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Abstract

A fundamental task in evolutionary biology is the amalgamation of a colle@ioof leaf-labelled trees
into a single parent tree. A desirable feature of any such amalgamation is that the resulting tree preserves
all of the relationships described by the trees?n For unrooted trees, deciding if there is such a tree is
NP-complete. However, two polynomial-time approaches that sometimes provide a solution to this problem involve
the computation of the semi-dyadic and the split closure of a set of quartets that un@edirethis pagr, we show
that if a leaf-labelled tre@ can be recovered from the semi-dyadic closure of som@ sdtquartet subtrees df,
then7 can also be recovered from the split-closur@of-urthermore, w show hat the converse of this result does
not hold, and resolve a closely related question posed in [S. Bocker, D. Bryant, A. Dress, M. Steel, Algorithmic
aspects of tree amalgamation, Journal of Algorithms 37 (2000) 522-537].
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A binary phylogeneti¢X)-treeis an unrooted tree in which every interior vertex has degree three and
whose leaf set iX. In evoluionary biology, X is commonly a set of species and a binary phylogenetic
X-tree is used to represent the evolutionary relationships between the speXies in
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A natural and fundamental task in evolutionary biology is to amalgamate binary phylogenetic trees
with different, but overlapping leaf sets into a single parent tree. This single parent tree is called a
supertreeand ways to perform such tasks are caligbertree methodsA desrable property of any
supertree method is that, if possible, the resulting supertree ‘displays’ all of the evolutionary relationships
of the input trees. More precisely, 16t and 7’ be binary phylogenetic trees with leaf setsand
X', respectively. Thery displays7’ if X’ € X and, up to suppressing degree-two verticgsjs the
minimal subtree off that connects the elementsXf. In general, a binary phylogenetic tréedisplays
a collection P of binary phylogenetic trees if displays each tree i®. This des&able property of a
supertree method leads to the following algorithmic problem:

Problem: TREE COMPATIBILITY

Instance: A collection P of binary phylogenetic trees.

Question: Does there exist a binary phylogenetic tree that displays each of the trees in P and,
if so, can we construct such a tree?

In general, this problem is NP-complet8].[ However, there are a number of polynomial-time
approaches to this problem that may provide a solution. Two of these approaches are based on the closul
operators ‘semi-dyadic closure’ and ‘split closure’. The former is associated with a collection of quartets
and the latter is associated with a collection of partial splits.

A quartetis a binary phylogenetic tree with four leaves. The quartet with leaybsc, d is denoted
abjcd if the path froma to b does not intersect the path frarmo d. A (full) split A|B of X, also c#led an
X-split, is a m@rtition of X into two non-empty subset&, B. Deleting any edge of a binary phylogenetic
tree induces a split oK, namely the bipartition oiX whose parts are the leaf sets of the two connected
components of the resulting ‘2-tree forest’. For a binary phylogeneticZirdet Q(7") denote the set of
quartets displayed by and letX'(7) denote the set of splits of induced by the interior edges af.

It is well-known thatZ can be (efficiently) reconstructed from eith@(7") or X' (7). This means that
possible solutions to REE COMPATIBILITY can be sought by ‘encoding’ the input trees either as a set

O of quartets or as a sef of ‘partial’ X-splits (i.e., of splits of the various subsetsXtonstituting the

leaf sets of the trees iR), and then using these encodings either to construct an encoding of a binary
phylogenetic tree that displays each of the original trees or to determine that no such tree exists. Two
possible approaches in this regard are to compute the semi-dyadic clogpre chse the encoding is

done in terms of quartets or the split closurelbin case the encoding is done in terms of sp&g]. The

precise definitions are given Bection 2 but, roughly speaking, semi-dyadic closure and split closure
are the end result of repeatedly applying a pairwise inference rule to collections of quartets or splits,
respectively.

Any guartet can be viewed as partial split—simply take the split induced by the interior edge of the
quartet—and so it is natural to ask how the semi-dyadic and the split closure ofacfejuartets are
related. InSection 3 we @nsider the relationship between the semi-dyadic and the split closu@e of
when one or the other recovers a binary phylogenetic tree. In particular, we prove the following theorem:

Theorem 1.1. Let7 be a binary phylogenetic tree and 1€} be a subset 0@(7). If the semi-dyadic
closure ofQ equalsQ(7), then the split-closure of equalsX' (7).

Essentially, Theorem 1.1states that if a binary phylogenetic trédecan be recovered from a subset
Q of Q(7) using the semi-dyadic closure @f, then7 can also be recovered frod using the split-
closure ofQ. Suprisingly, the converse ofheorem 1.lis not true, a fact that we will also establish
in Section 3
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The aiginal motivation forTheorem 1.larose from an open question ity Remark 4] which relates
semi-dyadic closure to minimum-sized sets of quartets that define a binary phylogenetic tree. In the last
section, we resolve this question.

We end this section by noting that, throughout this papeis a finite set and, unless otherwise stated,
the notation and terminology followd].

2. Semi-dyadic closure and split closure

The semi-dyadic closuref an arbitrary collectior@ of quartets, denoted s¢R), is the mhimal set
of quartets that containg and has the property thatab|cd andbc|deare in sc}(Q), then

abjde abjce acjde € sch(Q).
The sgnificance of this pairwise inference rule is highlightedPinposition 2.1

Proposition 2.1 ([2]). Let Q be a set of quartets and |&f be a binary phylogenetic tree. Théh
displaysQ if and only if 7 displayssch(Q).

Let Spane(X) denote the set of gliartial splits AB of X, i.e., of all splits of all subsets oX, considered
as a poset relative to the partial order

A|B < AB < (A CAandB' € B)or(A' € BandB’' C A).

We will say that a partial splitA|B in Span(X) extendsa partial split A'|B” in Span(X) if A'|B” < AIB
holds.

To describe the split closure of a collection of partial splits, we need one further concept: a binary
phylogenetic tree/” displaysa partial X-split o if there is anX-split in X' (7)) that extendsy. More
generally, we say thaf displaysa collection X' of partial X-splits if 7 displays each member of.

For a collectiony of partial X-splits, let> denote the (uniquely determined) minimal set of partial
X-splits that contains’ and has the property that ;| B, and A;| B, are elements of that satisfy

) ¢{A10A2, A; N By, B; N By} andB; N A, =0,

then(A; U Ay)|B; and Ay|(B; U By) are also elements of. We define thesplit closureof ¥, denoted
spck X), to be the collection of maximal elements (with respect to the above partial ordér)iimcase
any two partial splits in” arecompatiblei.e., if one of the four seté; N Ay, A1 N By, B1N Ay, B1N B,
is empty for any two splits; |B; and A»| B, in X, and tobe the empty set otherwise.

The next lemma andocollary will be used in the proof ofheorem 1.1For a partialX-split A|B, let

Q(A|B) ={ad|bb :a,a’ € A;b,b' e B;a#a';b#Db}

and, for a set)’ of partial X-splits, let Q(X) = UA\BEE Q(A|B). Observe that, for all binary
phylogenetic treeqd, we haveQ(X (7)) = O(7). Part(i) of Lemma 2.2is due to Meacham2] and
Part (ii) is shown in 8, Proposition 2].

Lemma2.2. Let X be a set of partial X-splits. Then

(i) A binary phylogenetic tre@ displays.’ if and only if 7 displaysspckY).
(ii) If there exists a binary phylogenetic tree that displdysthensch(Q(X)) € 9(spckY)).

An immediate onsequence dfemma 2.2s Cordlary 2.3
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Corollary 2.3. Let 7 be a binary phylogenetic tree and 1€ € Q(7). If sch(Q) = Q(7), then
Q(spckQ)) = (7).

3. Proof of Theorem 1.1

Before provingTheorem 1.1we requre one more concept. L&E be a binary phylogenetic tree and
let e be an interior edge of . A quartetq € Q(7) distinguishes éf e is the unique interior edge of
T for which the quartety is extended by theX-split in X' (7) induced bye. Also, a partialX-split o
distinguishes & there is a quartet irQ(o) that distinguishes.

Proof of Theorem 1.1. Let7 be a binary phylogenetic tree and @tbe a subset of (7). Suppose that
sch(Q) = Q(7). Evidently, the theorem holds f has exactly one interior edge. Therefore we may
assume thaf has at least two interior edges. Now assume thatépck X' (7).

We firstshow that there is an interior edge Bffor which there is a partiaK-split in spcl Q) that
distinguishes this edge, but it is not full. Lebe an interior edge of and letq be a quartet irQ(7)
that distinguishe®. Then, by Cordlary 2.3, g € Q(spckQ)) and so there exists a partixlsplit o in
spck Q) that extendg). This means that distinguishese. It follows that, for all interior edges of 7,
there is a partiaK-split in spcl Q) that distinguishes. Furthermore, not all such partid-splits are full,
for otherwise spglQ) = X' (7).

Leto; = A;|B; be a partialX-split in spcl Q) that is not full and distinguishes an interior edggsay,
of 7. Letad|bb’ be a quartet i@ (A;|Bs) that distinguisheg, with a, @’ € A; say, and letA|B denote
the full splitin X'(7) that distinguishes; . Evidently, A|B extendso;. Sinceo; is not full, we may assume
without loss of generality thad,; is a proper subset dk. Letc € A— A;. As7 is binary, it now follows
that either (i)ac|bb’ but nota’c|bb’ distinguishese,, or (ii) a'c|blb’ butnotac|bb’ distinguishese;. First
assume that Case (i) holds. Th&g|ab must becontained inQ(7"). By Cordlary 2.3, there is a partial
X-split o, = Az| By in spck Q) that extendst'clab. Clealy, o1 # o,. Without loss of generality, we may
assume thad'’, c € A, anda, b € B,. As 7 displayso; ando, and? ¢ {A; N Az, A1 N By, By N By},
it follows that By N A, = @ (this is a well-known property of binary phylogenetic trees, s8g By
the definition of the se© associated t@, this implies that(A; U Ay)|B; is contained inQ. But A; is
a poper subset ofA\; U A, and soo; is not a maximal element a. This contradicts the assumption
thato;, € spck@). This completes the argument for Case (i). The argument for Case (ii) is similar and
omitted. The theorem now follows. [

The converse offheorem 1.1holds if 7 has at most six leaves, but fails in general. To see this,
consider the binary phylogenetic tree on X = {1,...,7} shown inFig. 1 and the setQ =
{26]57, 16|47, 15|34, 15|23, 14|37} of quartets. NowQ € Q(7), and itis easily verified that speR)
equalsX' (7). However,

sch(Q) = Q U {16/37, 46/37, 16|34, 15|37, 4537, 15/47} # O(T).

4. Tight sets

Let P be a collection of binary phylogenetic trees. We say fhatefinesa binary phylogenetic tree
7T if T displaysP and7 is the only such tree with this property. Furthermore, ekeess ofP, denoted
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Fig. 1. A binary phylogenetic tree.
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Fig. 2. Two binary phylogenetic trees.

exaP), is the quantity
exaP) = |L(P)| —3— ) i(T),

TeP

whereL(P) is the union of the leaf sets of the treesArandi (7) is the number of interior edges .
For a binary phylogenetic treg, we say thatP is 7 -tight if P defines7 and ex¢P) = 0. In particular,
if a collection @ of quartets is7 -tight, thenQ has size £(7)| — 3, the smallest sized subset @{7)
that defines?. Loosely speaking, a collection of binary phylogenetic trees-tight if it contains the
absolute minimum amount of information that is required to recover a binary phylogenetit.tree

Itis shown in [L, Theorem 3] that ifP is a collection of binary phylogenetic trees that defines a binary
phylogenetic tre€ and contains & -tight subset™’, then

sch ( U Q(T’)) = Q7).
T'eP

Moreover, in the remark directly following this theorem, it is stated that the converse of this result does

not hold for arbitrary collection® of binary phylogenetic trees. However, the authors also state that they

do not know if this is the case whénis a collection of quartets. In other words, the following question

remained unanswered: Tf is a binary phylogenetic tree ar@d C Q(7) with sch(Q) = Q(7), does it

follow that Q(7") contains & -tight subset? Observe th& satisfies the assumptions Bheorem 1.1

We conclude this paper by providing an example which shows that this is not necessarily the case.
Let 7 be the binary phylogenetic tree ob= {1, ..., 6} shown inFig. 2(a) and let

Q = {14/56, 15/36, 23145, 12|36}

Note that @ € Q(7). It is draightforward to check that s€©Q) = Q(7). Now, each quartet in
Q — {1536} distinguishes a distinct interior edgedf while 15,36 does not distinguish any interior edge
of 7. This means that the only possibility forZatight subset o is Q — {1536} as every interior edge
of 7 needs to be distinguished by a quarter(see §, Theorem 6.8.7]). But the binary phylogenetic
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tree shown irFig. 2(b) also displayQ — {15/36}. Thus @ — {1536} does not defind and soQ does
not contain & -tight subset.
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