to
slightly larger numbers of taxa, but the underlying complexity of
solving such systems of polynomial equations is quite prohibitive
as the number of taxa grows. For the approach employing the
inverse function theorem to be applicable, it will be required to
show global, rather than just local, invertibility.

Our results pertain to the symmetric 2-state model, however,
they are also directly relevant to certain 4-state models, such as
the Jukes–Cantor model, or the Kimura 2ST model. To see why,
notice that under the Jukes–Cantor model, if we partition the four
bases into two sets of size two (e.g. fA; Tg; fG;Cg or one of the other
two possible pairings) and regard these two sets as (hyper)-states,
then the corresponding process on a tree is precisely described by
a symmetric 2-state model. Thus, from just the probabilities of the
resulting tree splits, we have shown how in certain settings it is
possible to identify the branch lengths of the tree. From these, the
corresponding branch lengths for the original Jukes–Cantor model
(as measured by the expected number of substitutions on each
edge) are then obtained by multiplying the 2-state branch lengths
by the factor 3

2. For the Kimura 2ST model, we need to use the
following partition fA;Gg; fC; Tg corresponding to purines and
pyrimidines. In that case, once again we obtain an induced
symmetric 2-state model on these (hyper)-states, and once again
the branch lengths under the Kimura 2ST model will be obtained
from those for the 2-state process by multiplying by a factor that
depends on the transition-to-transversion rate. There is nothing
special about four states here either; any number of even states
allows for models for which a ‘lumped’ 2-state process follows the
2-state symmetric model.

Finally, we discuss briefly a related but simpler question,
namely whether there is any collection of k linear combinations
of the site pattern probabilities that identifies the branch lengths.
In this case, the answer is ‘yes’ for any number of leaves (and any
tree). This can be seen by combining three observations that apply
for a wide range of substitution models (not just on two states):
(i) the expected probability that any pair of leaves i; j differ in state
is a sum of certain pattern probabilities, (ii) this expected
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probability can be transformed to give the sum of the branch
lengths between i and j in the tree (Felsenstein, 2004), and (iii) k
such (carefully selected) pairs of path distances suffice to recover
the length of all the k edges (Dress et al., 2012).

For example, for the quartet tree T ¼ 12j34, and the 2-state
symmetric model, consider the five linear combinations L12 ¼
s1þs2þs13þs23, L13 ¼ s1þs3þs12þs23, L14 ¼ s1þs12þs13þs123,
L23 ¼ s2þs3þs12þs13, and L34 ¼ s3þs13þs23þs123. Then Lxy is the
probability that leaf x and leaf y are in different states, and so
κxy ¼ �1

2log ð1�2LxyÞ is the length of the path between leaf x and y
in T under the edge lengths determined by q. Those five κ values
now uniquely determine the five branch lengths of T (this may be
verified directly, or by observing that the five pairs of leaves
described form a ‘pointed x-cover’ of T for the leaf choice x¼1
and so, by Theorem 7 of Dress et al. (2012), the associated κ values
determine the branch lengths).
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