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Abstract. Trees whose vertices are partially labelled by elements of a finite
set X provide a natural way to represent partitions of subsets of X. The con-
dition under which a given collection of such partial partitions of X can be
represented by a tree has previously been characterized in terms of a chordal
graph structure on an underlying intersection graph. In this paper, we obtain
a related graph-theoretic characterization for the uniqueness of a tree repre-
sentation of a set of partial partitions of X.

1. Introduction

Throughout this paper, X denotes a non-empty finite set. Let T be a tree with
vertex set V , and suppose we have a map φ : X → V with the property that, for
all v ∈ V with degree at most two, v ∈ φ(X). Then the ordered pair (T ;φ), which
we frequently denote by T , is called an X–tree. For example, Figure 1(i) shows an
X–tree with X = {1, 2, . . . , 9}. If φ is a bijection from X into the set of pendant
vertices of T , then T is a free X–tree. In this case, we can view X as the set of
pendant vertices of T , and so we frequently denote the pendant vertices of T by the
elements of X as φ is implicitly determined. A free ternary X–tree is a free X–tree
in which every non-pendant (or internal) vertex has degree three. Figure 2(i) shows
a free ternary X–tree with X = {1, 2, . . . , 7}. Two X–trees (T1;φ1) and (T2;φ2),
where T1 = (V1, E1) and T2 = (V2, E2), are isomorphic if there exists a bijection
ψ : V1 → V2 which induces a bijection between E1 and E2 and satisfies φ2 = ψ ◦φ1,
in which case, ψ is unique. We write (T1;φ1) ∼= (T2;φ2) if (T1;φ1) is isomorphic to
(T2;φ2).

X–trees arise in the study of hierarchical classification. For a general overview
of X–trees, including a description of the natural equivalence between X–trees and
certain set systems due to Buneman [4], see [1, Chapters 1 and 5]. Note that,
in [1], our “free X–trees” correspond to “free, separated X–trees”. Motivated by
two fundamental problems in hierarchical classification, this paper has two main
results, Theorem 1.2 and Corollary 1.4. Each result is a graph-theoretic character-
ization for when, up to isomorphism, there is a unique X–tree satisfying particular
properties. In this section, we set up the necessary terminology and notation, and
state Theorem 1.2 and Corollary 1.4. The proof of Theorem 1.2 is delayed until
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Section 3. The next section contains some known results that will be needed in
the proof of Theorem 1.2. Section 4 completes the paper with a brief discussion
about the statement of Theorem 1.2 and several further results concerning these
two fundamental problems.

A partial partition of X is a partition of a non-empty subset of X into at least
two sets (called cells), at most one of which may be empty. If these cells are
A1, A2, . . . , An, where n ≥ 2, we denote the partial partition by A1|A2| · · · |An.
Note that the ordering of the cells in a partial partition is arbitrary. The partial
partition is called a partial split if n = 2. Furthermore, if n = 2 and A1 ∪A2 = X ,
then A1|A2 is called a split of X .

For a set Σ of partial partitions of X , we denote the set

{(A, σ) : A is a non-empty cell of σ and σ ∈ Σ}

by C(Σ). Throughout this paper, the only significant part of an element of C(Σ)
is the first coordinate. For this reason and for brevity, we denote such an element,
(A, σ) say, by just A.

Let T = (T ;φ) be an X-tree, let Σ be a set of partial partitions of X , and let
A1|A2| · · · |An be an element of Σ, where n ≥ 2. If there is a set F of edges of
T such that, for all distinct i, j ∈ {1, 2, . . . , n}, φ(Ai) and φ(Aj) are subsets of
the vertex sets of different components of T \F , then T displays A1|A2| · · · |An; the
edges of F are said to display A1|A2| · · · |An (in T ). The X–tree T displays Σ if
every element of Σ is displayed by T . If e is an edge of T such that every set of edges
that display A1|A2| · · · |An contains e, then e is distinguished by A1|A2| · · · |An (in
T ). If each edge of T is distinguished by an element of Σ, then we say that T is
distinguished by Σ or Σ distinguishes T . The set Σ defines T if T displays Σ and
all other X–trees that display Σ are isomorphic to T . An important observation to
note is that if Σ defines an X–tree, then this X–tree must be a free ternary X–tree;
for otherwise, by “resolving” any vertex that has either degree at least four or is
multiply labelled by elements of X , one can construct from such an X–tree a free
ternary X–tree that also displays Σ.
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Figure 2. (i) A free ternary X–tree T that displays Σ =
{{1, 2}|{3, 5}, {3, 4}|{2, 6, 7}, {5, 6}|{1, 4, 7}}. (ii) The graphs
int(Σ) (solid edges) and G(T ,Σ) (all edges).

Let Σ be a set of partial partitions of X . The partial partition intersection graph
of Σ, denoted int(Σ), is the graph whose vertex set is C(Σ) and has the property
that two vertices are joined by an edge precisely if their intersection is non-empty.
(A characterization of partition intersection graphs, when every member of Σ is a
(full) partition of X , is given in [9].) A graph is chordal if every cycle with at least
four vertices has an edge connecting two non-consecutive vertices. A chordalization
(or triangulation) of a graph G = (V,E) is a graph G′ = (V,E′) in which G′ is
chordal and E ⊆ E′. A graph G is a restricted chordal completion of int(Σ) if G is
a chordalization of int(Σ) and the following property holds: if A and A′ are non-
empty cells of an element of Σ, then A and A′ are not adjacent in G. A restricted
chordal completion G of int(Σ) is minimal if, for every non-empty subset F of edges
in E(G) − E(int(Σ)), G\F is not chordal.

To illustrate some of these notions, take X = {1, 2, . . . , 7} and let

Σ = {{1, 2}|{3, 5}, {3, 4}|{2, 6, 7}, {5, 6}|{1, 4, 7}}.

Let T be the free ternary X–tree shown in Figure 2(i). Then T displays Σ. A
(unique) restricted chordal completion of int(Σ) is shown in Figure 2(ii), where
int(Σ) is the graph induced by the solid lines of this graph.

We can now describe the first of the two fundamental problems mentioned earlier.
Suppose that X is a set of objects. In evolutionary biology, X may be a set of
species. A particular character (or attribute) of a subset of the objects induces a
partial partition of X so that the states of this character correspond to the cells of
this partial partition and an element of X is in some cell precisely if it takes this
state for this character. Suppose that T is a free X–tree representing the historical
“evolution” of the members in X , and suppose that A1|A2| · · · |An, where n ≥ 2, is
a partial partition of X . If we make the assumption that the states of a character
evolve along the edges of T so that a change to some particular state occurs at
most once, then T displays A1|A2| · · · |An. Let Σ be a set of partial partitions of
X . In the more general setting of X–trees, the first problem is to determine if
there exists an X–tree that displays Σ and, if there is such an X–tree, determine



4 CHARLES SEMPLE AND MIKE STEEL

whether it is unique up to isomorphism. Deciding the first part is an NP-complete
problem [3, 11]. However, Theorem 1.1 (indicated in [5] and [10], and formally
proved in [11]) is a graph-theoretic characterization for when there exists such an
X–tree.

Theorem 1.1. Let Σ be a set of partial partitions of X. Then there exists an
X–tree that displays Σ if and only if there exists a restricted chordal completion of
int(Σ).

Our first main result, Theorem 1.2, is the uniqueness analogue of Theorem 1.1.
Let T be an X–tree and let X ′ be a subset of X . We denote the minimal subtree of
T containing X ′ by T (X ′). (Observe that T (X ′) may not be an X ′–tree.) Now let
A and A′ be subsets of X . If the intersection of the vertex sets of T (A) and T (A′)
is non-empty, then T (A)∩T (A′) is said to be non-empty; otherwise, T (A)∩T (A′)
is empty. Note that if A1|A2| · · · |An is a partial partition of X and T is an X–tree
that displays A1|A2| · · · |An, then T (Ai) ∩ T (Aj) = ∅ for all distinct i and j in
{1, 2, . . . , n}. Let Σ be a set of partial partitions of X . The subtree intersection
graph of T induced by Σ is the graph whose vertex set is C(Σ) and which has
the property that two vertices, A and A′ say, are joined by an edge precisely if
T (A) ∩ T (A′) is non-empty. This graph is denoted by G(T ,Σ). As an example,
consider the free ternary X–tree T and the set Σ of partial partitions of X shown
in Figure 2. Then G(T ,Σ) is the graph, with dashed lines included, in Figure 2(ii).

Theorem 1.2. Let Σ be a set of partial partitions of X. Then Σ defines an X–tree
if and only if the following two conditions are satisfied:

(i) there is a free ternary X–tree that displays Σ and is distinguished by Σ; and
(ii) there is a unique minimal restricted chordal completion of int(Σ).

Furthermore, if T is the X–tree defined by Σ, then T is a free ternary X–tree that
displays Σ and is distinguished by Σ, and G(T ,Σ) is the unique minimal restricted
chordal completion of int(Σ).

The proof of Theorem 1.2 is the substance of Section 3. In Section 4, we highlight,
with two examples, that conditions (i) and (ii) in the statement of Theorem 1.2
cannot be weakened. We remark here that a different type of combinatorial char-
acterization has recently been given in [2] for when a minimum sized set of partial
X–splits, where each cell of every partial X–split has size two, defines an X–tree.

We next describe two basic operations on X–trees. Let T = (T ;φ) be an X–tree
and let X ′ be a subset of X . The restriction of T to X ′, denoted T |X ′, is the
X ′–tree obtained from T (X ′) by suppressing all vertices of degree two that are not
in φ(X ′). The operation of restriction is illustrated by (i) and (ii) in Figure 1. Now
let e be an edge of T with end-vertices u and v, and let ve be the vertex of T/e that
identifies u and v. Then the X–tree obtained from T by contracting e is (T/e;φe),
where φe is the map from X to the vertex set of T/e defined by

φe(x) =

{
φ(x) if x 6∈ φ−1(u) ∪ φ−1(v),
ve if x ∈ φ−1(u) ∪ φ−1(v).
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The X–tree (T/e;φe) is denoted by T /e. An X–tree T ′ is said to be obtained
from T by contraction if T ′ can be obtained from T by contracting a sequence
of edges. It is easily checked that the ordering of the edges in such a sequence is
arbitrary. Note that if Σ is a set of partial partitions of X and T is an X–tree that
is distinguished by Σ, then no contraction of T displays Σ.

Let X1 and X2 be subsets of X . An X1–tree T1 resolves an X2–tree T2 if T2

can be obtained from a restriction of T1 by contraction (or, equivalently, T2 is a
restriction of a contraction of T1), in which case, T1 is said to be a resolution of T2.
This provides a convenient partial order on the set of X ′–trees which we denote
by ≤, where X ′ is a subset of X . In the case above, we write T2 ≤ T1. As an
example, in Figure 1 we have T ′ ≤ T .

We now state the second fundamental problem. For i ∈ {1, 2, . . . , n}, let Ti be an
Xi–tree, where Xi is a subset of X . A basic task in hierarchical classification is to
combine all of the members (the input trees) of

⋃n
i=1{Ti} into a single X–tree (the

output tree) so that, for each i, the output tree is a resolution of Ti. Informally, this
means that, for each i, the output tree contains all of the “branching” information
of Ti. Of course, this may not be possible, and so we have our second fundamental
problem: determine if there exists an X–tree T such that, for each i, Ti ≤ T and, if
there is such an X–tree, determine whether it is unique up to isomorphism. Like the
first fundamental problem, deciding the first part of this problem is an NP-complete
problem [11], but again there is a graph-theoretic characterization for when there
exists an X–tree with the desired properties. Corollary 1.3 is a consequence of
Theorem 1.1. It does not seem to be explicitly stated anywhere, but, as shown
below, it is easily deduced from results in [11].

Let T = (T ;φ) be an X–tree and let e be an edge of T . Then e is the unique edge
of T that displays the X–split φ−1(V1)|φ−1(V2), where V1 and V2 are the vertex
sets of the components of T \e. We denote the collection of X–splits of T that are
displayed by the edges of T by Σ(T ).

Corollary 1.3. For i ∈ {1, 2, . . . , n}, let Ti be an Xi–tree, where Xi ⊆ X. Let
Σ =

⋃n
i=1 Σ(Ti). Then there exists an X–tree T such that, for all i, Ti ≤ T if and

only if there exists a restricted chordal completion of int(Σ).

Proof. It is shown in [11, Proposition 2(2)] that an X–tree T ′ displays Σ if and
only if Ti ≤ T ′ for all i. Corollary 1.3 now readily follows from Theorem 1.1.

Our second main result, Corollary 1.4, is the uniqueness analogue of Corollary 1.3
and is easily deduced using [11, Proposition 2(2)] in combination with Theorem 1.2.

Corollary 1.4. For i ∈ {1, 2, . . . , n}, let Ti be an Xi–tree, where Xi ⊆ X. Let
Σ =

⋃n
i=1 Σ(Ti). Then there is a unique X–tree that resolves Ti, for all i, if and

only if the following two conditions are satisfied:

(i) there is a free ternary tree X–tree that displays Σ and is distinguished by Σ;
and

(ii) there is a unique minimal restricted chordal completion of int(Σ).
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Furthermore, if T is the unique X–tree that resolves Ti for all i, then T is a free
ternary X–tree that displays Σ and is distinguished by Σ, and G(T ,Σ) is the unique
minimal restricted chordal completion of int(Σ).

2. Some Useful Results

All of the results presented in this section are needed for the proof of Theorem 1.2.
The first result is a characterization of chordal graphs published independently by
Buneman [5], Gavril [7], and Walter [12] (see also Flament [6]). The proof of
Theorem 1.1 in [11] is based on this result.

Theorem 2.1. The following statements are equivalent for a graph G with vertex
set V :

(i) G is chordal;
(ii) G is the intersection graph of a collection of subtrees of a tree; and
(iii) There exists a tree T whose vertex set C is the set of maximal cliques of G

such that, for each v ∈ V , the subgraph of T induced by the elements of C
that contain v is a subtree of T .

Corollary 2.2 is an immediate consequence of the equivalence of Parts (i) and (ii)
of Theorem 2.1.

Corollary 2.2. Let Σ be a set of partial partitions of X, and let T be an X–tree.
Then G(T ,Σ) is chordal.

The next two lemmas are implicit in the proof of Theorem 1.1 given in [11].
However, because of their role in the proof of Theorem 1.2, we include their proofs.
We freely use Lemma 2.3 in Section 3.

Lemma 2.3. Let T be an X–tree, and let Σ be a set of partial partitions of X.
Then G(T ,Σ) is a restricted chordal completion of int(Σ) if and only if T displays
Σ.

Proof. If T displays Σ, then, as the edge set of int(Σ) is a subset of the edge set of
G(T ,Σ), it follows by Corollary 2.2 that G(T ,Σ) is a restricted chordal completion
of int(Σ).

Conversely, suppose that T does not display Σ. Then there is a pair of non-empty
cells A1 and A2 of a partial partition of Σ such that T (A1) ∩ T (A2) is non-empty.
Therefore {A1, A2} is an edge of G(T ,Σ), and so, although G(T ,Σ) is chordal, it
is not a restricted chordal completion of int(Σ). This completes the proof.

Lemma 2.4. Let Σ be a set of partial partitions of X. If G is a restricted chordal
completion of int(Σ), then there exists an X–tree T such that E(G(T ,Σ)) ⊆ E(G).

Proof. If G is disconnected, then there is a partitioning of X based upon the com-
ponents of G as an element x of X can only be an element of a vertex label of
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exactly one component. With this in mind, it is easily seen that that, provided the
result holds for when G is connected, it also holds for when G is disconnected.

Suppose G is connected with vertex set V . By Theorem 2.1, there exists a tree
T ′ = (C,E) whose vertex set C is the set of maximal cliques of G such that, for each
v ∈ V , the subgraph of T ′ induced by the elements of C that contain v is a subtree
of T ′. We complete the proof of Lemma 2.4 by defining an X–tree T = (T ;φ) via
T ′ and showing that E(G(T ,Σ)) ⊆ E(G).

Let a be an element of X . Since int(Σ) is a subgraph of G, the set Va of vertices
of G that contain a induce a clique of G, and so there is an element Ca of C in
which Va is a subset. Identify a with this vertex and set φ(a) = Ca. Repeat this
process for the remaining elements of X . Define T to be the tree obtained from
T ′ by suppressing all vertices of degree at most two that are not identified by an
element of X . We claim that E(G(T ,Σ)) ⊆ E(G).

Let A1 and A2 be elements of C(Σ), and suppose that A1 and A2 are non-
adjacent in G. Then the subtrees T ′

1 and T ′
2 of T ′ induced by the elements of

C that contain A1 and A2, respectively, do not intersect. Since the elements of
Ai can only be identified with vertices in T ′

i , for each i ∈ {1, 2}, it follows that
T (A1) ∩ T (A2) is empty. Therefore A1 and A2 are non-adjacent in G(T ,Σ), and
the claim follows.

If Σ is a set of partial partitions of X and G is a restricted chordal comple-
tion of int(Σ), then there is no guarantee that there exists an X–tree T such
that G(T ,Σ) = G. For example, suppose that X = {1, 2, 3, 4, 5, 6} and Σ =
{{1, 2}|{3, 5}, {2, 3}|{4, 5}, {3, 4}|{5, 6}}. Let G be the graph obtained from int(Σ)
by adding the edge {{1, 2}, {3, 4}}. Clearly, G is a restricted chordal completion
of int(Σ). Furthermore, it is easily deduced that all of the X–trees that display Σ
are resolutions of the X–tree that is a path consisting of four vertices labelled, in
order, {1, 2}, {3}, {4}, and {5, 6}. Since the subtrees of this X–tree induced by
{1, 2} and {3, 4} do not intersect, it follows by Lemma 2.3 that there is no X–tree
with the desired property.

An immediate consequence of Lemma 2.4 that becomes useful in the last part of
the proof of Theorem 1.2 is Corollary 2.5.

Corollary 2.5. Let Σ be a set of partial partitions of X, and let G be a minimal
restricted chordal completion of int(Σ). Then there exists an X–tree T such that
G(T ,Σ) = G.

We noted earlier that if Σ is a set of partial partitions of X that defines an
X–tree, then this X–tree must be a free ternary X–tree. Combining this note with
[11, Proposition 6], we get Proposition 2.6.

Proposition 2.6. Let Σ be a set of partial partitions of X. If Σ defines an X–tree
T , then T is a free ternary X–tree that displays Σ and is distinguished by Σ.
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3. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on Lemma 3.1. Indeed, most of the work in
proving this theorem goes into proving this lemma. Theorem 1.2 is formally proved
after the proof of Lemma 3.1.

Lemma 3.1. Let Σ be a set of partial X–splits. Suppose that the following two
conditions are satisfied:

(i) there is a free ternary X–tree that displays Σ and is distinguished by Σ; and
(ii) there is a unique minimal restricted chordal completion of int(Σ).

Then Σ defines an X–tree.

Before proving Lemma 3.1, we establish several results, the first of which may
have independent interest, so we call it a theorem.

Theorem 3.2. Let Σ be a set of partial X–splits, and let T be a free ternary X–
tree that displays Σ and is distinguished by Σ. Let T ′ be an X–tree that displays
Σ. If the edge set of G(T ′,Σ) is a subset of the edge set of G(T ,Σ), then T ′ ∼= T .

Proof. Let T = (T ;φ) and T ′ = (T ′;φ′). We prove Theorem 3.2 by showing that
the result holds if T ′ has the additional property that, for each edge e′ of T ′, the
edge set of G(T ′/e′,Σ) is not a subset of the edge set of G(T ,Σ). To see that this
is sufficient, suppose that T ′ does not have this additional property. Then there is
an X–tree T ′′ = (T ′′;φ′′) that displays Σ, satisfies T ′′ ≤ T ′, and has the property
that, for each edge e′′ of T ′′, the edge set of G(T ′′/e′′,Σ) is not a subset of the edge
set of G(T ,Σ). If T ′′ ∼= T , then, as T is a free ternary X–tree, T ′′ = T ′. Thus we
may assume that T ′ does indeed have the additional property.

Let E and E′ denote the edge sets of G(T ,Σ) and G(T ′,Σ), respectively. Since
every edge of T is distinguished by an element of Σ and since T is free, it follows
that, for every element x of X , the set {x} is a vertex of int(Σ). Therefore the
map φ′ is one-to-one, for otherwise E′ 6⊆ E. We freely use this fact throughout the
proof.

The proof is by induction on the cardinality of X . If |X | ∈ {2, 3}, then the
theorem clearly holds. Let |X | = n, where n ≥ 4, and assume that the theorem
holds for when |X | = n− 1.

Since T is a tree, there exists a pair of pendant vertices of T , u and v say, with
the property that u and v are adjacent to the same vertex, w say, of T . As T is
ternary and |X | ≥ 4, u and v are the only pendant vertices adjacent to w. Let
a and b be the elements of X such that φ(a) = u and φ(b) = v. We make two
observations. The first observation is that, as each edge of T is distinguished by an
element of Σ, {a, b} is a vertex of int(Σ). Furthermore, if C is a vertex of int(Σ) and
{{a, b}, C} is an element of E, then either a or b is an element of C. The second
observation is that, as T displays Σ, there is no element, A|B say, of Σ such that
a ∈ A, b ∈ B, |A| ≥ 2, and |B| ≥ 2.
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Let u′ and v′ be the vertices of T ′ such that φ′(a) = u′ and φ′(b) = v′. The
following result enables us to break the proof into two manageable cases.

3.2.1. In T ′, the path P ′ from u′ to v′ contains at most two edges and, moreover,
the one possible intermediary vertex in P ′ is not an element of φ′(X).

Proof. It follows from the first observation that there is no intermediary vertex on
the path from u′ to v′ that is an element of φ′(X), for otherwise E′ is not a subset
of E. Now suppose, to the contrary, that P ′ contains at least three edges. Then
there exists an edge, e′ say, in P ′ that is incident with neither u′ nor v′. Let w′

1

and w′
2 be the end-vertices of e′ so that u′ is in the same component of T ′\e′ as

w′
1. Since no intermediary vertex of P ′ is an element of φ′(X) and since T ′ is an

X–tree, w′
1 and w′

2 both have degree at least three. By our additional assumption
on T ′, E(G(T ′/e′,Σ)) 6⊆ E(G(T ,Σ)). Therefore there are elements C and D of
C(Σ) such that w′

1 ∈ T ′(C), w′
2 6∈ T ′(C), w′

2 ∈ T ′(D), w′
1 6∈ T ′(D), and {C,D} is

not an element of E(G(T ,Σ)).

If a 6∈ C, then {{a, b}, C} is an element of E′. However, as b 6∈ C, {{a, b}, C}
is not an edge of E; a contradiction. Therefore a ∈ C. Similarly, b ∈ D. Since
w′

1 6∈ φ′(X), it follows that |C| ≥ 2. Similarly, |D| ≥ 2. But then, by considering T ,
it is easily seen that T (C)∩T (D) is non-empty, contradicting the fact that {C,D}
is not an element of E(G(T ,Σ)). This completes the proof of (3.2.1).

Let Σb be the set of partial (X − {b})–splits obtained from Σ by making the
following replacements: (i) if {a}|B is an element of Σ such that b ∈ B, then
replace {a}|B with ∅|Bb, where Bb is obtained from B by replacing b with a; (ii) if
{b}|A is an element of Σ such that a ∈ A, then replace {b}|A with ∅|A; and (iii), for
each remaining element of Σ, replace b with a. The fact that Σb is a set of partial
splits on X − {b} follows from the second observation.

By (3.2.1), there are two cases to consider depending upon whether the number
of edges in P ′ is one or two.

Case (a). The number of edges in P ′ is two.

Let Tb be the tree obtained from T by contracting the edges {u,w} and {v, w},
and let wb denote the vertex of Tb identifying u, v, and w. Let φb be the map from
X − {b} into the vertex set of Tb defined by φb(a) = wb and, for all x ∈ X −{a, b},
φb(x) = φ(x). Let Tb = (Tb;φb). Since T is a free ternary X–tree, Tb is a free
ternary (X−{b})–tree. Denoting the vertex of T ′ adjacent to both u′ and v′ by w′,
let T ′

b be the tree obtained from T ′ by contracting the edges {u′, w′} and {v′, w′},
and let w′

b denote the vertex of T ′
b that identifies u′, v′, and w′. Let φ′b be the

map from X − {b} into the vertex set of T ′
b defined by φ′b(a) = w′

b and, for all
x ∈ X − {a, b}, φ′b(x) = φ′(x). Let T ′

b = (T ′
b;φ

′
b).

Consider the assumptions made on T and T ′ in the statement of Theorem 3.2.
We next show that the analogous assumptions hold for Tb and T ′

b , respectively, with
Σb replacing Σ.
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It is easily checked that Tb displays Σb and Tb is distinguished by Σb. Suppose
that T ′

b does not display Σb. Then, as T ′ displays Σ, it is easily seen that there must
be an element, A1|B1 say, of Σ such that except for {u′, w′} and {v′, w′} no other
edges of T ′ displays A1|B1 in T ′, and so its counterpart in Σb is not displayed by T ′

b .
Clearly, this counterpart in Σb is not produced via a type (i) or (ii) replacement.
Suppose that {u′, w′} is distinguished by A1|B1 in T ′. Without loss of generality, we
may assume that φ′(A1) is a subset of the vertex set of the component of T ′\{u′, w′}
containing u′, in which case, b 6∈ A1. If a is not an element of A1, then, by the first
observation, {{a, b}, A1} is not an element of E, but {{a, b}, A1} is an element of E′;
a contradiction. Thus a ∈ A1. Since the counterpart of A1|B1 in Σb is not produced
via a type (i) or (ii) replacement, |A1| ≥ 2, and therefore, as w′ 6∈ φ′(X), it follows
by the second observation that b 6∈ B1. This implies, by the first observation, that
{{a, b}, B1} is not an element of E. However, {{a, b}, B1} is an element of E′; a
contradiction. Hence {u′, w′} is not distinguished by A1|B1. Similarly, {v′, w′, } is
not distinguished by A1|B1. Therefore {u′, w′} and {v′, w′} are precisely the edges
of T ′ that display A1|B1 in T ′. Without loss of generality, we may assume that
φ′(A1) and φ′(B1) are subsets of the vertex sets of the components of T ′\{u′, w′}
and T ′\{v′, w′} containing u′ and v′, respectively. Assuming a is not an element
of A1 and arguing as above, we deduce that a ∈ A1. Similarly, b ∈ B1. Since
the counterpart of A1|B1 in Σb is not produced via a type (i) or (ii) replacement,
|A1| ≥ 2 and |B1| ≥ 2, contradicting the second observation. Thus T ′

b does indeed
display Σb.

Let Eb and E′
b denote the edge sets of the graphs G(Tb,Σb) and G(T ′

b ,Σb),
respectively. We now show that E′

b ⊆ Eb. Let Cb and Db be elements of C(Σb),
and suppose that {Cb, Db} is an element of E′

b. Let C and D be the counterparts
of Cb and Db in C(Σ), respectively. If a is an element of both Cb and Db, then
{Cb, Db} is an element of Eb. Therefore we may assume that a is not an element
of both Cb and Db. We next show that {C,D} is an element of E′. The only
plausible case where this may not happen is when T ′

b (Cb) ∩ T ′
b (Db) = {w′

b} and
T ′(C) ∩ T ′(D) = ∅, in which case, {{a, b}, C} and {{a, b}, D} are both elements of
E′. Since E′ ⊆ E, it follows by the first observation that either a or b is an element
of C and either a or b is an element of D. But then a is an element of both Cb and
Db, contradicting our assumption earlier in the paragraph. Thus {C,D} ∈ E′. So,
as E′ ⊆ E, {C,D} ∈ E, which in turn implies that {Cb, Db} ∈ Eb. Hence E′

b ⊆ Eb

as claimed.

At last, we can invoke the induction assumption which implies that T ′
b is isomor-

phic to Tb. Using the facts that T ′
b is obtained by contracting {u′, w′} and {v′, w′}

in T ′, and that each of {u,w} and {v, w} of T is distinguished by an element of
Σ, it is easily deduced that T ′ is isomorphic to T . This completes the proof of
Case (a).

Case (b). The number of edges in P ′ is one.

In this case, we argue, as in Case (a), to deduce that T ′
b is isomorphic to Tb. How-

ever, in this case, as each of {u,w} and {v, w} of T is distinguished by an element
of Σ in T , we deduce a contradiction. This completes the proof of Theorem 3.2.
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The next lemma, [10, Rule 2], is needed for the proof of Lemma 3.4.

Lemma 3.3. Let A1|B1 and A2|B2 be partial X–splits. Let T be a free X–tree that
displays A1|B1 and A2|B2. If T (A1)∩T (A2), T (A2)∩T (B1), and T (B1)∩T (B2)
are all non-empty, then T displays (A1 ∪A2)|B2.

Let T = (T ;φ) be a free X-tree, and let e = {u, v} be an internal edge of T
that displays the partial X–split A|B so that A is a subset of the vertex set of
the component of T \e containing u. Then e is strongly distinguished by A|B if
the vertex set of each component of T \u, except for the one containing v, contains
an element of A and the vertex set of each component of T \v, except for the one
containing u, contains an element of B. Observe that if e is strongly distinguished
by A|B, then e is distinguished by A|B. Moreover, if T is a free ternary X–tree,
then the notions of distinguished and strongly distinguished are equivalent.

Lemma 3.4. Let Σ be a set of partial X–splits. Let T1 = (T1;φ1) and T2 = (T2;φ2)
be free X–trees that display Σ. Suppose that every internal edge of T1 is strongly
distinguished by an element of Σ and, moreover, |Σ| is equal to the number of
internal edges of T1. If the edge set of G(T1,Σ) is a subset of the edge set of
G(T2,Σ), then T1 ≤ T2.

Proof. The proof of Lemma 3.4 is by induction on the number of internal edges
of T1. If T1 has exactly one internal edge, then, as T2 displays Σ, it is clear
that T1 ≤ T2. Suppose that T1 has n internal edges, where n ≥ 2, and assume
that the result holds for all free X–trees with a smaller number of internal edges.
Throughout the proof, we denote the edge sets of G(T1,Σ) and G(T2,Σ) by E1 and
E2, respectively.

Let e be an internal edge of T1 with the property that every vertex adjacent to
one of its end-vertices is a pendant vertex. Note that T1 must have such an edge.
Denote the end-vertex of e with this property by w1 and denote the other end-
vertex of e by w2. Let f1, f2, . . . , fr and g1, g2, . . . , gs denote the pendant edges
of T1 that are incident with w1 and w2, respectively. Let h1, h2, . . . , ht denote the
internal edges of T1, other than e, that are incident with w2. Note that r ≥ 2 and
s + t ≥ 2 since T1 is a free X–tree. Let A|B be the (unique) partial X–split of Σ
that strongly distinguishes e. Without loss of generality, we may assume that A =
{a1, a2, . . . , ar}, where a1, a2, . . . , ar are the pendant vertices of T1 corresponding
to the end-vertices of f1, f2, . . . , fr, respectively. Let b1, b2, . . . , bs+t be elements
of B such that, for each distinct j, k ∈ {1, 2, . . . , s + t}, bj and bk are in different
components of T1\w2. Thus e is strongly distinguished by A|{b1, b2, . . . , bs+t} in
T1.

Let Σe be the set of partial X–splits obtained from Σ by removing A|B and, for
each i ∈ {1, 2, . . . , t}, replacing the element Ai|Bi of Σ that strongly distinguishes
hi by (Ai ∪A)|Bi, where Ai ∩A is non-empty.

Consider T1/e. Evidently, T1/e is a free X–tree that displays Σe and |Σe| is equal
to the number of internal edges of T1/e. Furthermore, as every internal edge of T1 is
strongly distinguished by an element of Σ in T1, it is easily seen that every internal
edge of T1/e is strongly distinguished by an element of Σe in T1. Now consider T2.
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We next show that T2 displays Σe. Since T2 displays Σ, it suffices to show that,
for each i ∈ {1, 2, . . . , t}, T2 displays (Ai ∪ A)|Bi. It is straightforward to deduce
that each of T1(A) ∩ T1(Ai), T1(Ai) ∩ T1(B), and T1(B) ∩ T1(Bi) is non-empty.
Therefore, as E1 ⊆ E2, each of T2(A)∩T2(Ai), T2(Ai)∩T2(B), and T2(B)∩T2(Bi)
is non-empty. Hence, by Lemma 3.3, T2 displays (Ai ∪A)|Bi.

To invoke the induction assumption, we lastly show that the edge set E1e of
G(T1/e,Σe) is a subset of the edge set E2e of G(T2,Σe). Let {C,D} be an element of
E1e. Then T1/e(C)∩T1/e(D) is non-empty. There are three possibilities to consider
depending upon whether C or D is of the form Ai ∪A for some i ∈ {1, 2, . . . , t}.

Evidently, if C and D are of the forms Ai ∪ A and Aj ∪ A, for some i, j ∈
{1, 2, . . . , t}, then T2(C) ∩T2(D) is non-empty. Suppose that exactly one of C and
D is of the form Ai ∪ A for some i. Without loss of generality, we may assume
that C has this property. If D ∩A is non-empty, then T2(C)∩T2(D) is non-empty.
Therefore assume that D ∩ A is empty. Then, as every element of A is adjacent
to w1 in T1 and T1/e(C) ∩ T1/e(D) is non-empty, it follows that T1(Ai) ∩ T1(D) is
non-empty. This in turn implies that T2(Ai)∩T2(D) is non-empty as E1 ⊆ E2, and
therefore T2(C) ∩ T2(D) is non-empty.

Now suppose that neither C nor D is of the form Ai ∪A. For this possibility, we
show that T1(C)∩T1(D) is non-empty, thus showing that T2(C)∩T2(D) is non-empty
as E1 ⊆ E2. Assume that T1(C) ∩ T1(D) is empty. Then, as T1/e(C) ∩ T1/e(D) is
non-empty, w1 ∈ T1(C) and w2 6∈ T1(C). Therefore, by the assumptions on Σ in the
statement of the theorem, C must equal A. However, A is not an element of C(Σe).
This contradiction completes the proof of the last possibility, and so E1e ⊆ E2e.

It now follows by the induction assumption that T1/e ≤ T2. Suppose that T2 is
not a resolution of T1. Then T2 must resolve T1/e so that, for every internal edge
e′ of T2 with the property that A is a subset of the vertex set V ′ of one component
of T2\e′, B ∩ V ′ is non-empty. But this implies that T2 does not display A|B. This
contradiction completes the proof of Lemma 3.4.

The next corollary generalizes Lemma 3.4.

Corollary 3.5. Let Σ be a set of partial X–splits. Let T1 and T2 be free X–trees
that display Σ. Suppose that every internal edge of T1 is strongly distinguished by
an element of Σ. If the edge set of G(T1,Σ) is a subset of G(T2,Σ), then T1 ≤ T2.

Proof. Let T1 = (T1;φ1), and choose Σ′ to be a subset of Σ so that |Σ′| is equal
to the number of internal edges of T1 and every internal edge of T1 is strongly
distinguished by an element of Σ′. Since E(G(T1,Σ)) ⊆ E(G(T2,Σ)), it follows that
E(G(T1,Σ′)) ⊆ E(G(T2,Σ′)). Therefore, by Lemma 3.4, T1 ≤ T2 as required.

We now combine Theorem 3.2 and Corollary 3.5 to formally prove Lemma 3.1.

Proof of Lemma 3.1. Let Σ be a set of partial X–splits, and let T be a free ternary
X–tree that displays Σ and is distinguished by Σ, and let G be the unique minimal
restricted chordal completion of int(Σ). Combining Corollary 2.5 and Theorem 3.2,
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we deduce that G(T ,Σ) = G. Suppose that T ′ is an X–tree that displays Σ. Then
there is a free X–tree T ′′ that displays Σ such that T ′ ≤ T ′′. Since T is ternary
and is distinguished by Σ, every internal edge of T is strongly distinguished by an
element of Σ. Therefore, by Corollary 3.5, T ≤ T ′′. But T is a free ternary X–tree,
and so T ′′ ∼= T . As T is distinguished by Σ, it follows that T ′ = T ′′. We conclude
that Σ defines T . 2

Proof of Theorem 1.2. Suppose that Σ defines an X–tree T . Then, by Proposi-
tion 2.6, T satisfies the properties of (i). Let G be a restricted chordal completion of
int(Σ). We next show that there is a unique minimal restricted chordal completion
of int(Σ), namely, G(T ,Σ).

Let G′ be a minimal restricted chordal completion of int(Σ) so that E(G′) is
a subset of E(G). Then, by Corollary 2.5, there exists an X–tree T ′ such that
E(G(T ′,Σ)) = E(G′). By Lemma 2.3, T ′ displays Σ and so, as Σ defines T , we
must have T ′ ∼= T . Since E(G(T ′,Σ)) ⊆ E(G), it follows that E(G(T ,Σ)) ⊆ E(G).
Hence there is a unique minimal restricted chordal completion of int(Σ), namely,
G(T ,Σ).

It now follows that the proof of Theorem 1.2 is completed by showing that if (i)
and (ii) hold, then Σ defines an X–tree. We begin with three lemmas. For n ≥ 2,
let A1|A2| · · · |An be an element of Σ, and consider the set

⋃
1≤i<j≤n{Ai|Aj}. Let

Σ′ denote the collection of all such sets that are obtained in this way from the
elements of Σ.

Lemma 3.6. An X–tree T ′ displays Σ if and only if T ′ displays Σ′.

Proof. Let A1|A2| · · · |An be an element of Σ, where n ≥ 2. To prove Lemma 3.6,
we simply need to show that T ′ displays A1|A2| · · · |An if and only if T ′ displays⋃

1≤i<j≤n{Ai|Aj}. The “only if” part of this last statement clearly holds. To
prove the converse, suppose that T ′ does not display A1|A2| · · · |An. Then, for
some distinct i and j of {1, 2, . . . , n}, the set T ′(Ai) ∩ T ′(Aj) is non-empty. But
then T ′ does not display Ai|Aj , and so T ′ does not display

⋃
1≤i<j≤n{Ai|Aj}. This

completes the proof of Lemma 3.6.

The first of the next two lemmas is a useful observation which is repeatedly used
in the rest of the proof.

Lemma 3.7. Let T ′ be an X–tree that displays Σ (or, equivalently, displays Σ′).
Let A and B be elements of C(Σ) such that A ∩ B is empty. Then {A,B} is an
edge of G(T ′,Σ) if and only if {A,B} is an edge of G(T ′,Σ′).

Lemma 3.8. Let T ′ be an X–tree that displays Σ (or, equivalently, displays Σ′).
If G(T ′,Σ′) is a minimal restricted chordal completion of int(Σ′), then G(T ′,Σ) is
a minimal restricted chordal completion of int(Σ).

Proof. Suppose that G(T ′,Σ′) is a minimal restricted chordal completion of int(Σ′),
but G(T ′,Σ) is not a minimal restricted chordal completion of int(Σ). Then,
by Corollary 2.5, there is an X–tree T ′′ that displays Σ such that E(G(T ′′,Σ))
is a proper subset of E(G(T ′,Σ)). By Lemma 3.6, T ′′ displays Σ′, and so, by
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Lemma 2.3, G(T ′′,Σ′) is a restricted chordal completion of int(Σ′). We obtain a
contradiction by showing that E(G(T ′′,Σ′)) is a proper subset of E(G(T ′,Σ′)).

Let {A′, B′} be an edge of G(T ′′,Σ′). If A′ ∩ B′ 6= ∅, then {A′, B′} is an edge
of G(T ′,Σ′). Therefore assume that A′ ∩B′ = ∅. Then, by Lemma 3.7, {A′, B′} is
an edge of G(T ′′,Σ), and so, as E(G(T ′′,Σ)) ⊂ E(G(T ′,Σ)), {A′, B′} is an edge
of G(T ′,Σ). By Lemma 3.7, {A′, B′} is an edge of G(T ′,Σ′). Thus E(G(T ′′,Σ′))
is a subset of E(G(T ′,Σ′)). To see that this inclusion is proper, let {A,B} be
an element of E(G(T ′,Σ)) − E(G(T ′′,Σ)). Clearly, A ∩ B is empty, and so using
Lemma 3.7 twice, we get that {A,B} is an edge of G(T ′,Σ′), but is not an edge of
G(T ′′,Σ′). Hence E(G(T ′′,Σ′)) is a proper subset of E(G(T ′,Σ′)), thus completing
the proof of Lemma 3.8.

We now combine Lemmas 3.6 and 3.8 with Lemma 3.1 to complete the proof of
Theorem 1.2.

Suppose that (i) and (ii) hold. We first show that (i) and (ii) of Lemma 3.1
hold with Σ′ replacing “Σ”. Using Lemma 3.6, it is easily seen that an X–tree that
satisfies (i) of Theorem 1.2 satisfies (i) of Lemma 3.1. Now suppose, to the contrary,
that there is not a unique minimal restricted chordal completion of int(Σ′). Let G′

1

and G′
2 be two distinct minimal restricted chordal completions of int(Σ′). By Corol-

lary 2.5, there exists two distinct X–trees, T ′
1 and T ′

2 say, such that G(T ′
1 ,Σ′) = G′

1

and G(T ′
2 ,Σ

′) = G′
2. By Lemma 3.8, G(T ′

1 ,Σ) and G(T ′
2 ,Σ) are both minimal

restricted chordal completions of int(Σ). We show that the last two graphs are
distinct, thus getting our desired contradiction.

Since G′
1 and G′

2 are distinct, there is an edge {C′, D′} of G′
1 that is not an

edge of G′
2. Clearly, C′ ∩D′ = ∅. Therefore, by Lemma 3.7, {C′, D′} is an edge of

G(T ′
1 ,Σ), but is not an edge of G(T ′

2 ,Σ). Thus G(T1,Σ) and G(T2,Σ) are distinct;
a contradiction. Hence there is a unique minimal restricted chordal completion of
int(Σ′).

With (i) and (ii) of Lemma 3.1 satisfied it now follows that Σ′ defines an X–tree,
which in turn implies by Lemma 3.6 that Σ defines an X–tree, completing the proof
of Theorem 1.2. 2

4. Examples and Further Results

We begin this section with two examples highlighting the fact that conditions (i)
and (ii) in the statement of Theorem 1.2 cannot be weakened.

The first example shows that if (i) holds, the uniqueness part of (ii) in the
statement of Theorem 1.2 is necessary. Let X = {1, 2, . . . , 6} and let Σ be the set

{{1, 2}|{3, 5}, {3, 4}|{2, 6}, {5, 6}|{1, 4}}∪ {{i}|X − {i} : i ∈ {1, 2, . . . , 6}}
of partial partitions of X . The two free ternary X–trees in Figure 3 display Σ, and
thus Σ does not define an X–tree. However, as shown in [2], the first of these free
ternaryX–trees (as well as the second) also distinguishes Σ, and so, by Theorem 1.2,
there are at least two minimal restricted chordal completions of int(Σ).
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63

5

Figure 3. Two free ternary X–trees with X = {1, 2, . . . , 6}.

3, 45, 6

1, 2, 7

Figure 4. An X–tree that is distinguished by
{{1, 2}|{3, 5}, {3, 4}|{2, 6, 7}, {5, 6}|{1, 4, 7}}.

The next example shows that even deleting “minimal” in the second condition
in the statement of Theorem 1.2 is no guarantee that the theorem holds without
the full strength of (i). Let X = {1, 2, . . . , 7} and let Σ be the set

{{1, 2}|{3, 5}, {3, 4}|{2, 6, 7}, {5, 6}|{1, 4, 7}}
of partial partitions of X . The graph in Figure 2(ii) is the unique restricted chordal
completion of int(Σ). However, every resolution of the X–tree in Figure 4 displays
Σ. The tree in Figure 2(i) is one such X–tree. Hence, by Theorem 1.2, no X–tree
displaying Σ can be a free ternary X–tree that is distinguished by Σ.

We finish this section with some minor results relating to Theorems 1.1 and 1.2.

Proposition 4.1. Let Σ be a set of partial partitions of X, where |X | ≥ 3. If Σ
defines a free ternary tree, then int(Σ) is connected.

Proof. Suppose, to the contrary, that int(Σ) is disconnected. We prove the case
for when int(Σ) has two components, G1 and G2 say. This argument extends
straightforwardly to cover the case when int(Σ) has at least three components.

For each i ∈ {1, 2}, let Ci denote the vertex set of Gi, and let Xi denote the
union of the elements of Ci. As int(Σ) is disconnected, X is the disjoint union of
X1 and X2. Let T be the free ternary tree defined by Σ. Since |X | ≥ 3, either
|X1| ≥ 2 or |X2| ≥ 2. Without loss of generality, we may assume that |X1| ≥ 2.
Since both X1 and X2 are non-empty, and since |X | ≥ 3, there exists a free ternary
tree on X , different from T , that can be constructed by adding a vertex to an edge
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of T |X1 and either (i) adding a vertex to an edge of T |X2, and then joining the
two new vertices with an edge if |X2| ≥ 2, or (ii) joining the new vertex with the
vertex of T |X2 with an edge if |X2| = 1. In either case, denote the resulting free
ternary tree on X by T ′.

We now show that G(T ′,Σ) is a restricted chordal completion of int(Σ). By
Corollary 2.2, G(T ′,Σ) is chordal. Let A and A′ be non-empty cells of an element
of Σ. We need to show that A and A′ are non-adjacent in G(T ′,Σ). If A and A′

are in different components of int(Σ), then A and A′ are non-adjacent in G(T ′,Σ).
Suppose that A and A′ are in the same component of int(Σ). Without loss of
generality, we may assume that both A and A′ are vertices of G1. Then both A
and A′ are subsets of X1. Since T displays Σ, T displays every partial partition of
Σ containing A and A′. Therefore A|A′ is a partial split of T . By our construction
of T ′, this means that A|A′ is a partial split of T ′. Therefore A and A′ are non-
adjacent in G(T ′,Σ). Thus G(T ′,Σ) is a restricted chordal completion of int(Σ),
and so, by Lemma 2.3, T ′ displays Σ. This contradiction to the fact that Σ defines
T completes the proof of Proposition 4.1.

Let Σ be a collection of partial partitions of X , and let x be an element of X . For
any subset A of X , let Ax denote the set A−{x} and, for any σ in Σ, let σx denote
the partial partition of X obtained from σ by deleting x from every cell. Provided
{x} is not an element of C(Σ), let Σx = {σx : σ ∈ Σ} We say x is redundant (relative
to Σ) if the x–deletion map ψ from Σ into Σx defined by ψ(σ) = σx induces a graph
isomorphism between int(Σ) and int(Σx).

Lemma 4.2. Let x be an element of X, and let Σ be a set of partial partitions of
X. If x is redundant, and Tx is an Xx–tree that displays Σx, then there exists an
X–tree T that displays Σ and satisfies T |Xx = Tx.

Proof. Let V denote the subset of C(Σ) in which each element contains x. Thus
every two elements of V is adjacent in int(Σ). Let Vx = {Ax : A ∈ V }.

Since int(Σ) ∼= int(Σx) under the x–deletion map, every two elements of Vx

are adjacent in int(Σx). Consequently, for all pairs Ax and A′
x in Vx, we have

Tx(Ax) ∩ Tx(A′
x) 6= ∅. By the Helly property for subtrees of a tree (see [8, p. 92]),

it follows that ⋂
Ax∈Vx

Tx(Ax) 6= ∅.

Select a vertex v ∈
⋂

Ax∈Vx
Tx(Ax), and let T be the X-tree obtained from Tx

by mapping x to v. Clearly T |Xx = Tx, so provided T displays Σ the proof is
complete.

Let B and B′ be elements of C(Σ). If Tx(Bx)∩Tx(B′
x) 6= ∅, then T (B)∩T (B′) 6=

∅. Conversely, if Tx(Bx)∩ Tx(B′
x) = ∅, then T (B) ∩ T (B′) = ∅ as x labels a vertex

in
⋂

Ax∈Vx
Tx(Ax). Therefore the x-deletion map from Σ to Σx induces, not only

the isomorphism between int(Σ) and int(Σx), but also an isomorphism between
int({T (B) : B ∈ C(Σ)}) and int({Tx(Bx) : B ∈ C(Σ)}). Hence int({T (B) : B ∈
C(Σ)}) is a restricted chordal completion for int(Σ), and so, by Lemma 2.3, T
displays Σ as required.
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The proof of Corollary 4.3 is omitted. It is a straightforward consequence of
Lemma 4.2.

Corollary 4.3. Let Σ be a set of partial partitions of X. Suppose that x ∈ X is
redundant. Then

(i) there exists an X–tree that displays Σ if and only if there exists an X–tree
that displays Σx; and

(ii) Σ defines an X–tree if and only if Σx defines an X–tree.
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