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A B S T R A C T

Rooted phylogenetic networks provide an explicit representation of the evolutionary history of a set X of
sampled species. In contrast to phylogenetic trees which show only speciation events, networks can also ac-
commodate reticulate processes (for example, hybrid evolution, endosymbiosis, and lateral gene transfer). A
major goal in systematic biology is to infer evolutionary relationships, and while phylogenetic trees can be
uniquely determined from various simple combinatorial data on X, for networks the reconstruction question is
much more subtle. Here we ask when can a network be uniquely reconstructed from its ‘ancestral profile’ (the
number of paths from each ancestral vertex to each element in X). We show that reconstruction holds (even
within the class of all networks) for a class of networks we call ‘orchard networks’, and we provide a polynomial-
time algorithm for reconstructing any orchard network from its ancestral profile. Our approach relies on es-
tablishing a structural theorem for orchard networks, which also provides for a fast (polynomial-time) algorithm
to test if any given network is of orchard type. Since the class of orchard networks includes tree-sibling tree-
consistent networks and tree-child networks, our result generalise reconstruction results from 2008 and 2009.
Orchard networks allow for an unbounded number k of reticulation vertices, in contrast to tree-sibling tree-
consistent networks and tree-child networks for which k is at most and X| | 1, respectively.

1. Introduction

Phylogenetic trees and networks have become a ubiquitous tool for
representing evolutionary relationships in systematics biology [7] and
other areas of classification (for example, language evolution and epi-
demiology). From early sketches by Charles Darwin and Ernst Haeckel
in the 19th century, more complex and detailed trees are now revealing
the finer details of portions of the ‘tree of life’. Today, biologists rou-
tinely build phylogenetic trees on hundreds of species, such as the re-
cent tree of (nearly) all ∼ 10,000 species of birds [14]. Phylogenetic
trees have a leaf set X that consists of the sampled organisms (typically,
a group of present-day species); the root of the tree represents the most
recent common ancestor of the species in X. Current methods for in-
ferring phylogenetic trees trees generally use genomic data from the
species in X, and apply one of several possible reconstruction methods.
While many of these methods are statistically based, they are ultimately
founded on underlying combinatorial uniqueness results concerning
trees [7,17].

Although phylogenetic trees have proved a convenient representa-
tion for many groups of species including, for example, mammals and

birds, in other domains of life evolution is not always described as a
simple vertical process of speciation (where lineages split in two as new
species form) and extinction. Instead, various reticulate processes allow
for a ‘horizontal’ component. Two main examples include the formation
of hybrid species (such as in certain plant or fish species), and the ex-
change of genes between species in a process called lateral gene transfer
(such as in bacteria). An additional reticulate process relevant to early
life on earth is endosymbiosis in which organelles are incorporated into
cells.

For these reasons, phylogenetic networks (acyclic directed graphs
with a single root vertex and leaves forming the set X) have been
proposed as a more flexible and accurate representation of evolutionary
history [6,15]. Accordingly, there has been considerable recent interest
in extending the mathematical foundation of phylogenetic tree re-
construction to networks [11]. This extension faces a number of
mathematical obstacles. In particular, while trees can be encoded and
reconstructed in several ways (for example, based on their associated
system of clusters, path distances between pairs of leaves, and induced
3-leaf subtrees), none of these approaches extends to networks, except
for in very special cases [9,12,19]. This has led to various approaches
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being proposed, which usually involve one or more of the following:

(i) not distinguishing between phylogenetic networks that are similar
in a certain way [16];

(ii) considering reconstruction only within a limited subclass of phy-
logenetic networks [2]; and

(iii) allowing types of information for X beyond what is normally used
for tree reconstruction [1].

Approach (ii) has received the most attention so far, with some
positive results (for example, for reconstructing the subclass of normal
networks from their induced trees [20]). In this paper, we focus more
on approach (iii), and, although we restrict to a class of subnetworks
(which we call ‘orchard networks’), our reconstruction result has the
additional strength that it can distinguish between any two networks
from information on X provided at least one of them is an orchard
network. To provide some intuition, informally, a phylogenetic network
is an orchard network if it can be reduced to a single vertex by recur-
sively finding a pair of leaves that form either a cherry or a reticulated
cherry, and then applying a cherry reduction to that pair of leaves.

The type of information on X we consider is the following. View the
interior (non-leaf) vertices of a phylogenetic network as being la-
belled. In the biological setting, this label could correspond, for ex-
ample, to the genome of the ancestral species at this vertex (or some
sub-genome that is sufficiently detailed to distinguish this ancestral
vertex from others). For each species x in the leaf set X, suppose we can
count the number of directed paths in the network from each ancestral
genome (i.e. interior vertex) to x. This ‘ancestral profile’ is thus an or-
dered tuple of numbers, one tuple for each leaf in X (note that current
technology does not yet provide this information, so our approach is in
the spirit of earlier mathematical results in phylogenetics that preceded
the data required for their application). It turns out that such in-
formation is not enough to distinguish between an arbitrary pair of
networks (we provide an example). However, if the underlying network

is an orchard network, our main result shows that no other network
(orchard or not) can have the same ancestral profile. Moreover, we
present and justify a polynomial-time algorithm for reconstructing any
orchard network from its ancestral profile. Our arguments rely on a
structural property of orchard networks which also implies that there is
a polynomial-time algorithm for testing whether or not an arbitrary
network is an orchard network.

Our results generalise earlier work in [4,5] which considered the
more restricted classes of ‘tree-sibling time-consistent’ networks and
‘tree-child’ networks, respectively. These authors use equivalent in-
formation on X for reconstruction, however, their reconstruction result
faces two limitations that are lifted here. First, the uniqueness results
of [4,5] hold only within the class of tree-sibling time-consistent net-
works and tree-child networks, whereas we show that ancestral profiles
can distinguish an orchard network from any other network. Second,
neither tree-sibling time-consistent networks nor tree-child networks
can have too many reticulate vertices (at most and n2 4 and n 1,
respectively, where =n X| |), whereas orchard networks can have ar-
bitrarily many reticulate vertices (independent of n).

Our results are also related to (and partly motivated by) earlier
work by Baroni and Steel [1] and Willson [18] on ‘accumulation phy-
logenies’. This involved a different subclass of networks (called ‘regular’
in these papers, and ‘cluster networks’ in [11]), which neither contains,
nor is contained in the subclass of orchard networks. A limitation of this
subclass is that (unlike orchard networks) they do not allow ‘redundant
arcs’ (an arc (u, v) for which there is another path in the network from u
to v). Allowing redundant arcs has a strong biological motivation since
even if each reticulation events happens instantaneously between two
contemporaneous species, redundant arcs can still appear in the re-
sulting network if not all species at the present are sampled. The results
in [1,18] also assume any two networks being considered are within
this same subclass. In summary, our results are not directly related to

this earlier work on accumulation phylogenies, apart from using a re-
lated type of information.

The paper is organised as follows. The next section contains some
necessary definitions along with the statement of the main result
(Theorem 2.2) and deduces, as a consequence, the main result (The-
orem 1) in [5] and the non-trivial part of the main result (Theorem 6) in
[4]. This section also provides examples to justify various claims.
Section 3 describes some preliminary lemmas, which apply more gen-
erally than for ancestral profiles, and in Section 4 we state and prove
the structural property of orchard networks that allows for an easy test
as to whether or not an arbitrary network is of orchard type. The proof
of Theorem 2.2 is established in Section 5. We end the paper with a
brief discussion in Section 6.

Lastly, just as we completed the write-up of this paper, a manu-
script [13] was posted on arXiv that also considers the class of orchard
networks (referred to as “cherry-picking networks” in [13]). The focus
of that manuscript is quite different to that of this paper; nevertheless, it
contains an independent and different proof of the structural property
of orchard networks which is needed as a lemma for Theorem 2.2 in this
paper.

2. Main result

Throughout the paper X denotes a non-empty finite set and, unless
otherwise stated, all paths are directed. For vertices u and v of a di-
rected graph D, we say v is reachable from u if there is a path in D from u
to v. Furthermore, for sets A and B, we denote the set obtained from A
by removing every element in A that is also in B by A B. If =B| | 1, say

=B b{ }, we denote this by A b.
Phylogenetic networks. A phylogenetic network on X is a rooted

acyclic directed graph with no arcs in parallel and satisfying the fol-
lowing properties:

(i) the (unique) root has in-degree zero and out-degree two;
(ii) a vertex with out-degree zero has in-degree one, and the set of

vertices with out-degree zero is X; and
(iii) all other vertices either have in-degree one and out-degree two, or

in-degree two and out-degree one.

For technical reasons, if =X| | 1, we additionally allow a single
vertex to be a phylogenetic network, in which case, the root is the
vertex in X. Phylogenetic networks as defined here are also referred to
as ‘binary phylogenetic networks’ in the literature.

Let be a phylogenetic network on X. The vertices with out-degree
zero are the leaves of , and so X is called the leaf set of .
Furthermore, vertices with in-degree one and out-degree two are tree
vertices, while vertices of in-degree two and out-degree one are re-
ticulations. The arcs directed into a reticulation are called reticulation
arcs, all other arcs are tree arcs. To illustrate, an example of a phylo-
genetic network with leaf set …x x x{ , , , }1 2 6 and three reticulations is
shown in Fig. 1.

Lastly, let 1 and 2 be two phylogenetic networks on X with vertex
and arc sets V1 and E1, and V2 and E2, respectively. We say 1 is iso-
morphic to 2 if there exists a bijection φ: V1 → V2 such that =x x( )
for all x∈ X, and (u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2 for all u,
v∈ V1.

Ancestral tuples and ancestral profile. Let be a phylogenetic
network on X with vertex set V. Let …v v v, , , t1 2 be a fixed (arbitrary)
labelling of the vertices in V X . For all x∈ X, the ancestral tuple of x,
denoted σ(x), is the t-tuple whose i-th entry is the number of paths in
from vi to x. Denoted by , we call the set

= x x x X{( , ( )): },

of ordered pairs the ancestral profile of . Furthermore, if is a
phylogenetic network on X and, up to an ordering of the non-leaf ver-
tices of , we have = , we say realises . Lastly, although
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depends on the ordering of the vertices in V X , the ordering is
fixed and so the labelling can be effectively ignored.

Cherries and reticulated cherries. Let be a phylogenetic net-
work on X, and let {a, b} be a 2-element subset of X. Let pa and pb
denote the parents of a and b, respectively. We say {a, b} is a cherry of

if =p pa b. Furthermore, if one of the parents, say pb, is a reticulation
and (pa, pb) is an arc in , then {a, b} is a reticulated cherry of , in
which case, b is the reticulation leaf of the reticulated cherry. Observe
that pa is necessarily a tree vertex. For the phylogenetic network shown
in Fig. 1, {x1, x2} is a cherry, while {x3, x4} is a reticulated cherry in
which x4 is the reticulation leaf. Furthermore, in Fig. 1, {x4, x5} is
neither a cherry nor a reticulated cherry.

We next describe two operations associated with cherries and re-
ticulated cherries that are central to this paper. Let be a phylogenetic
network. First suppose that {a, b} is a cherry of . Then reducing b is
the operation of deleting b and suppressing the resulting vertex of in-
degree one and out-degree one. If the parent of a and of b is the root of

, then reducing b is the operation of deleting b as well as deleting the
root of , thus leaving only the isolated vertex a. Now suppose that {a,
b} is a reticulated cherry of in which b is the reticulation leaf. Then
cutting {a, b} is the operation of deleting the reticulation arc joining the
parents of a and b, and suppressing the two resulting vertices of in-
degree one and out-degree one. It is easily seen that the operations of
reducing a cherry and cutting a reticulated cherry both result in a
phylogenetic network. Collectively, we refer to these two operations as
cherry reductions. To illustrate, the phylogenetic network shown in
Fig. 2(i) (resp. Fig. 2(ii)) has been obtained from the phylogenetic
network in Fig. 1 by reducing x2 (resp. cutting {x3, x4}).

Orchard networks. For a phylogenetic network , the sequence

= …, , , , k0 1 2 (1)

of phylogenetic networks is a cherry-reduction sequence of if, for all
…i k{1, 2, , }, the phylogenetic network i is obtained from i 1 by a

(single) cherry reduction. The sequence is maximal if k has no cherries
or reticulated cherries. If k consists of a single vertex, the sequence is
complete, in which case, is called an orchard network. Observe that if
(1) is complete, then the leaf set of k 1 has size two and the parent of
each leaf is the root of k 1. It is easily checked that the phylogenetic
network shown in Fig. 1 is an orchard network. In Section 4, we show
that if is an orchard network, then every maximal sequence of cherry
reductions of an orchard network is complete. Thus if we want to
construct a complete cherry-reduction sequence for an orchard net-
work, the order in which the reductions are applied does not matter. In
turn, this provides an easy test to decide whether or not an arbitrary
network is orchard.

One of the most well-studied classes of phylogenetic networks is the
class of tree-child networks. Introduced in [5], a phylogenetic network
is tree-child if every non-leaf vertex is the parent of a tree vertex or a
leaf. Tree-child networks are examples of orchard networks [3], but
there exist orchard networks that are not tree-child. Indeed, while the
size of the leaf set bounds the total number of vertices of a tree-child

network [5], the total number of vertices in an orchard network is not
necessarily bounded by the size of its leaf set. For example, the phy-
logenetic network shown in Fig. 3(i) is an orchard network with exactly
three leaves but, by extending it in the obvious way, we can produce an
orchard network with an arbitrarily large odd number of vertices and
still with exactly three leaves. Furthermore, not all phylogenetic net-
works are orchard networks as Fig. 3(ii) illustrates.

For this paper, a second relevant class of phylogenetic networks is
the class of tree-sibling time-consistent networks. Let be a phyloge-
netic network. We say is tree-sibling if every reticulation has a parent
that is also the parent of a tree vertex or a leaf. Furthermore, is time-
consistent if there is a map t from the vertex set of to the non-negative
integers such that if (u, v) is a reticulation arc of , then =t u t v( ) ( );
otherwise, t(u) < t(v). We refer to such a mapping as a temporal label-
ling. In the literature, time-consistent networks are also referred to as
temporal networks. Like tree-child networks, the class of tree-sibling
time-consistent networks is a proper subclass of orchard networks. For
completeness, we include a proof of containment. To see that it is
proper, it is shown in [4] that, unlike orchard networks, the number of
reticulations of a tree-sibling time-consistent network is bounded by the
size of its leaf set.

Lemma 2.1. Let be a tree-sibling time-consistent network. Then is an
orchard network.

Proof. Clearly, the lemma holds if has no reticulations. Therefore we
may assume that has at least one reticulation. We first show that
has either a cherry or a reticulated cherry. Let t be a temporal labelling
of the vertices of , and let v be a reticulation with the property that t
(v) ≥ t(v′) for all reticulations v′ of . Since is tree-sibling, v has a
parent, u say, that is the parent of a vertex w which is either a tree
vertex or a leaf. By maximality, no reticulations are reachable from v or
w. Therefore, if two leaves are reachable from either v or w, then has
a cherry. If this does not occur, then w is a leaf and that the (unique)
child, x say, of v is also a leaf. In particular, {w, x} is a reticulated cherry
of .

To complete the proof, let be obtained from by a cherry re-
duction. Clearly, is also tree-sibling. Furthermore, it is easily
checked that the mapping t′ from the vertex set of to the non-ne-
gative integers given by =t u t u( ) ( ) is a temporal labelling of . Thus

is tree-sibling time-consistent. The lemma now follows. □

Main result. The following theorem is the main result of the paper.

Theorem 2.2. Let be an orchard network on X with vertex set V. Then,
up to isomorphism, is the unique phylogenetic network on X realising .
Furthermore, up to isomorphism, can be reconstructed from in time O
(|X|3|V|3).

It is worth emphasising that the uniqueness of in the statement of
Theorem 2.2 is amongst all phylogenetic networks on X, not just within
the class of orchard networks on X. Furthermore, if is not an orchard
network, then the outcome of Theorem 2.2 does not necessarily hold. In
particular, consider the two phylogenetic networks 1 and 2 in Fig. 4.
It is easily checked that by fixing an ordering of the non-leaf vertices of
each of 1 and 2 so that the parent of y is in the same position in both
orderings, we have =1 2. But 1 is not isomorphic to 2.

Theorem 2.2 generalises results of Cardona et al. [4] and Cardona
et al. [5]. Let be a phylogenetic network on X with vertex set V and
let …x x x, , , n1 2 be a fixed ordering of the leaves in X. For all v V X ,
the path tuple of v, denoted π(v), is the n-tuple whose i-th entry is the
number of paths in from v to xi. Let denote the multiset

v v V X{ ( ): }

of path tuples of . If is a phylogenetic network on X and, up to an
ordering of X, we have = , we say realises . The next
theorem was established in [4,5].

Theorem 2.3. Let be a phylogenetic network on X.
Fig. 1. A phylogenetic network on …x x x{ , , , }1 2 6 . Here, {x1, x2} is a cherry
and {x3, x4} is a reticulated cherry with x4 the reticulation leaf.
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(i) If is tree-sibling time-consistent, then, up to isomorphism, is the
unique tree-sibling time-consistent network on X realising .

(ii) If is tree-child, then, up to isomorphism, is the unique tree-child
network on X realising .

Furthermore, for both instances, up to isomorphism, can be con-
structed from in time polynomial in the size of X.

Let be a phylogenetic network on X with vertex set V. The set
and multiset are equivalent in the amount of information they
provide. To see this, let …x x x, , , n1 2 and …v v v, , , t1 2 be fixed orderings of
the vertices in X and V X , respectively. Then, for all …i t{1, 2, , },
the n-tuple π(vi) is the tuple whose j-th entry is the i-th entry of σ(xj) for
all …j n{1, 2, , }. Similarly, each ordered pair in can be obtained
from . Thus Theorem 2.2 generalises Theorem 2.3 in two ways. First,
it shows that the latter holds for the more general class of orchard
networks and, second, the uniqueness is not confined to the class of
networks being constructed.

We end the section with three remarks. Firstly, Theorem 2.2 is not
the first reconstruction result concerning the class of orchard networks.
Although this class was not named, it is shown in [3] that orchard
networks are reconstructible from their so-called multiset distance
matrices. See [3, Theorem 3.4]. We have no doubt that, over time, the

class of orchard networks will be realised to be reconstructible in other
ways as well.

The second remark concerns a related, but weaker, notion to that of
ancestral tuples called ancestral sets. Let be a phylogenetic network
on X with vertex set V. For all x∈ X, the ancestral set of x is

=x v V X x v( ) { : is reachable from }.

Thus γ(x) is the set of non-leaf vertices v in for which there is a
directed path from v to x. Observe that, for all x∈ X, the root of is
always an element of γ(x) and so γ(x) is non-empty. Let denote the
set

x x x X{( , ( )): }

of ordered pairs. Given , it is clear that we can construct in time O
(|V|).

To see that ancestral sets is a weaker notion than ancestral tuples,
consider the two orchard networks 1 and 2 shown in Fig. 5, where
the non-leaf vertices have been labelled …1, 2, ,8. For each i∈ {1, 2},
the ancestral sets of x1, x2, and x3 are {1, 2, 3, 4, 5, 7}, …{1, 2, , 8}, and
{1, 2, 3}, respectively. But 1 is not isomorphic to 2. Note that, for a
fixed ordering of …1, 2, ,8, the ancestral tuple of x2 differs in 1 and 2
even though the ancestral tuples of x1 and x3 are the same for 1 and

2. Nevertheless, despite this example, the ancestral sets of a phylo-
genetic network do provide some information regarding the struc-
ture of . As this is of possible independent interest, we highlight this
in the next section where the preliminary lemmas are established in
terms of ancestral sets.

The third remark concerns the relationship between orchard net-
works and the increasingly prominent class of tree-based networks [8].
A phylogenetic network on X with root ρ and vertex set V is tree-
based if it has, as a subgraph, a rooted subtree with root ρ, vertex set V,
and leaf set X. Note that ρ in the subtree may have out-degree one. It is
shown in [10] that the class of orchard networks is a proper subclass of
tree-based networks. To see that it is proper, observe that the non-
orchard networks 1 and 2 in Fig. 4 are both tree-based. Thus, the
networks in this figure also show that Theorem 2.2 does not extend to
tree-based networks.

Fig. 2. 1 has been obtained from in Fig. 1 by reducing x2, while 2 has been obtained from by cutting {x3, x4}.

Fig. 3. (i) An orchard network and (ii) a non-orchard network.

Fig. 4. Two non-isomorphic phylogenetic networks 1 and ,2 but =1 2.
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3. Preliminary lemmas

In this section, we establish several results that will be used in the
proof of Theorem 2.2. These results show that the ancestral sets, and
thus the ancestral tuples, of an arbitrary phylogenetic network re-
cognise and distinguish cherries and reticulated cherries.

Lemma 3.1. Let be a phylogenetic network on X, and let a and b be
distinct elements in X. Then γ(a)⊆γ(b) if and only if the parent of b is
reachable from the parent of a.

Proof. Let pa and pb denote the parents of a and b, respectively. If pb is
reachable from pa, then it is clear that γ(a)⊆γ(b). To prove the
converse, suppose that γ(a)⊆γ(b). Then pa∈ γ(b) and so, by
definition, b is reachable from pa. In turn, this implies that pb is
reachable from pa. □

The next corollary immediately follows from Lemma 3.1 and the
fact that phylogenetic networks are acyclic.

Corollary 3.2. Let be a phylogenetic network on X, and let {a, b} be a 2-
element subset of X. Then {a, b} is a cherry in if and only if =a b( ) ( ).

Lemma 3.3. Let be a phylogenetic network on X, and let {a, b} be a 2-
element subset of X. Then {a, b} is a reticulated cherry of in which b is the
reticulation leaf if and only if

(i) γ(a)⊊γ(b),
(ii) there is no x X b such that γ(a) ⊊ γ(x), and

(iii) =b x( ) ( ) 1x X b .

Proof. Let pa and pb denote the parents of a and b, respectively. It is
easily checked that if {a, b} is a reticulated cherry in which b is the
reticulation leaf, then (i)–(iii) hold. So suppose that (i)–(iii) hold. Since
(i) holds, it follows by Lemma 3.1 that there is a directed path P in
from pa to pb. If pb is a tree vertex, then has a leaf, c say, reachable
from pb such that c≠ b. This implies that γ(a) ⊊ γ(c), contradicting (ii).
Therefore pb is a reticulation. Lastly, assume (pa, pb) is not an arc in .
Let u denote the vertex on P immediately prior to pb. If u is a tree vertex,
then has a leaf c′ ≠ b reachable from u with γ(a) ⊊ γ(c′),
contradicting (ii). On the other hand, if u is a reticulation, then

b x( ) ( ) 2,
x X b

contradicting (iii). Thus (pa, pb) is an arc and so {a, b} is a reticulated
cherry in which b is the reticulation leaf. □

4. Order does not matter

Let be an orchard network. Then, by definition, there exists a
complete cherry-reduction sequence for . But, how do we find such a

sequence and does the order in which we apply the cherry reductions
matter? The next proposition says that if we take and repeatedly
apply cherry reductions until no more is possible, we always construct a
complete cherry-reduction sequence. A vertex on a directed path is non-
terminal if it is neither the first nor last vertex on the path.

Proposition 4.1. Let be an orchard network, and let

= …, , , ,0 1 2 (2)

be a maximal sequence of cherry reductions. Then this sequence is complete.

Proof. Let X denote the leaf set of , and suppose (2) is not complete.
Paralleling (2), we begin by constructing a sequence

= …, , , ,0 1 2

of rooted acyclic directed graphs as follows. If 1 is obtained from 0
by reducing a leaf of a cherry, then 1 is obtained from 0 by deleting
the same leaf but not suppressing the resulting vertex of in-degree one
and out-degree one. Similarly, if 1 is obtained from 0 by cutting a
reticulated cherry, then 1 is obtained from 0 by deleting the same
reticulation arc but not suppressing the two resulting vertices of in-
degree one and out-degree one. More generally, if i is obtained from

i 1 by reducing a leaf of a cherry, that is, deleting a leaf b say and
suppressing its parent pb, then i is obtained from i 1 by deleting b
as well as deleting every non-terminal vertex on the (unique) path from
pb to b in i 1. Note that each of these non-terminal vertices has in-
degree one and out-degree one in i 1. On the other hand, if i is
obtained from i 1 by cutting a reticulated cherry, that is, deleting a
reticulation arc (pa, pb) and suppressing pa and pb, then i is obtained
from i 1 by deleting (pa, pb). Observe that, for all i, if we suppress
every vertex in i of in-degree one and out-degree one, we obtain i.
Thus i is a subdivision of i for all i, that is, i can be obtained from

i by suppressing all vertices of in-degree one and out-degree one for
all i. Furthermore, as (2) is not complete, the root ρ of is never
deleted and so, for all i, the root of i is also ρ and has out-degree two
in i.

We now analyse . Since (2) is maximal and not complete, has
at least one reticulation. This implies that has at least one vertex of
in-degree two and out-degree one. We next show that every non-
terminal vertex in on a path from ρ to a vertex of in-degree two and
out-degree one has degree three. □

4.1.1. Let v be a vertex of in-degree two and out-degree one in . If u
is a non-terminal vertex of on a path in from ρ to v, then u has
degree three in .

Proof. Suppose u is a vertex of in-degree one and out-degree one on a
path from ρ to v in . In , the vertex u has degree three. Therefore,
for some …i {1, 2, , }, we have that i is obtained from i 1 by a
cherry reduction in which an arc incident with u is deleted. Now, as v is
a vertex of in-degree two and out-degree one in , it follows that v is a
reticulation in , and therefore a reticulation in i. Thus there is a
path P in i from u to v. It is now easily checked that no cherry
reduction applied to i 1 in which an arc incident with u and not lying
on P is deleted is possible. Hence u has degree-three.

We now complete the proof of the proposition. Since is orchard,
there is a sequence

= …, , , , k0 1 2

of cherry reductions such that k consists of a single vertex. Let i be the
smallest index such that i is obtained from i 1 by cutting a re-
ticulated cherry in which the deleted reticulation arc, (u, v) say, has the
property that v is in and it has in-degree two and out-degree one in

. Observe that, by the choice of i, no vertex of in-degree two and
out-degree one is reachable from v in except v itself. As (2) is
maximal, this implies that there is a unique vertex, ℓv say, in X that is
reachable from v in .

Now, u is a tree vertex in i 1 whose other child, in addition to v, is

Fig. 5. Two orchard networks 1 and 2 with = ,1 2 but 1 2.
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a leaf. By (4.1.1), u has degree-three in . Furthermore, as u is a tree
vertex in ,i 1 it follows that u has in-degree one and out-degree two in

. Let w denote the child of u in that is not v. At least one vertex
in X is reachable from w in and this vertex is not ℓv. If, in , there
is no vertex reachable from w with in-degree two and out-degree one,
then (2) is not maximal. Therefore, in there is such a vertex w′
reachable from w. In , the vertex w′ is a reticulation, and so there is a

…j k{1, 2, , } such that j is obtained from j 1 by cutting a re-
ticulated cherry in which a reticulation arc directed into w′ is deleted.
Since (u, v) is the reticulation arc directed into v that is deleted, it
follows j< i. But, by the choice of i, we have i< j; a contradiction. We
conclude that (2) is complete. □

The following corollary is an immediate consequence of
Proposition 4.1.

Corollary 4.2. Let be an orchard network, and let {a, b} be a cherry or a
reticulated cherry of . If is obtained from by reducing b if {a, b} is a
cherry or cutting {a, b} if {a, b} is a reticulated cherry, then is an
orchard network.

Since deciding if a given pair of leaves of a phylogenetic network is
either a cherry or a reticulated cherry takes constant time and a cherry
reduction also takes constant time, the last corollary gives a poly-
nomial-time algorithm for deciding if an arbitrary phylogenetic net-
work is orchard. In particular, repeatedly find a cherry or a re-
ticulated cherry, and apply the appropriate cherry reduction until this
process is no longer possible. This takes at most O(|V|) iterations, where
V is the vertex of . If at the completion of this process, we have a
phylogenetic network consisting of a single vertex, then is orchard;
otherwise, is not orchard. Observe that if is orchard with n leaves
and k reticulations, then this process consists of +n k 1 cherry re-
ductions.

5. Proof of Theorem 2.2

In this section, we prove Theorem 2.2. For a phylogenetic network
, Corollary 3.2 and Lemma 3.3 show that it is straightforward to re-

cognise cherries and reticulated cherries of using only the ancestral
sets, and thus the ancestral tuples, of . This fact is freely used
throughout this section. We next describe two operations on tuples that
parallel the operations of reducing a cherry and cutting a reticulated
cherry.

Let X be a non-empty finite set and, for some fixed t, let

= x x x X{( , ( )): }

be a set of ordered pairs, where, for all x∈ X, we have that σ(x) is a t-
tuple whose entries are either non-negative integers or –. Note that the
symbol – is going to be used as a placeholder. Let {a, b} be a 2-element
subset of X. The first operation will be used only in association with
reducing b when {a, b} is a cherry. Let …j t{1, 2, , } such that

= =a b( ) ( ) 1,j j but =x( ) 0j for all x X a b{ , }. Let Σ′ be the set of
X b| | ordered pairs obtained from Σ as follows. For all x X b, set
σ′(x) so that the i-th entry is

=
=

x
x i j

i j
( )

( ), if ;
, if .i

i

Set = x x x X b{( , ( )): }. We say that Σ′ has been obtained from
Σ by reducing b.

The second operation will be used only in association with cutting
{a, b} when {a, b} is a reticulated cherry in which b is the reticulation
leaf. Let …j t{1, 2, , } such that = =a b( ) 1 ( )j j but =x( ) 0j for all
x X a b{ , }, and let …k t{1, 2, , } such that =b( ) 1k but =x( ) 0k
for all x X b. Let Σ′ be the set of |X| ordered pairs obtained from Σ
as follows. For all x X b, set σ′(x) so that the i-th entry is

=x
x i j k

i j k
( )

( ), if { , };
, if { , };i

i

and set σ′(b) so that the i-th entry is

=b
b a i j k

i j k
( )

( ) ( ), if { , };
, if { , }.i

i i

Set = x x x X{( , ( ): }. We say that Σ′ has been obtained from Σ by
cutting {a, b}.

Lemma 5.1. Let be a phylogenetic network on X with vertex set V and
|X| ≥ 2, and fix an ordering ofV X . Let {a, b} be a 2-element subset of X.

(i) If {a, b} is a cherry of , then, up to entries with symbol – , the set of
ordered pairs obtained from by reducing b is the ancestral profile of
the phylogenetic network obtained from by reducing b.

(ii) If {a, b} is a reticulated cherry of in which b is the reticulation leaf,
then, up to entries with symbol – , the set of ordered pairs obtained from

by cutting {a, b} is the ancestral profile of the phylogenetic network
obtained from by cutting {a, b}.

Proof. We prove the lemma for (ii). The proof of the lemma for (i) is
similar, but easier, and omitted. Suppose {a, b} is a reticulated cherry of

in which b is the reticulation leaf, and is obtained from by
cutting {a, b}. Let Σ′ be the set of ordered pairs obtained from by
cutting {a, b}. We will show that Σ′ is the ancestral profile of a
phylogenetic network isomorphic to .

Let V denote the vertex set of , and fix an ordering …v v v, , , t1 2 of
the vertices in V X . Let pa and pb denote the parents of a and b, re-
spectively, in . Set

= = = =U v V X a b x x X a b{ : ( ) 1 ( ), ( ) 0 for all { , }}a j j j j

and

= = =U v V X b x x X b{ : ( ) 1, ( ) 0 for all }.b k k k

Observe that Ua and Ub are both non-empty as pa∈Ua and pb∈Ub, but
Ua ∩Ub is empty.

Now consider Σ′. To obtain Σ′ from , we chose (i) an entry in σ(a),
say j, such that = =a b( ) 1 ( )j j but =x( ) 0j for all x X a b{ , }, and
(ii) an entry in σ(b), say k, such that =b( ) 1k but =x( ) 0k for all
x X b. In particular, these chosen entries correspond to vertices, vj
and vk say, in Ua and Ub, respectively.

Let 1 denote the phylogenetic network obtained from by bi-
jectively relabelling the vertices in Ua with the vertices in Ua so that pa
is relabelled vj, and bijectively relabelling the vertices in Ub with the
vertices in Ub so that pb is relabelled vk. Clearly, 1 is isomorphic to
and is the ancestral profile of 1. Furthermore, it is easily checked
that, up to isomorphism, Σ′ is the ancestral profile of the phylogenetic
network 1 obtained from 1 by cutting {a, b}. But 1 is isomorphic to

, thereby completing the proof of the lemma. □

With Lemma 5.1 in hand, we next prove the uniqueness part of
Theorem 2.2

Proof of the uniqueness part of Theorem 2.2. The proof is by
induction on the sum of the number n of leaves and the number k of
reticulations in . If + =n k 1, then =n 1 and =k 0, and consists of
the single vertex in X, and so uniqueness holds. If + =n k 2, then, as
is orchard, =n 2 and =k 0, in which case, consists of two leaves
attached to the root. Again, uniqueness holds. Now suppose that

+n k 3 and the uniqueness holds for all orchard networks for
which the sum of the number of leaves and the number of
reticulations is at most +n k 1. Note that, as is orchard, n≥ 2.

Since is orchard, it has either a cherry or a reticulated cherry.
Thus, by Corollary 3.2 and Lemma 3.3, it is possible to find a 2-element
subset {a, b} of X using only such that {a, b} is either a cherry or a
reticulated cherry of . If the latter, we can also determine from
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which of a and b is the reticulation. Without loss of generality, we may
assume b is the reticulation leaf. Depending on whether {a, b} is a
cherry or a reticulated cherry, let be obtained from by reducing b
or cutting {a, b}, respectively, and let Σ′ be the set of ordered pairs
obtained from by reducing b or cutting {a, b}, respectively. Re-
gardless of the way and Σ′ are obtained, it follows by Corollary 4.2
and Lemma 5.1 that is an orchard network and, up to isomorphism,
Σ′ is the ancestral profile of . Furthermore, has either n 1 leaves
and k reticulations if {a, b} is a cherry, or n leaves and k 1 reticula-
tions if {a, b} is a reticulated cherry. Therefore, by the induction as-
sumption, up to isomorphism, is the unique phylogenetic network
whose ancestral profile is Σ′.

Now let 1 be a phylogenetic network on X such that is the
ancestral profile of 1. Note that 1 has the same number of non-leaf
vertices as , but not necessarily the same number of reticulations.
First assume {a, b} is a cherry of . Then, by Corollary 3.2, {a, b} is a
cherry of 1. Let 1 denote the phylogenetic network obtained from 1
by reducing b. By Lemma 5.1(i), up to isomorphism, Σ′ is the ancestral
profile of 1. Thus, by the induction assumption, 1 is isomorphic to

. Since {a, b} is a cherry of 1 and , it follows that 1 is isomorphic
to .

Lastly, assume {a, b} is a reticulated cherry of . Then, by
Lemma 3.3, {a, b} is a reticulated cherry of 1 in which b is the re-
ticulation leaf. Let 1 be the phylogenetic network obtained from 1 by
cutting {a, b}. By Lemma 5.1(ii), up to isomorphism, Σ′ is the ancestral
profile of 1. Hence, by the induction assumption, 1 is isomorphic to

. As {a, b} is a reticulated cherry of and 1 in which b is the
reticulation leaf, we have that 1 is isomorphic to . This completes
the proof of the uniqueness part of Theorem 2.2. □

5.1. The algorithm

Let be an orchard network on X, and let Σ denote the ancestral
profile of . Called ORCHARD TUPLE, we next describe an algorithm which
takes as its input X and Σ, and returns a phylogenetic network 1 on X
that is isomorphic to . The proof that the algorithm works correctly is
essentially the same as that used to prove the uniqueness part of
Theorem 2.2, and so it is omitted. The running time of the algorithm
follows its description.

1. If =X| | 1, then return the phylogenetic network consisting of the
single vertex in X.

2. Else, find a 2-element subset, {a, b} say, of X such that either (I)
=a b( ) ( ) or (II) γ(a) ⊊ γ(b), there is no x X b with γ(a) ⊊ γ(x),

and

=b x( ) ( ) 1.
x X b

(a) If {a, b} satisfies (I) (in which case {a, b} is a cherry), then
(i) Reduce b in Σ to give the set Σ′ of X b| | ordered pairs.

(ii) Apply ORCHARD TUPLE to input =X X b and Σ′. Construct
1 from the returned phylogenetic network 1 on X′ by

subdividing the arc incident to a with a new vertex pa, and
adjoining a new leaf b via the new arc (pa, b). If =X| | 1,
then set 1 to be the phylogenetic network consisting of the
leaves a and b adjoined to the root. Return 1.

(b) Else, {a, b} satisfies (II) (in which case {a, b} is a reticulated
cherry and b is the reticulation leaf).
(i) Cut {a, b} in Σ to give the set Σ′ of |X| ordered pairs.

(ii) Apply ORCHARD TUPLE to X and Σ′. Construct 1 from the re-
turned phylogenetic network 1 on X by subdividing the
arcs incident to a and b with new vertices pa and pb, re-
spectively, and adding the new arc (pa, pb). Return 1.

We now consider the running time of ORCHARD TUPLE. The input to the
algorithm is a set X and the ancestral profile of an orchard network
on X whose entries are either a non-negative integer or the symbol – .
Let V denote the vertex set of . As noted earlier, the set

= x x x X{( , ( )): } can be determined from Σ in O(|V|) time. This is
a preprocessing step and it will have no effect on the theoretical run-
ning time. Except for when |X| ∈ {1, 2}, in which case, ORCHARD TUPLE

runs in constant time, each iteration begins by finding a 2-element
subset of X satisfying either (I) or (II). This takes O(|X|2|V|) time as
there are O(|X|2) two-element subsets of X and each subset takes O(|V|)
time to decide if is satisfies either (I) or (II). Once such a 2-element is
found, we construct Σ′. Regardless of the way Σ′ is constructed, this
takes O(|X||V|) time. When 1 is returned, we augment to 1 in con-
stant time, and so each iteration takes O(|X|3|V|2) time.

When we recurse, Σ′ is the ancestral profile of an orchard network
with either one less leaf or one less reticulation than an orchard net-
work for which Σ is the ancestral profile. Thus the total number of
iterations is O(|V|). We conclude that ORCHARD TUPLE completes in O
(|X|3|V|3) time. This completes the proof of Theorem 2.2.

6. Conclusion

The main result of this paper, Theorem 2.2, shows that the ancestral
profile of an orchard network on X uniquely determines amongst
all phylogenetic networks on X. This generalises results in both [4]
and [5], which considered tree-sibling time-consistent networks and
tree-child networks (subclasses of orchard networks whose number of
reticulations is at most linear in the number of leaves). Curiously, these
later results have a different motivation compared to what motivated
Theorem 2.2. There the motivation is to construct a distance measure
(metric) on the classes of tree-sibling time-consistent networks and tree-
child networks which is computable in polynomial time. Recalling that
they considered the equivalent notion of path-tuples, for two tree-sib-
ling time-consistent (resp. tree-child) networks 1 and ,2 the distance
between 1 and 2 is the value

,1 2

where the symmetric difference and the cardinality operator refer to
multisets. It is easily checked that this same measure extends to the
class of orchard networks.

As noted in the introduction, our result does not relate to specific
biological data that is readily available at present. However, a type of
data that might provide ancestral profile information would be genomic
fragments that follow lineage splitting and reticulation events, so that
when a reticulation occurs, a trace of each fragment in the incoming
lineage is preserved in (different regions of) the reticulate genome.

Lastly, we end with a question asked by one of the referees. For a
given orchard network , is it possible to count the number of complete
cherry-reduction sequences of ?
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