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A B S T R A C T

A key step in the origin of life is the emergence of a primitive metabolism. This requires the formation of
a subset of chemical reactions that is both self-sustaining and collectively autocatalytic. A generic approach
to study such processes (‘RAF theory’) has provided a precise and computationally effective way to address
these questions, both on simulated data and in laboratory studies. In this paper, we solve some questions
posed in more recent papers concerning the computational complexity of some key questions in RAF theory.
In particular, although there is a fast algorithm to determine whether or not a catalytic reaction network
contains a subset that is both self-sustaining and autocatalytic (and, if so, find one), determining whether or
not sets exist that satisfy certain additional constraints turns out to be NP-hard.

1. Introduction

The origin of life remains an unsolved challenge in science. Once
considered a problem ‘beyond science’, many researchers now believe a
solution may not be far off [1,2]. This prospect has partly been fuelled
by recent efforts to integrate formal models and mathematical tech-
niques into the field, particularly for understanding a key step in the
origin of life, namely the origin of metabolism from early chemistry on
Earth [3]. Initially motivated by the emergent qualitative properties of
discrete random networks (such as early works of Paul Erdös and Alfred
Rényi [4]), one approach to formally capture ‘life-like’ emergence in
a chemical system involves the notion of a collectively autocatalytic
set, a concept pioneered for polymer systems by Stuart Kauffman [5].
This approach was later developed more rigorously with Reflexively
Auto-catalytic F-generated sets (RAFs). Such sets couple together two
basic requirements for any living system: reactions are catalysed by
molecules types (e.g. enzymes, cofactors etc.) generated from within
the system, and second, every reaction within the system requires just
molecule types that can be constructed from an ambient food source
using only reactions within the system (i.e. it is self-sustaining from
the chemistry of the environment).

In a series of papers beginning in 2000 to the present [6–8], RAFs
have been investigated in both simulated and laboratory-based systems
of early metabolism [9,10] as discussed in [11] as well as in the analysis
of metabolism in the bacterium Escherichia coli [12] and in a recent
study into ancient metabolism revealed by analysing large biochemical
databases [13]. RAF theory has also been applied in fields such as
ecology [14], economics [15] and cultural evolution [16], and has
recently been re-expressed within the language of semigroups [17].

∗ Corresponding author.
E-mail addresses: mike.steel@canterbury.ac.nz (M. Steel), hein@stats.ox.ac.uk (J. Hein).

In this paper we derive a number of new results in RAF theory,
answering some outstanding complexity questions that have been posed
in earlier papers. We begin in Section 2 by providing basic definitions
and summarising some results and questions from RAF theory.

In Section 3 we investigate the computational complexity of two
problems (posed in [18] and [11]) concerning RAFs that are ‘closed’ (a
biochemically relevant condition we describe there). Namely, (i) does a
RAF set contain a closed subRAF set? (ii) Is there a closed RAF set that
is ‘uninhibited’ (i.e. where no molecule in the set inhibits any reaction)
in the simple case when (just) a single molecule type inhibits (just) one
reaction? We show that both questions are NP-complete (even though
Question (i) is easily solved without the ‘closure’ restriction).

In Section 4, we investigate the simpler ‘elementary’ CRS framework
(where the reactants of each reaction are present in the food source)
and solve two complexity problems (posed in [11,12]): (i) Does an
uninhibited RAF exist? (ii) What is the size of the largest irreducible
RAF? We show that these questions are NP-hard in the elementary CRS
setting. We end with some brief concluding comments.

Our complexity results not only answer open questions posed pre-
viously in the literature, they are also directly relevant to the study
of early metabolism as they indicate how certain analytical questions
need to be handled. In particular, the investigation of large metabolic
databases (such as those considered in [12] and [13]) relied on the exis-
tence of known fast (polynomial-time) and exact algorithms for finding
the maximal RAF when it exists. However, in these studies it was not
clear how to undertake more detailed analysis (e.g. searching for closed
subRAFs). Our complexity results suggest that fast exact algorithms
do not exist, and approaches based on integer linear programming or
heuristics will be required instead.
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Fig. 1. The CRS in (a) contains four different RAFs, the largest of which (the maxRAF) being the set of all reactions; the CRS in (b) contains no RAFs as all reaction subsets in
(b) fail to be 𝐹 -generated. Here, food is indicated by 𝑓∗.

2. Definitions and mathematical preliminaries

RAFs are defined within the context of a catalytic reaction sys-
tem. Formally, a catalytic reaction system (CRS) is a quadruple  =
(𝑋,𝑅,𝐶, 𝐹 ) where:

• 𝑋 denotes a set of molecule types.
• 𝑅 denotes a set of reactions between sets of molecule types. Each

reaction 𝑟 in 𝑅 involves a subset 𝐴 of 𝑋 called the reactants of
𝑟; these reactants combine together (with various multiplicities)
to produce a subset 𝐵 of 𝑋 called the set of products or 𝑟 (with
various multiplicities). In this paper, we need to distinguish re-
actions only up to the sets 𝐴,𝐵 (i.e. including multiplicities does
not change any of the results) and so we write 𝑟 = (𝐴,𝐵) or more
briefly 𝑟 = 𝐴 → 𝐵. For example, the reaction 𝑎+ 𝑎 → 𝑎𝑎 would be
written as 𝑟 = ({𝑎}, {𝑎𝑎}).

• 𝐶 ⊆ 𝑋 × 𝑅 denotes a catalyzation assignment, where if (𝑥, 𝑟) ∈ 𝐶,
we say that the molecule type 𝑥 catalyses the reaction 𝑟.

• 𝐹 ⊆ 𝑋 denotes an ambient food set of molecule types, which are
assumed to be freely available in the environment.

Often when drawing figures to represent CRS, we adopt the fol-
lowing convention: molecule types are represented by black circles,
reactions by white squares, catalysis edges by dashed arrows and
reactant/product edges by black arrows. Given a CRS  = (𝑋,𝑅,𝐶, 𝐹 ),
a subset of reactions 𝑅′ ⊆ 𝑅 is a RAF set (or, more briefly, a RAF) for
 if 𝑅′ is non-empty and both of the following conditions hold:

(RA) Reflexively Auto-catalytic: Every reaction 𝑟 ∈ 𝑅′ is catalysed by a
molecule type 𝑥 that is either in the food set 𝐹 or is the product
of another reaction 𝑟′ ∈ 𝑅′.

(F) F-generated: The reactions in 𝑅′ can be written in a linear order
𝑟0, 𝑟1,… , 𝑟𝑛 such that for every reaction 𝑟𝑖 = (𝐴𝑖, 𝐵𝑖) ∈ 𝑅′, each
reactant 𝑥 ∈ 𝐴𝑖 is either in the food set or is the product of another
reaction occurring earlier in the ordering; that is, ∀𝑥 ∈ 𝐴𝑖, 𝑥 ∈ 𝐹
or 𝑥 ∈ 𝐵𝑗 for some 𝑗 < 𝑖.

RAFs underlie the metabolism of both existing cellular life [12] and
also arise in laboratory models of early life [9–11]. The concept of
a RAF couples two features that seem to be essential in the earliest
metabolism at the origin of life as well as in extant cellular life. Firstly,
the reactions need to be catalysed by molecules present in the system
(in modern metabolism, these catalysts are highly efficient, and are
based on enzymes and cofactors, whereas in early metabolism it is
likely that much simpler catalysts based on metals such as iron would
be involved). Biochemical catalysts not only speed up reactions by

many orders of magnitude but they also allow reactions to be syn-
chronised [19]. Secondly, the system must be ‘self-sustaining’ from an
available (external) food source; in other words, the reactants of each
reaction in the system must either be in the food set or be derivable
from the food set by a sequence of reactions within the system. These
two features are combined into the two conditions (RA) and (F). The
RAF concept is illustrated in Fig. 1(a), along with the weaker notion of
a ‘pseudo-RAF’ (Part (b) of Fig. 1) that satisfies the (RA) condition but
fails to be 𝐹 -generated.

It is easily seen that the union of two or more RAFs is a RAF,
and thus if a CRS has a RAF, it has a unique maximal one, called the
maxRAF. Any given RAF 𝑅′ may contain another RAF 𝑅′′ as a strict
subset, in which case we say that 𝑅′′ is a subRAF of 𝑅′. Although it is
not perhaps obvious from the above definition, it turns out that there
is a (polynomial-time) algorithm for computing the maxRAF within a
given CRS, if one exists at all [7]. We describe this maxRAF algorithm
shortly.

2.1. The closure of a set of molecule types

Fix a CRS  = (𝑋,𝑅,𝐶, 𝐹 ). Given a set of reactions 𝑅′ ⊆ 𝑅 and a set
of molecule types 𝑋′ ⊆ 𝑋, the molecule closure cl𝑅′ (𝑋′) is the unique
minimal subset 𝑊 ⊆ 𝑋 of molecule types satisfying the following two
conditions: (i) 𝑋′ ⊆ 𝑊 ; (ii) for every reaction (𝐴,𝐵) ∈ 𝑅′: 𝐴 ⊆ 𝑊 ⟹

𝐵 ⊆ 𝑊 (as defined in [7]).
In other words, cl𝑅′ (𝑋′) denotes the set of molecule types arrived

at if we were to continually apply reactions from 𝑅′, wherever we
could, ignoring catalysis constraints and starting only with molecule
types from 𝑋′. Mostly we will be considering the case where 𝑋′ is the
food set 𝐹 . To aid the mathematical analysis, we will use an equivalent
but alternative definition of a RAF set (as defined and justified in [20])
that incorporates the molecular closure. Both definitions will be used
in the proofs to follow.

Lemma 1. Given a CRS  = (𝑋,𝑅,𝐶, 𝐹 ), a subset of reactions 𝑅′ ⊆ 𝑅 is a
RAF for  if and only if it is non-empty and both of the following conditions
hold:

(i) For every reaction 𝑟 ∈ 𝑅′, there is at least one molecule type 𝑥 ∈
cl𝑅′ (𝐹 ) with (𝑥, 𝑟) ∈ 𝐶;

(ii) For every reaction 𝑟 = (𝐴,𝐵) ∈ 𝑅′, 𝐴 ⊆ cl𝑅′ (𝐹 ).

Condition (ii) is equivalent to the F-generated condition, but Condi-
tion (i) is stronger than the RA condition described earlier; however, the
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combination of Conditions (i) and (ii) is equivalent to the combination
of the earlier conditions of RA and F-generated.

Given a CRS  = (𝑋,𝑅,𝐶, 𝐹 ), the maxRAF algorithm computes a
nested decreasing sequence of subsets of 𝑅, starting from 𝑅:

𝑅 = 𝑅0 ⊃ 𝑅1 ⊃ ⋯ ⊃ 𝑅𝑘 = 𝑅𝑘+1

where 𝑅𝑗+1 is the subset of reactions in 𝑅𝑗 that have all their reactants
and at least one catalyst in cl𝑅𝑗

(𝐹 ). At the first value of 𝑘 for which
𝑅𝑘 = 𝑅𝑘+1, this set is either empty (in which case,  has no RAF) or it is
the unique maximal RAF set (maxRAF). For a proof of these assertions,
see [7]. A rudimentary runtime analysis of the algorithm gives us
𝑂(|𝑅|3|𝑋|) time and 𝑂(|𝑋| + |𝑅|) space [7], although under common
circumstances (such as when simulating the Binary Polymer Model) it
tends to run subquadratically in time with the number of reactions (see
the simulations in [7]). Efforts have been made to improve this runtime
and optimised implementations exist which perform significantly better
over certain networks (see [21]).

3. Complexity results for closed RAFs

One important notion that ties the structural properties of RAFs to
chemical realism is to require a RAF to be closed. Formally, given a CRS
 = (𝑋,𝑅,𝐶, 𝐹 ), a RAF 𝑅′ ⊆ 𝑅 is said to be closed if there is no reaction
in 𝑅−𝑅′ that has all its reactants and at least one catalyst in cl𝑅′ (𝐹 ). In
other words, in a closed RAF, all reactions that can happen are included
in the RAF. For example, in Fig. 1(a) there are four different RAFs,
but only two of these four are closed; the closed RAFs in Fig. 1(a)
are {{𝑓4, 𝑓5} → {𝑝1}, {𝑝1, 𝑓2} → {𝑝2}} and the maxRAF (containing all
reactions). Note that the maxRAF is always closed, if it exists.

Closed RAFs are of particular relevance to evolutionary theories of
RAFs and early metabolic cycles: by finding the closed subRAFs of a
particular RAF, it may be possible to trace back its ‘ancestral’ history;
that is, a sequence of ‘stable’ states that could have initially lead to
the production of the RAF (see [11,18]). In a recent paper [18], a
direct, formal relationship between closed RAFs and a field known
as Chemical Organisation Theory was established (adding to earlier
links (see [20])). Using this connection, a new type of algorithm
was developed to enumerate the set of all closed subRAFs existing
within the maxRAF [18]. Although the new algorithm had reasonable
performance for RAFs of size ≤ 200, it was not shown to run in
polynomial-time [18]. It has remained an open question (posed in [18]
and [11]) as to whether such a polynomial-time algorithm exists.

In this section, we present our complexity results surrounding closed
RAFs. We solve the open problem posed in [11,18] by demonstrating
the NP-completeness of finding closed subRAFs. We also we show that
finding closed ‘uninhibited’ RAFs is not fixed-parameter tractable (FPT)
in the number of inhibitions (unlike the case for non-closed RAFs [22]).

To motivate this setting, we consider first two questions without
the ‘closure’ constraint. Given a CRS  = (𝑋,𝑅,𝐶, 𝐹 ) that has a RAF,
let �̂� ∈ 𝑋 be any molecule type. There are then simple polynomial-time
algorithms to determine answers to each of the following questions.

Does  have:

(i) a RAF that does not produce �̂�?
(ii) a RAF that is a strict subset of maxRAF()?

For Problem (i), let 𝑅∗
�̂� be the set of reactions in maxRAF() that do

not produce �̂�. The answer to (i) is ‘yes’ if and only if �̂� ∉ 𝐹 and the
CRS (𝑋,𝑅∗

�̂�, 𝐶|𝑋×𝑅∗
�̂�
, 𝐹 ) has a RAF.

For Problem (ii), let 𝑅∗
𝑟 = maxRAF() − {𝑟}. The answer to (ii)

is ‘yes’ if and only if the CRS (𝑋,𝑅∗
𝑟 , 𝐶|𝑋×𝑅∗

𝑟
, 𝐹 ) has a RAF for some

𝑟 ∈ maxRAF().
However, if we modify these two questions so as to require the

desired RAF to be closed, they become much more difficult, as we now
explain.

We start with the following problem: Given a CRS  = (𝑋,𝑅,𝐶, 𝐹 ),
does  contain a closed RAF 𝑅′ that does not produce a certain
molecule type �̂� ∈ 𝑋? More formally stated:

PROBLEM: Forbidden-molecule closed RAF
INSTANCE: A CRS  = (𝑋,𝑅,𝐶, 𝐹 ) and a particular molecule type

�̂� ∈ 𝑋.
QUESTION: Does  contain a closed RAF 𝑅′ ⊆ 𝑅 with �̂� ∉ cl𝑅′ (𝐹 )?

Theorem 3.1. The Forbidden-molecule closed RAF problem is NP-hard.

Proof. Our proof will follow a reduction from 3SAT. Given a formula
, we will construct in polynomial-time a CRS  = (𝑋,𝑅,𝐶, 𝐹 ) with
a distinguished molecule type �̂� ∈ 𝑋 that has a closed RAF 𝑅′ with
�̂� ∉ cl𝑅′ (𝐹 ) if and only if  admits a satisfying assignment.

We start by describing the food gadget. Our CRS  will contain
a single food molecule type 𝐹 = {𝑓}. We will include in  two
distinguished molecule types 𝑥𝑜𝑢𝑡 and 𝑥𝑖𝑛 as well as two distinguished
reactions 𝑟out and 𝑟in. The reaction 𝑟𝑜𝑢𝑡 will be catalysed by the food
molecule 𝑓 (for simplicity, we will not include this catalyzation arrow
in the diagrams), and the reaction 𝑟𝑖𝑛 will be catalysed by the molecule
type 𝑥𝑜𝑢𝑡. We present the food gadget in Fig. 2(a) (for now we also
exclude the reactants of 𝑟𝑜𝑢𝑡 and the reactions that 𝑥𝑖𝑛 acts as a reactant
for).

Since 𝑟𝑖𝑛 is (and will be, in the overall construction) the only
reaction with all food-molecule reactants, any F-generated set in 
must contain 𝑟𝑖𝑛. As RAFs are by definition F-generated, the following
condition can therefore be inferred:

𝑅′ ⊆ 𝑅 is a RAF ⟹ 𝑟𝑖𝑛 ∈ 𝑅′ (1)

As 𝑥𝑜𝑢𝑡 is the only molecule type catalysing 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡 is the only
reaction producing 𝑥𝑜𝑢𝑡, we must also have:

𝑅′ ⊆ 𝑅 is a RAF ⟹ 𝑟𝑜𝑢𝑡 ∈ 𝑅′. (2)

Next, we will begin to present the clause gadget, displayed in Fig. 2(b).
From (2), we can infer that each reactant of 𝑟𝑜𝑢𝑡 must also be in cl𝑅′ (𝐹 ).
Let 𝐴𝑜𝑢𝑡 ⊆ 𝑋 denote the set of reactants of 𝑟𝑜𝑢𝑡. It follows that if 𝑅′ ⊆ 𝑅
is a RAF then ⋀

𝑥∈𝐴𝑜𝑢𝑡
𝑥 ∈ cl𝑅′ (𝐹 ). Further, since none of 𝑥 ∈ 𝐴𝑜𝑢𝑡 are

(or will be) food molecule types, we must have at least one reaction
producing 𝑥. Let 𝜌 ∶ 𝑋 → 2𝑅 denote the set of reactions that produce a
molecule type 𝑥 ∈ 𝑋. The following holds:

𝑅′ ⊆ 𝑅 is a RAF ⟹
⋀

𝑥∈𝐴𝑜𝑢𝑡

⋁

𝑟∈𝜌(𝑥)
𝑟 ∈ 𝑅′ (3)

In Fig. 2(b), condition (3) forces at least one reaction from each ‘block’
(of three reactions) in the middle row to be in 𝑅′ — for any RAF set
𝑅′ ⊆ 𝑅.

We will now formally define our clause gadgets and illustrate how
they integrate with the structure of the given formula . For added
formality, we denote  =

⋀

𝑖 𝑐𝑖 =
⋀

𝑖 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3). That is, let 𝑐𝑖
represent the ith clause in  and let 𝑙(𝑖,𝑗) denote the jth literal in the
ith clause of . Each 𝑙(𝑖,𝑗) literal can either be positive or negative.

For each clause 𝑐𝑖 = 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3) ∈ , let 𝑐𝑋𝑖 be a reac-
tant molecule type to 𝑟𝑜𝑢𝑡 (i.e. let 𝑐𝑋𝑖 ∈ 𝐴𝑜𝑢𝑡) and let 𝑙𝑅(𝑖,1), 𝑙

𝑅
(𝑖,2), 𝑙

𝑅
(𝑖,3)

be reactions producing 𝑐𝑋𝑖 (i.e. let 𝑙𝑅(𝑖,1), 𝑙
𝑅
(𝑖,2), 𝑙

𝑅
(𝑖,3) ∈ 𝜌(𝑐𝑋𝑖 )). For each

reaction 𝑙𝑅(𝑖,𝑗), also let 𝑙𝑋(𝑖,𝑗) be its single reactant and let 𝑐𝑋𝑖 be its single
catalysing molecule type. Stated formally: for each clause 𝑐𝑖 ∈ , we
have 𝑙(𝑖,𝑗) ∈ 𝑐𝑖 ⟹ (𝑙𝑅(𝑖,𝑗) = ({𝑙𝑋(𝑖,𝑗)}, {𝑐

𝑋
𝑖 }) ∈ 𝑅) ∧ ((𝑐𝑋𝑖 , 𝑙𝑅(𝑖,𝑗)) ∈ 𝐶)

for 1 ≤ 𝑗 ≤ 3. See Fig. 3 for an illustration. We can now rewrite
condition (3) as:

𝑅′ ⊆ 𝑅 is a RAF ⟹
⋀

𝑖
(𝑙𝑅(𝑖,1) ∈ 𝑅′) ∨ (𝑙𝑅(𝑖,2) ∈ 𝑅′) ∨ (𝑙𝑅(𝑖,3) ∈ 𝑅′) (4)

Since each 𝑙𝑅(𝑖,𝑗) reaction from (4) must contain its reactants we also gain
the condition:

𝑅′ ⊆ 𝑅 is a RAF ⟹
⋀

𝑖
(𝑙𝑋(𝑖,1) ∈ cl𝑅′ (𝐹 )) ∨ (𝑙𝑋(𝑖,2) ∈ cl𝑅′ (𝐹 ))

∨ (𝑙𝑋(𝑖,3) ∈ cl𝑅′ (𝐹 )) (5)

3
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Fig. 2. (a) The food gadget: both 𝑟𝑜𝑢𝑡 and 𝑟𝑖𝑛 must necessarily be in any RAF set of  . (b) The clause gadget: at least one reaction from each ‘block’ (of three) in the middle
row must necessarily be in any RAF set 𝑅′ ⊆ 𝑅. (In (b) we are hiding the catalyzation arrow from 𝑥𝑜𝑢𝑡 to 𝑟𝑖𝑛 for brevity).

Fig. 3. Given a SAT formula e.g.  = (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐 ∨ 𝑑) ∧ (𝑏 ∨ 𝑐 ∨ 𝑑), we construct the clause gadget as above. For each literal occurrence, we have a single ‘literal’
reaction with a single ‘literal’ molecule reactant. (In the figure, this relationship is referenced by the faint dotted lines above each literal occurrence in .) Each literal reaction
produces, and is catalysed by, a corresponding ‘clause’ molecule type. All clause molecules types are reactants to 𝑟𝑜𝑢𝑡.

As we proceed, we will refer to 𝑙𝑅(𝑖,𝑗) ∈ 𝑅 as the ‘literal’ reaction and
𝑙𝑋(𝑖,𝑗) as the ‘literal’ molecule type for a literal occurrence 𝑙(𝑖,𝑗) ∈ .

Next, we describe the variable gadget, displayed in Fig. 4. For each
variable 𝑣 ∈ , introduce a variable gadget to  . For a variable 𝑣,
the variable gadget consists of three reactions named 𝑣𝑅 (highlighted
in green), 𝑣𝑅 (highlighted in pink) and 𝑣𝑅𝑚𝑖𝑑 . The central red molecule
type is �̂� ∈ 𝑋, which is the forbidden molecule type. The sets of product
molecule types 𝐿𝑉 and 𝐿𝑉 will be defined shortly. Formally, we have
𝑣𝑅 = ({𝑥𝑖𝑛}, {𝑣𝑋𝑐𝑎𝑡, 𝑣

𝑋
𝑡𝑜𝑝, 𝑣

𝑋
𝑚𝑖𝑑} ∪ 𝐿𝑉 ), 𝑣𝑅 = ({𝑥𝑖𝑛}, {𝑣

𝑋
𝑐𝑎𝑡, 𝑣

𝑋
𝑡𝑜𝑝, 𝑣

𝑋
𝑚𝑖𝑑} ∪ 𝐿𝑉 ),

𝑣𝑅𝑚𝑖𝑑 = ({𝑣𝑋𝑚𝑖𝑑 , 𝑣
𝑋
𝑚𝑖𝑑}, {�̂�}) for molecule types 𝑣𝑋𝑡𝑜𝑝, 𝑣

𝑋
𝑚𝑖𝑑 , 𝑣

𝑋
𝑚𝑖𝑑 , 𝑣

𝑋
𝑐𝑎𝑡, 𝑣

𝑋
𝑐𝑎𝑡 with

(𝑣𝑋𝑐𝑎𝑡, 𝑣
𝑅), (𝑣𝑋𝑐𝑎𝑡, 𝑣

𝑅), (𝑥𝑖𝑛, 𝑣𝑅𝑚𝑖𝑑 ) ∈ 𝐶, and 𝑣𝑋𝑡𝑜𝑝 a reactant to 𝑟𝑜𝑢𝑡 (i.e. 𝑣𝑋𝑡𝑜𝑝 ∈
𝐴𝑜𝑢𝑡).

Since 𝑣𝑋𝑡𝑜𝑝 is a reactant to 𝑟𝑜𝑢𝑡 and as 𝑣𝑅, 𝑣𝑅 are the only reactions
producing 𝑟𝑜𝑢𝑡, by condition (3) it follows:

𝑅′ ⊆ 𝑅 is a RAF ⟹ (𝑣𝑅 ∈ 𝑅′) ∨ (𝑣𝑅 ∈ 𝑅′) (6)

Further, for any closed RAF 𝑅′ ⊆ 𝑅, if both 𝑣𝑅, 𝑣𝑅 ∈ 𝑅′, it follows
𝑣𝑋𝑚𝑖𝑑 , 𝑣

𝑋
𝑚𝑖𝑑 , 𝑥𝑖𝑛 ∈ cl𝑅′ (𝐹 ) and therefore 𝑣𝑅𝑚𝑖𝑑 ∈ 𝑅′ (by closure of 𝑅′).

Since 𝑣𝑅𝑚𝑖𝑑 ∈ 𝑅′ produces our forbidden molecule type, we can infer
(contrapositive) the following condition:

𝑅′ ⊆ 𝑅 is a closed RAF ∧ �̂� ∉ cl𝑅′ (𝐹 ) ⟹ (𝑣𝑅 ∉ 𝑅′) ∨ (𝑣𝑅 ∉ 𝑅′) (7)

Combining (7) with (6) gives:

𝑅′ ⊆ 𝑅 is a closed RAF ∧ �̂� ∉ cl𝑅′ (𝐹 ) ⟹ (𝑣𝑅 ∈ 𝑅′) ⇔ (𝑣𝑅 ∉ 𝑅′) (8)

Condition (8) means that any closed RAF in 𝑅′ which does not
produce the forbidden molecule type (i.e. �̂� ∉ 𝑐𝑙𝑅′ (𝐹 )) must contain
exactly one of the reactions 𝑣𝑅 or 𝑣𝑅 for every variable 𝑣 ∈ .
(Note the analogy between the inclusions of reactions 𝑣𝑅, 𝑣𝑅 and truth
assignments of a variable 𝑣 in a SAT assignment.)

We will now consolidate our variable gadgets with our clause
gadgets, and define the sets 𝐿𝑉 and 𝐿𝑉 . For a variable gadget in 
corresponding to a variable 𝑣 ∈ , define 𝐿𝑉 to be the set of all literal
molecule types 𝑙𝑋(𝑖,𝑗) for 𝑙(𝑖,𝑗) ∈  being a positive occurrence of the
variable 𝑣. Likewise, define 𝐿𝑉 to be the set of all literal molecule types
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Fig. 4. The variable gadget for a variable 𝑣 ∈ . In any closed RAF set 𝑅′ ⊆ 𝑅 that
does not produce �̂�, exactly one of 𝑣𝑅 , 𝑣𝑅 is included 𝑅′.

𝑙𝑋(𝑖,𝑗) for 𝑙(𝑖,𝑗) ∈  being a negative occurrence of the variable 𝑣. See Fig. 5
for an illustration.

This completes the construction definition. See Fig. 6 for an illus-
tration of the overall construction. Since the size of each gadget is
constant, our construction is linear in the size of the Formula  and
therefore polynomial-time computable.

To complete the proof, we now establish the following claim: 
admits a satisfying assignment if and only if  has a closed RAF 𝑅′

with �̂� ∉ cl𝑅′ (𝐹 ).

Proof. (⟹) Suppose  contains a closed RAF 𝑅′ with �̂� ∉ cl𝑅′ (𝐹 ).
We construct an assignment  ⊧  as follows: for each variable 𝑣 ∈ ,
let (𝑣) = 1 if and only if 𝑣𝑅 ∈ 𝑅′ (set (𝑣) = 0 otherwise). By (8),  is
well-defined. By (5), we must have ⋀

𝑖(𝑙
𝑋
(𝑖,1) ∈ cl𝑅′ (𝐹 )) ∨ (𝑙𝑋(𝑖,2) ∈ cl𝑅′ (𝐹 ))

∨ (𝑙𝑋(𝑖,3) ∈ cl𝑅′ (𝐹 )).
Now suppose WLOG that 𝑙𝑋(𝑖,1) ∈ 𝑐𝑙𝑅′ (𝐹 ) and that 𝑙(𝑖,1) is a positive

literal occurrence of the variable 𝑣 in  (for some arbitrarily cho-
sen clause at index 𝑖). By construction 𝑣𝑅 will be the only reaction
producing 𝑙𝑋(𝑖,1), so 𝑣𝑅 ∈ 𝑅′ and (𝑣) = 1. Furthermore, as 𝑙(𝑖,1) is a
positive literal occurrence of the variable 𝑣, it follows (𝑙(𝑖,1)) = 1 and
therefore (𝑙(𝑖,1))∨(𝑙(𝑖,2))∨(𝑙(𝑖,3)) = 1. The argument is symmetric for
negative literal occurrences. Since the clause was chosen arbitrarily, all
clauses must evaluate to true. We conclude that  must be a satisfying
assignment.

(⟸) Suppose  admits a satisfying assignment . We construct a
closed RAF 𝑅′ with �̂� ∉ cl𝑅′ (𝐹 ) in four simple steps: (i) Let 𝑟𝑖𝑛, 𝑟𝑜𝑢𝑡 ∈ 𝑅′.
(ii) For each variable 𝑣 ∈  with (𝑣) = 1, let 𝑣𝑅 ∈ 𝑅′. (iii) For each
variable 𝑣 ∈  with (𝑣) = 0, let 𝑣𝑅 ∈ 𝑅′. (iv) For each literal 𝑙(𝑖,𝑗) ∈ 
with (𝑙(𝑖,𝑗)) = 1, let 𝑙𝑅(𝑖,𝑗) ∈ 𝑅′. We complete the proof by showing 𝑅′ is
a closed RAF that does not produce �̂�. We do this through four claims:

Claim 1:𝑅′ is F-generated.

Proof. We simply provide the linear ordering of reactions 𝑟𝑖𝑛, 𝑉 , 𝐿, 𝑟𝑜𝑢𝑡
for 𝑉 and 𝐿 the variable and literal reactions included in 𝑅′, re-
spectively. (The linear ordering of reactions within 𝑉 or 𝐿 does not
matter.)

Claim 2: 𝑅′ is autocatalytic.

Fig. 5. Part of the construction of  for the formula  = (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧
(𝑏 ∨ 𝑐 ∨ 𝑑) ∧ (𝑏 ∨ 𝑐 ∨ 𝑑), only including the variable gadget for variable 𝑐 and hiding
the gadgets for variables 𝑎, 𝑏, 𝑑. We show how a single variable gadget fits in amidst
the overall construction. The literal molecules and reactions are unlabelled for brevity.
The catalyzation edges from 𝑓 to 𝑟𝑜𝑢𝑡 and from 𝑥𝑜𝑢𝑡 to 𝑟𝑖𝑛 are also not shown. As can
be seen, the 𝑐𝑅 and 𝑐𝑅 reactions produce the literal molecule types corresponding to
positive and negative occurrences of the variable 𝑐 (i.e. 𝑐 and 𝑐) in .

Proof. All literal reactions 𝑙𝑅(𝑖,𝑗) produce the molecule types 𝑐𝑋𝑖 which
catalyse every 𝑙𝑅(𝑖,𝑗). The 𝑟𝑜𝑢𝑡 reaction is catalysed by 𝑓 . The 𝑟𝑖𝑛 reaction
is catalysed by 𝑥𝑜𝑢𝑡 which is produced by 𝑟𝑜𝑢𝑡. Lastly, 𝑣𝑅, 𝑣𝑅 reactions
produce molecule types 𝑣𝑋𝑐𝑎𝑡, 𝑣

𝑋
𝑐𝑎𝑡 which catalyse 𝑣𝑅, 𝑣𝑅, respectively.

This covers all cases, so 𝑅′ is autocatalytic.

Claim 3: 𝑅′ is closed.

Proof. We prove 𝑅′ is closed by case analysis on the reactions outside
of 𝑅′. Let 𝑟 ∉ 𝑅′, then we have three cases:

Case (i): 𝑟 = 𝑙𝑅(𝑖,𝑗) ∉ 𝑅′ is a literal reaction. Suppose WLOG that
𝑙(𝑖,𝑗) ∈  is a positive occurrence of the variable 𝑣 ∈ . Since 𝑙𝑅(𝑖,𝑗) ∉ 𝑅′

then (𝑙(𝑖,𝑗)) = 0, and as 𝑙(𝑖,𝑗) is a positive literal occurrence of 𝑣 it
follows (𝑣) = 0 and so 𝑣𝑅 ∉ 𝑅′. As 𝑣𝑅 is the only reaction producing
𝑙𝑋(𝑖,𝑗), we have 𝑙𝑋(𝑖,𝑗) ∉ cl𝑅′ (𝐹 ), so 𝑙𝑅(𝑖,𝑗) does not follow by closure. The
argument is symmetric for negative literal occurrences in .

Case (ii): 𝑟 = 𝑣𝑅 ∉ 𝑅′ or 𝑟 = 𝑣𝑅 ∉ 𝑅′ is a variable gadget reaction.
The variable gadget reactions 𝑣𝑅, 𝑣𝑅 are only catalysed by the molecule
types they produce (which are 𝑣𝑋𝑐𝑎𝑡 and 𝑣𝑋𝑐𝑎𝑡, respectively). So they do
not follow by closure.

Case (iii): 𝑟 = 𝑣𝑅𝑚𝑖𝑑 . Since  is well defined, by construction we
cannot have both 𝑣𝑅, 𝑣𝑅 ∈ 𝑅′, so the reactants 𝑣𝑋𝑚𝑖𝑑 , 𝑣

𝑋
𝑚𝑖𝑑 of 𝑣𝑅𝑚𝑖𝑑 cannot

both be in cl𝑅′ (𝐹 ). It follows 𝑣𝑅𝑚𝑖𝑑 does not follow by closure.

Claim 4: 𝑅′ does not produce �̂� (i.e. �̂� ∉ 𝑐𝑙𝑅′ (𝐹 )).

Proof. By construction of 𝑅′, we did not include any 𝑣𝑅𝑚𝑖𝑑 reactions.
Since they are the only reactions producing �̂�, it immediately follows
that �̂� ∉ cl𝑅′ (𝐹 ).

This completes the proof □
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Fig. 6. The entire construction  for the formula  = (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐 ∨ 𝑑) ∧ (𝑏 ∨ 𝑐 ∨ 𝑑) is shown. All labels are hidden for brevity; again, the catalyzation edges from
𝑓 to 𝑟𝑜𝑢𝑡 and from 𝑥𝑜𝑢𝑡 to 𝑟𝑖𝑛 are also not shown.

3.1. The closed strict subRAF problem

Theorem 3.1 provides the tool for establishing the hardness of some
questions posed in earlier papers. In particular, we can use it to solve
the closed strict subRAF problem mentioned in [11,18].

PROBLEM: Closed strict subRAF
INSTANCE: A CRS  = (𝑋,𝑅,𝐶, 𝐹 )
QUESTION: Does  contain a closed RAF 𝑅′ ⊂ 𝑅 with 𝑅′ ⊂

maxRAF()?

Theorem 3.2. The closed strict subRAF problem is NP-complete.

Before we begin with the proof of Theorem 3.2, we will first
introduce some new notation and establish a series of lemmas. Given
two CRS 1 = (𝑋1, 𝑅1, 𝐶1, 𝐹1), 2 = (𝑋2, 𝑅2, 𝐶2, 𝐹2) and a relation ∼,
we say 1 ∼ 2 if and only if 𝑋1 ∼ 𝑋2, 𝑅1 ∼ 𝑅2, 𝐶1 ∼ 𝐶2 and
𝐹1 ∼ 𝐹2. In the proofs below, we often relate CRS by the relations ⊆
and ⊂ (e.g. 1 ⊆ 2 and 1 ⊂ 2).

Lemma 2. Let 1,2 be CRS with 1 ⊆ 2. If 𝑅′ is a RAF in 1, then
𝑅′ is a RAF in 2.

Proof. Let 1 = (𝑋1, 𝑅1, 𝐶1, 𝐹1),2 = (𝑋2, 𝑅2, 𝐶2, 𝐹2) be CRS with
1 ⊆ 2 and suppose that 𝑅′ ⊆ 𝑅1 is a RAF in 1. Since 𝐹1 ⊆ 𝐹2 and
𝑅′ ⊆ 𝑅1 ⊆ 𝑅2, it follows both 𝐹1 and 𝑅′ are well-defined in 2, and
so the closure 𝑐𝑙𝑅′ (𝐹1) must also be well-defined in 2. Furthermore,
𝑐𝑙𝑅′ (𝐹1) in 2 must equal 𝑐𝑙𝑅′ (𝐹1) in 1 as the reaction and food sets
are identical. By the definition of a RAF (from Lemma 1), and since
𝐶1 ⊆ 𝐶2, it follows 𝑅′ must be a RAF in 2. □

Corollary 1 (maxRAF Monotonicity). Let 1, 2 be CRS with 1 ⊆ 2,
then maxRAF(1) ⊆ maxRAF(2).

Proof. The maxRAF of a CRS is the union of all RAFs in the CRS. The
result therefore follows immediately from Lemma 2. □

Lemma 3. Let 1, 2 be CRS with 1 ⊆ 2 and suppose there exists a
RAF in 2 that is not a subset of the maxRAF of 1, then maxRAF(1) ⊂
maxRAF(2).

Proof. Let 𝑅′ denote a RAF in 2 that is not a subset of maxRAF(1).
By Lemma 2, maxRAF(1) is a RAF in 2. As RAFs are closed under
union, it follows that 𝑅′ ∪ maxRAF(1) is a RAF in 2, and as 𝑅′ ⊈
maxRAF(1), we have 𝑅′ ∪maxRAF(1) ⊃ maxRAF(1). Since all RAFs
in a CRS are subsets of the maxRAF in that CRS, we have maxRAF(1) ⊂
𝑅′ ∪ maxRAF(1) ⊆ maxRAF(2). □

We now apply these results, as well as Theorem 3.1, to prove
Theorem 3.2 (the closed strict subRAF problem is NP-complete).

Proof of Theorem 3.2. Given a set of reactions 𝑅′ ⊆ 𝑅, one can
check whether or not it is a closed RAF that is a strict subset of
maxRAF() in polynomial-time, so the problem is in the class NP. To
establish NP-completeness, we perform a polynomial-time reduction
from the Forbidden-molecule closed RAF problem (which is NP-hard by
Theorem 3.1). Given a CRS  = (𝑋,𝑅,𝐶, 𝐹 ) and a particular molecule
type �̂� ∈ 𝑋, we construct a CRS ̂ = (�̂�, �̂�, �̂�, 𝐹 ) such that  has a
closed RAF 𝑅′ ⊆ 𝑅 with �̂� ∉ cl𝑅′ (𝐹 ) if and only if ̂ has a closed subRAF
𝑅′′ ⊂ �̂� that is a strict subset of the maxRAF in ̂.

The construction of ̂ from  is as follows (see Fig. 7 for a visu-
alisation). For some newly introduced food molecule type 𝑓 , let ̂ =
(�̂�, �̂�, �̂�, 𝐹 ) where �̂� = 𝑋 ∪ {𝑓}, �̂� = 𝑅 ∪ {{𝑓} → {�̂�}}, �̂� = 𝐶 ∪ {(�̂�, 𝑟) ∶
𝑟 ∈ �̂�} and 𝐹 = 𝐹 ∪ {𝑓}. Essentially, we add a new food molecule type
𝑓 to ̂ and a reaction {𝑓} → {�̂�} that produces the forbidden molecule
type �̂�; we then let �̂� catalyse every reaction in ̂, including the reaction
{𝑓} → {�̂�}. This construction is clearly polynomial-time computable in
the size of . We first note that as {{𝑓} → {�̂�}} is a RAF in ̂ which
is not a strict subset of the maxRAF in  (it is nonexistent in ), by
Lemma 3 we have maxRAF() ⊂ maxRAF(̂).

We now establish the correctness of the construction (i.e. that 
contains a closed RAF 𝑅′ ⊆ 𝑅 with �̂� ∉ cl𝑅′ (𝐹 ) if and only if �̂�
contains a closed RAF which is a strict subset of the maxRAF of �̂�).
(⟹) Suppose that  contains a closed RAF 𝑅′ ⊆ 𝑅 with �̂� ∉ cl𝑅′ (𝐹 ).
We show that �̂� contains a closed RAF which is a strict subset of the
maxRAF of �̂�. By Lemma 2, 𝑅′ must be a RAF in ̂, and as 𝑅′ ⊆
maxRAF() ⊂ maxRAF(̂) it follows 𝑅′ is a RAF in ̂ which is a strict
subset of maxRAF(̂). We now aim to show that 𝑅′ is closed in ̂. We
will do this by case analysis on the reactions 𝑟 ∈ �̂� − 𝑅′ (i.e. reactions
outside of 𝑅′ in ̂). There are two cases to consider: (i) 𝑟 = {𝑓} → {�̂�}
(i.e. 𝑟 is our newly added reaction in ̂) and (ii) 𝑟 ∈ 𝑅 − 𝑅′ (i.e. 𝑟 is a
reaction in ). In Case (i), since �̂� ∉ cl𝑅′ (𝐹 ) (in 𝑄) and as 𝑓 does not
catalyse anything, {𝑓} → {�̂�} will be uncatalyzed across cl𝑅′ (𝐹 ) (in �̂�).
In Case (ii), since {𝑓} → {�̂�} is uncatalyzed across cl𝑅′ (𝐹 ) (from Case
(i)), the rest of the construction �̂� is identical to 𝑄. Therefore, as 𝑅′ is
closed in 𝑄 and so 𝑟 ∈ 𝑅 −𝑅′ cannot proceed in 𝑄, it follows 𝑟 cannot
proceed in �̂� either. We conclude that 𝑅′ is closed in �̂�.

(⟸) Suppose that 𝑅′′ ⊂ �̂� is a closed RAF in ̂ which is a strict
subset of maxRAF(̂). We show that there exists a closed RAF in 𝑄
which does not produce the molecule type �̂�. Since 𝑅′′ ⊂ maxRAF(̂),
we must have �̂� ∉ cl𝑅′′ (𝐹 ) (otherwise �̂� would catalyse every reaction
in ̂, and so, by the closure of 𝑅′′, it could no longer be a strict subset of
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Fig. 7. The construction of the CRS ̂ (relative to the ) is shown above. We define ̂
by adding to  a new food molecule type 𝑓 and a reaction {𝑓} → {�̂�} which produces
the forbidden molecule type �̂�. We then let �̂� catalyse {𝑓} → {�̂�} as well as every
reaction in . The construction is such that maxRAF(̂) ⊃ maxRAF().

maxRAF(̂)). With �̂� ∉ cl𝑅′′ (𝐹 ), we must have {𝑓} → {�̂�} ∉ 𝑅′′ (it is not
catalysed), and therefore 𝑅′′ ⊆ 𝑅 (i.e. 𝑅′′ must be contained within the
CRS ). Since the food molecule 𝑓 does not catalyse anything, without
�̂� or {𝑓} → {�̂�} the rest of the construction is identical to . It follows
𝑅′′ must be a closed RAF in  with �̂� ∉ 𝑐𝑙𝑅′′ (𝐹 ). □

3.2. Application to ‘uninhibited’ RAFs

So far, the CRS model only includes catalytic interactions between
molecule types and reactions. This may be plausible in some circum-
stances, although in real biochemical systems it is very often the case
that certain molecule types inhibit the presence of certain reactions. To
describe this more formally, consider a CRS  = (𝑋,𝑅,𝐶, 𝐹 ) together
with an additional set 𝐼 ⊆ 𝑋 × 𝑅. An uninhibited RAF (uRAF) is a RAF
set 𝑅′ for  that satisfies the following additional property: for every
reaction 𝑟 ∈ 𝑅′, no molecule type in the food set or produced by another
reaction in 𝑅′ inhibits 𝑟. Formally: For each 𝑟 ∈ 𝑅′, there is no molecule
type 𝑥 ∈ cl𝑅′ (𝐹 ) for which (𝑥, 𝑟) ∈ 𝐼 [21]. Essentially, inhibition can be
viewed as the exact opposite of catalyzation.

Following [23], it seems sensible to further restrict interest to uRAFs
that are also closed, since an uninhibited non-closed RAF could provide
the reactants and catalyst for one or more additional reactions (outside
the RAF) to occur, which, in turn, generate a molecule which inhibits
a reaction within the original RAF. Closed uRAFs, on the other hand,
are truly free of inhibition from the products of such reactions. It was
shown in [24] that determining the existence of a (non-closed) uRAF
within a CRS  is NP-hard, though it was shown in [22] to be fixed-
parameter-tractable in the number of inhibiting molecule types. We
prove the same result cannot be found for closed uRAFs (subject to
P ≠ NP) by showing that the following question is NP-hard.

Theorem 3.3. The following problem is NP-hard: Given a CRS  =
(𝑋,𝑅,𝐶, 𝐹 ) and a single inhibiting pair (𝑥, 𝑟) ∈ 𝑋 × 𝑅, determine whether
or not there exists a closed uRAF for  with respect to the inhibiting set
𝐼 = {(𝑥, 𝑟)}.

Proof. To establish NP-hardness, we again perform a polynomial-
time reduction from the Forbidden-molecule closed RAF problem (c.f.
Theorem 3.1). Given a CRS  = (𝑋,𝑅,𝐶, 𝐹 ) and a particular molecule
type �̂� ∈ 𝑋, we construct in polynomial-time a CRS ′ and an inhibiting
singleton set 𝐼 such that  has a closed RAF 𝑅′ ⊆ 𝑅 with �̂� ∉ cl𝑅′ (𝐹 ) if

and only if ′ has a closed, uninhibited RAF w.r.t 𝐼 . The construction
is simple: let ′ =  and define 𝐼 = {(�̂�, 𝑟) ∶ 𝑟 ∈ 𝑅} (i.e. make
the forbidden molecule type �̂� inhibit all reactions in the CRS ′). It
immediately follows that a closed RAF 𝑅′ in  with �̂� ∉ cl𝑅′ (𝐹 ) will
be a closed, uninhibited RAF in ′ w.r.t 𝐼 as �̂� is the only molecule
type which is inhibiting and the rest of the construction is identical.
Conversely, a closed uRAF 𝑅′ for ′ w.r.t 𝐼 must have �̂� ∉ cl𝑅′ (𝐹 ) as
otherwise �̂� would inhibit all reactions and RAFs are non-empty. Again,
since the rest of the construction is identical, we have 𝑅′ a closed RAF
in  with �̂� ∉ cl𝑅′ (𝐹 ). The construction is clearly polynomial-time
computable, as required. □

4. Complexity results for elementary RAFs

To help avoid NP-complete problems arising in RAF theory, a sim-
pler setting has recently been studied (see [11]). An elementary CRS is
a special type of CRS where each reaction has all its reactants in the
food set. Every reaction is therefore trivially F-generated and so the RAF
condition reduces to just the RA catalysis condition (i.e. each reaction
is catalysed by the product of some other reaction or by an element of
the food set).

Although this setting seems quite restrictive, it is nevertheless per-
tinent in experimental systems [9,10] as well as in theoretical mod-
els [25]. Many problems that are known to NP-hard in the general
setting are tractable in the elementary setting: for example, finding the
minimum-size RAF and finding closed subRAFs of the maxRAF (proven
to be NP-hard in Section 3) are both computable in polynomial time in
the elementary setting [11]. We now present two questions concerning
elementary CRSs that were posed recently in [11]:

Q1 Is there a polynomial-time algorithm to find a uRAF for an
elementary CRS?

Q2 Is there a polynomial-time algorithm to find a maximum-sized
irreducible RAF for an elementary CRS?

Here, we resolve both questions Q1 and Q2 by providing proofs of
NP-hardness.

First recall that a uRAF is a RAF set 𝑅′ ⊆ 𝑅 that satisfies the
additional property: for each 𝑟 ∈ 𝑅′, there is no molecule type 𝑥 ∈
cl𝑅′ (𝐹 ) for which (𝑥, 𝑟) ∈ 𝐼 [21].

Theorem 4.1. Given an elementary CRS  = (𝑋,𝑅,𝐶, 𝐹 ) and an
inhibition assignment 𝐼 ⊆ 𝑋 ×𝑅, determining whether or not a uRAF for 
exists is NP-complete.

Proof. Checking whether a set of reactions 𝑅′ ⊆ 𝑅 is both a RAF and
uninhibited is polynomial-time computable, so the problem is in NP.
We will establish NP-hardness via a reduction from 3SAT. Given a 3SAT
formula  with 𝑚 clauses, we construct in polynomial-time an elemen-
tary CRS  = (𝑋,𝑅, 𝐹 , 𝐶) and an inhibiting set 𝐼 ⊆ 𝑋×𝑅 such that 
contains a uRAF w.r.t 𝐼 if and only if  admits a satisfying assignment.
For added formality, we denote  =

⋀𝑚
𝑖=1 𝑐𝑖 =

⋀𝑚
𝑖=1 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3).

That is, let 𝑐𝑖 represent the ith clause in , and let 𝑙(𝑖,𝑗) denote the jth
literal in the ith clause of . The construction of  = (𝑋,𝑅, 𝐹 , 𝐶)
from  is as follows. First, we will have a single food molecule 𝑓 ∈ 𝐹 .
Next, for each clause 𝑐𝑖 = 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3) ∈ , let 𝑙𝑅(𝑖,1), 𝑙

𝑅
(𝑖,2), 𝑙

𝑅
(𝑖,3) ∈ 𝑅

be a set of ‘literal’ reactions in 𝑅 and let 𝑙𝑋(𝑖,1), 𝑙
𝑋
(𝑖,2), 𝑙

𝑋
(𝑖,3) ∈ 𝑋 be a set

of ‘literal’ molecule types in 𝑋. Each literal reaction 𝑙𝑅(𝑖,𝑗) will produce
every literal molecule type in the subsequent clause (i.e. it will produce
all the molecules types 𝑙𝑋((𝑖+1)𝑚𝑜𝑑𝑚,1), 𝑙

𝑋
((𝑖+1)𝑚𝑜𝑑𝑚,2), 𝑙

𝑋
((𝑖+1)𝑚𝑜𝑑𝑚,3)), as well as

an additional molecule type 𝐼𝑋(𝑖,𝑗) which we will refer to as the inhibitor
for 𝑙(𝑖,𝑗). Each literal molecule 𝑙𝑋(𝑖,𝑗) will catalyse each literal molecule
𝑙𝑅(𝑖,𝑗). Formally, we have (𝑙𝑋(𝑖,𝑗), 𝑙

𝑅
(𝑖,𝑗)) ∈ 𝐶 for each literal 𝑙(𝑖,𝑗) ∈ , with

𝑙𝑅(𝑖,𝑗) defined below (see Fig. 8 for illustration).

𝑙𝑅(𝑖,𝑗) = ({𝑓}, {𝑙𝑋((𝑖+1)𝑚𝑜𝑑𝑚,1), 𝑙
𝑋
((𝑖+1)𝑚𝑜𝑑𝑚,2), 𝑙

𝑋
((𝑖+1)𝑚𝑜𝑑𝑚,3), 𝐼

𝑋
(𝑖,𝑗)})
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Fig. 8. Given a 3SAT formula with containing two clauses 𝑐1 = 𝑙(1,1) ∨ 𝑙(1,2) ∨ 𝑙(1,3) and
𝑐2 = 𝑙(2,1) ∨ 𝑙(2,2) ∨ 𝑙(2,3), we construct literal reactions and molecule types as above.
(We hide the food molecule type for brevity; it is the sole reactant to all reactions.)
Each reaction produces every literal molecule type for every literal in the succeeding
clause; it is catalysed only by its corresponding literal molecule type. Each reaction
also produces a corresponding ‘literal inhibitor’ molecule.

Finally, for each pair of literals 𝑙(𝑠,𝑡), 𝑙(𝑢,𝑣) ∈  which are opposite-
parity occurrences of the same underlying variable (e.g. 𝑙(𝑠,𝑡) = 𝑣 and
𝑙(𝑢,𝑣) = 𝑣), let (𝐼𝑋(𝑠,𝑡), 𝑙

𝑅
(𝑢,𝑣)) ∈ 𝐼 . To better illustrate the proof we contrive

a simple diagrammatic language, defined across Figs. 9(a) and 9(b).
For an illustration of the overall construction expressed through this
diagrammatic notation, see Figs. 10(a) and 10(b).

Lemma 4. Let  =
⋀𝑚

𝑖=1 𝑐𝑖 =
⋀𝑚

𝑖=1 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3) be a 3SAT formula.
Any uRAF in the constructed CRS 𝑄 w.r.t the inhibiting set 𝐼 cannot
contain two literal reactions 𝑙𝑅(𝑠,𝑡), 𝑙

𝑅
(𝑢,𝑣) where 𝑙(𝑠,𝑡), 𝑙(𝑢,𝑣) ∈  are opposite-

parity occurrences of the same underlying variable in  (e.g. 𝑙(𝑠,𝑡) = 𝑣 and
𝑙(𝑢,𝑣) = 𝑣 in ).

Proof. By the construction of  = (𝑋,𝑅,𝐶, 𝐹 ) we have (𝐼𝑋(𝑠,𝑡), 𝑙
𝑅
(𝑢,𝑣)),

(𝐼𝑋(𝑢,𝑣), 𝑙
𝑅
(𝑠,𝑡)) ∈ 𝐼 as 𝑙(𝑠,𝑡), 𝑙(𝑢,𝑣) are opposite-parity occurrences of the

same underlying variable in . Let 𝑅′ ⊆ 𝑅 be a uRAF in  and
suppose 𝑙𝑅(𝑠,𝑡) ∈ 𝑅′. As 𝑙𝑅(𝑠,𝑡) produces 𝐼𝑋(𝑠,𝑡) we have 𝑙𝑅(𝑢,𝑣) inhibited, so if
𝑙𝑅(𝑠,𝑡) ∈ 𝑅′ then 𝑙𝑅(𝑢,𝑣) ∉ 𝑅′. The argument is symmetric when supposing
𝑙𝑅(𝑢,𝑣) ∈ 𝑅′. □

Lemma 5. Let  =
⋀𝑚

𝑖=1 𝑐𝑖 =
⋀𝑚

𝑖=1 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3) be a 3SAT formula.
Any RAF in the constructed CRS  must have at least one literal reaction
𝑙𝑅(𝑖,1), 𝑙

𝑅
(𝑖,2), 𝑙

𝑅
(𝑖,3) included for every clause 𝑐𝑖 = 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3) ∈ .

Proof. Let  = (𝑋,𝑅,𝐶, 𝐹 ) denote the constructed CRS for the
given 3SAT formula  =

⋀𝑚
𝑖=1 𝑐𝑖 =

⋀𝑚
𝑖=1 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3) and

let 𝑅′ ⊆ 𝑅 be a RAF in  . Suppose WLOG that 𝑙𝑅(𝑖,𝑗) ∈ 𝑅′. As
𝑅′ is a RAF, 𝑙𝑅(𝑖,𝑗) must be catalysed. By construction, 𝑙𝑅(𝑖,𝑗) is only
catalysed by the corresponding literal molecule type 𝑙𝑋(𝑖,𝑗), which is
only produced by reactions in the preceding clause — i.e. 𝜌(𝑙𝑋(𝑖,𝑗)) =
{𝑙𝑅((𝑖−1) mod 𝑚,1), 𝑙

𝑅
((𝑖−1) mod 𝑚,2), 𝑙

𝑅
((𝑖−1) mod 𝑚,3)}). It follows that 𝑅′ must

also contain at least one of the literal reactions from the preceding
clause. Inductively, we conclude 𝑅′ must contain at least one literal
reaction per clause in . □

We now prove that  has a uRAF with respect to the inhibiting
set 𝐼 if and only if  admits a satisfying assignment.

Proof.
(⟹) Suppose  has a uRAF 𝑅′ ⊆ 𝑅 w.r.t 𝐼 . We show the existence

of a satisfying assignment  ⊧ . We define  formally below:

(𝑣) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if ∃𝑙𝑅(𝑖,𝑗) ∈ 𝑅′ where 𝑙(𝑖,𝑗) is a positive
occurrence of 𝑣 in  (i.e. 𝑙(𝑖,𝑗) = 𝑣 in )

0, if ∃𝑙𝑅(𝑖,𝑗) ∈ 𝑅′ where 𝑙(𝑖,𝑗) is a negative
occurrence of 𝑣 in  (i.e. 𝑙(𝑖,𝑗) = 𝑣 in )

𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, otherwise

In other words,  assigns variables to make the literals 𝑙(𝑖,𝑗) in 
positive-valued when the corresponding literal reaction 𝑙𝑅(𝑖,𝑗) is included
in the uRAF 𝑅′ (i.e. if 𝑙𝑅(𝑖,𝑗) ∈ 𝑅′ then (𝑙(𝑖,𝑗)) = 1). By Lemma 4,
 is well-defined. By Lemma 5, we have at least one literal reaction
𝑙𝑅(𝑖,1), 𝑙

𝑅
(𝑖,2), 𝑙

𝑅
(𝑖,3) included for every clause 𝑐𝑖 = 𝑙(𝑖,1) ∨ 𝑙(𝑖,2) ∨ 𝑙(𝑖,3) ∈ . Each

clause must therefore be satisfied under .
(⟸) Suppose that  ⊧  is a satisfying assignment. We construct

a uRAF 𝑅′ for 𝑄 w.r.t 𝐼 as follows: from each clause 𝑐𝑖 ∈ ,
arbitrarily select one positive-valued literal 𝑙(𝑖,𝑗) under  and include
the corresponding reaction 𝑙𝑅(𝑖,𝑗) in the reaction set 𝑅′. We now show
that 𝑅′ is a uRAF for 𝑄 w.r.t 𝐼 with three claims.

Claim 1: 𝑅′ is F-generated.

Proof. Each reaction has the food molecule 𝑓 ∈ 𝐹 as its sole reactant
(the CRS is elementary), so 𝑅′ is trivially F-generated

Claim 2: 𝑅′ is autocatalytic.

Fig. 9. For each literal reaction, literal molecule type and inhibitor for a literal 𝑙(𝑖,𝑗) (as grouped by the large grey circles), we denote a node named 𝑙(𝑠,𝑡) as the ‘literal triplet’ of
𝑙(𝑠,𝑡). Within our construction, there are two categories of edges that occur between literal triplets: Case (i) a literal reaction produces all the literal molecules in the subsequent
clause; these are the types of edges displayed and discussed in Fig. 8. In (a) this is demonstrated by the reaction edge 𝑙𝑅(𝑠,𝑡) ⟶ 𝑙𝑋(𝑢,𝑣) (solid black arrow). Between literal triplets, we
denote this relationship by a grey directed edge and refer to it as a ‘facilitating edge’ between two literal triplets; this is also shown in (a). Case (ii) a literal inhibitor 𝐼𝑋

(𝑠,𝑡) inhibits
the literal reaction 𝑙(𝑢,𝑣) as 𝑙(𝑠,𝑡) and 𝑙(𝑢,𝑣) are opposite-parity occurrences of the same underlying variable in  (e.g. 𝑙(𝑠,𝑡) = 𝑣 and 𝑙(𝑢,𝑣) = 𝑣). This is demonstrated in (b) through the
inhibiting edge 𝐼𝑋

(𝑠,𝑡) ⟶ 𝑙𝑅(𝑢,𝑣) (dashed red arrow). Between literal triplets, we denote this relationship by a red directed edge and refer to it as an ‘inhibiting edge’. This is also
shown in (b). (Note that these edges will always occur in pairs; we have excluded the other direction in (b) for brevity.).
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Fig. 10. Using our diagrammatic notation we show the overall construction corresponding to the formula  = (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐 ∨ 𝑑) ∧ (𝑏 ∨ 𝑐 ∨ 𝑑) in Fig (a). Every
node represents a literal triple; grey and red arrows indicate facilitating and inhibiting edges, respectively (as described in Fig. 9). In Fig (b), we additionally highlight a cycle of
reactions which form a uRAF in  . Triplet nodes highlighted in green indicate that the corresponding literal reaction is included in the RAF (i.e. 𝑙𝑅(𝑖,𝑗) is included in the uRAF 𝑅′

for the highlighted literal triplet 𝑙(𝑖,𝑗)). The green highlighted arrows are still facilitating edges; they are simply intended to emphasise that a cycle of literal triplets has formed.
Consequently, this corresponds to a satisfying assignment for , namely (𝑎) = 1,(𝑐) = 1,(𝑑) = 1,(𝑏) = 0.

Proof. Since one literal reaction 𝑙𝑅(𝑖,𝑗) is included in 𝑅′ per clause, all
literal molecules will be included in the food closure cl𝑅′ (𝐹 ). (Each
literal reaction produces all literal molecules in the next clause.) Each
reaction will therefore be catalysed.

Claim 3: 𝑅′ is uninhibited.

Proof. Our inhibiting set 𝐼 was defined so that for every pair of literals
𝑙(𝑠,𝑡), 𝑙(𝑢,𝑣) ∈  which correspond to opposite-parity occurrences of the
same underlying variable in  (e.g. 𝑙(𝑠,𝑡) = 𝑣 and 𝑙(𝑢,𝑣) = 𝑣), we have
(𝐼𝑋(𝑠,𝑡), 𝑙

𝑅
(𝑢,𝑣)) ∈ 𝐼 . Literals 𝑙(𝑠,𝑡), 𝑙(𝑢,𝑣) which are opposite-parity occurrences

of the same underlying variable can never both be positive-valued
under the same assignment; it follows no two such reactions 𝑙𝑅(𝑠,𝑡), 𝑙

𝑅
(𝑢,𝑣)

will both be included in 𝑅′ and so no reaction 𝑙𝑅(𝑢,𝑣) will be inhibited by
an inhibitor 𝐼𝑋(𝑠,𝑡) (which is only produced by 𝑙𝑅(𝑠,𝑡)). We conclude 𝑅′ is
uninhibited.

Finally, as we include only a polynomial number of reactions,
molecule types, reactant/product edges and catalysis edges in 𝑄
relative to the size of , we can construct  in polynomial-time. This
completes the proof. □

We turn now to Question Q2. When a RAF set contains no subRAFs,
it is said to be an irreducible RAF or, more briefly, an irrRAF. Note
that a RAF is an irrRAF if it has the property that removing any
single reaction from it results in a set that contains no RAF. Irreducible
RAFs have been extensively used in structural analyses of RAFs in
polymer models [20] and in extant metabolic systems [12], as well
as to model ‘coherent evolutionary units’, an evolutionary analogue
of cells (see [2]). Finding a single irrRAF within a RAF is easily
shown to be computable in polynomial time [7]. However, finding the
smallest irrRAF (or, equivalently, a minimum-size RAF) turns out to be
NP-hard [20].

It has been shown earlier [20] that the problem of determining the
size of a smallest RAF (which is necessarily an irrRAF) in a CRS is NP-
hard. However, the problem of determining the size of a largest irrRAF
in a CRS was previously of unknown complexity, and was a problem
posed in [12]. Here, we show that this problem is not only NP-hard but
it remains NP-hard when we restrict it to the setting of elementary CRS
systems, which, in turn, answers a question posed in [11].

Theorem 4.2. Determining the size of a largest irrRAF in an elementary
CRS  is NP-hard.

To establish this result, we need to introduce the longest directed
simple chordless cycle problem (see also the ‘snake-in-the-box’ prob-
lem [26]), which is known to be NP-hard [27]. For a digraph 𝐺 =
(𝑉 ,𝐸), a simple chordless cycle is a sequence of distinct vertices
𝑣0, 𝑣1,… , 𝑣𝑘−1 with (𝑣𝑖, 𝑣(𝑖+1) mod 𝑘) ∈ 𝐸 for each 0 ≤ 𝑖 < 𝑘, and where,
for every pair of vertices 𝑣𝑖, 𝑣𝑗 for 𝑗 ≠ (𝑖 + 1) mod 𝑘, we have no edge
(𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. See Fig. 11 for an illustration.

Given a digraph 𝐺 = (𝑉 ,𝐸), we first describe a polynomial-time
construction of a certain elementary CRS 𝐺 = (𝑋,𝑅,𝐶, 𝐹 ) in three
steps: (i) for each 𝑣𝑖 ∈ 𝑉 , let 𝑣𝑅𝑖 ∈ 𝑅 be a reaction in 𝐺 (ii)
for each (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸, let 𝑣𝑋(𝑖,𝑗) be a molecule type in 𝑋 which is
produced by the reaction 𝑣𝑅𝑖 and which catalyses the reaction 𝑣𝑅𝑗 (by
(i), 𝑣𝑅𝑖 , 𝑣

𝑅
𝑗 must exist in 𝑅) (iii) let 𝐹 = {𝑓}, with 𝑓 being the sole

reactant of all reactions (𝑄𝐺 is elementary). Since we introduce a linear
number of reactions, molecule types and edges with respect to |𝐺|,
our construction is computable in polynomial time. See Fig. 12 for
an illustration of a single edge in the construction and Fig. 13 for a
complete example.

Lemma 6. Given a digraph 𝐺 = (𝑉 ,𝐸), let 𝐺 = (𝑋,𝑅,𝐶, 𝐹 ) be the
constructed CRS for 𝐺. A set 𝑅′ = {𝑣𝑅0 , 𝑣

𝑅
1 ,… , 𝑣𝑅𝑘−1} ⊆ 𝑅 is a RAF in 𝐺 if

and only if for every vertex 𝑣𝑗 ∈ {𝑣0, 𝑣1,… , 𝑣𝑘−1} ⊆ 𝑉 there exists another
vertex 𝑣𝑖 ∈ {𝑣0, 𝑣1,… , 𝑣𝑘−1} with (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸.

Proof. Let 𝑅′ = {𝑣𝑅0 , 𝑣
𝑅
1 ,… , 𝑣𝑅𝑘−1} ⊆ 𝑅 be a subset of reactions in 𝐺

and accordingly let {𝑣0, 𝑣1,… , 𝑣𝑘−1} be a subset of vertices from 𝑉 .
Since every reaction is trivially F-generated, a set 𝑅′ ⊆ 𝑅 is a RAF in
𝐺 if and only if it is autocatalytic. Furthermore, the only catalysing
molecule types in 𝐺 are those types 𝑣𝑋(𝑖,𝑗) for which (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. These
molecule types are produced by 𝑣𝑅𝑖 and catalyse 𝑣𝑅𝑗 . A set of reactions
𝑅′ ⊆ 𝑅 is therefore autocatalytic (and consequently a RAF) if and only
if for each reaction 𝑣𝑅𝑗 ∈ 𝑅′, there exists a reaction 𝑣𝑅𝑖 ∈ 𝑅′ with
(𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. By construction, this happens if and only if for every vertex
𝑣𝑗 ∈ {𝑣0, 𝑣1,… , 𝑣𝑘−1}, there exists another vertex 𝑣𝑖 ∈ {𝑣0, 𝑣1,… , 𝑣𝑘−1}
with (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. □

Recall the definition of an irrRAF: a RAF set 𝑅′ is said to be
irreducible (an irrRAF) if 𝑅′ contains no RAF as a strict subset. The
following lemma links irrRAFs in 𝐺 to simple chordless cycles in 𝐺.

Lemma 7. Given a digraph 𝐺 = (𝑉 ,𝐸), then 𝑣0,… , 𝑣𝑘−1 is a simple
chordless cycle in 𝐺 if and only if {𝑣𝑅0 ,… , 𝑣𝑅𝑘−1} is an irrRAF in 𝐺.

9
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Fig. 11. The top three cycles (paths in green) are simple chordless cycles. The bottom three cycles (chords highlighted in red) are not simple chordless cycles (the bottom-middle
one is not simple).

Fig. 12. For an edge 𝑣𝑖 → 𝑣𝑗 in a graph 𝐺 (top), we construct a pair of reactions and
a molecule type in 𝑄𝐺 (bottom). We hide the food molecule for brevity (it is the sole
reactant to both reactions).

Proof. (⟹) Suppose that 𝑣0,… , 𝑣𝑘−1 is a simple chordless cycle in 𝐺.
Since 𝑣0,… , 𝑣𝑘−1 is simple, we can define a set 𝑉 ′ = {𝑣0,… , 𝑣𝑘−1} (sim-
ple implying no deduplication when translating to a set). As 𝑣0,… , 𝑣𝑘−1
is a cycle, for every vertex 𝑣𝑗 ∈ 𝑉 ′ there must exist another vertex
𝑣𝑖 ∈ 𝑉 ′ with (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. By Lemma 6, the set of reactions 𝑅′ =
{𝑣𝑅0 , 𝑣

𝑅
1 ,… , 𝑣𝑅𝑘−1} ⊆ 𝑅 must therefore be a RAF in 𝐺. We now show

that 𝑅′ is irreducible. Since 𝑣0,… , 𝑣𝑘−1 is chordless in 𝐺, it follows that
for all 0 ≤ 𝑖 < 𝑘, the only vertex inbound to 𝑣𝑖 from other vertices in
𝑉 ′ is 𝑣(𝑖−1)𝑚𝑜𝑑𝑘. It follows by construction that 𝑣𝑋((𝑖−1)mod 𝑘,𝑖) will be the
only molecule type in 𝑐𝑙𝑅′ (𝐹 ) which catalyses 𝑣𝑅𝑖 . We conclude that
no strict subset of reactions 𝑅′′ ⊂ 𝑅′ can be a RAF, otherwise, for

some 0 ≤ 𝑗 < 𝑘 we would have 𝑣𝑅𝑗 ∈ 𝑅′′ but with 𝑣𝑅(𝑗−1)mod 𝑘 ∉ 𝑅′′

and therefore 𝑣𝑋((𝑖−1)mod 𝑘,𝑖) ∉ 𝑐𝑙𝑅′ (𝐹 ). Consequently, 𝑣𝑅𝑗 would not be
catalysed. We conclude that 𝑅′ is an irrRAF in 𝐺.

(⟸) Suppose that 𝑅′ = {𝑣𝑅0 , 𝑣
𝑅
1 ,… , 𝑣𝑅𝑘−1} is an irrRAF in 𝐺.

Accordingly let 𝑉 ′ = {𝑣0, 𝑣1,… , 𝑣𝑘−1} be a set of vertices from 𝑉 . As
𝑅′ is a RAF in 𝐺, by Lemma 6 it follows that for every vertex 𝑣𝑗 ∈ 𝑉 ′

there exists another other vertex 𝑣𝑖 ∈ 𝑉 ′ with (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. Now consider
what happens if we remove a single vertex 𝑣 from 𝑉 ′. In this case, there
must exist a vertex 𝑣𝑗 with no 𝑣𝑖 such that (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 as otherwise by
Lemma 6 we would see 𝑉 ′−{𝑣} corresponding to a subRAF 𝑅′−{𝑣𝑅} ⊂
𝑅′ (as 𝑅′ is irreducible, this is a contradiction). It follows that for every
vertex 𝑣𝑗 ∈ 𝑉 ′, we have (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 for exactly one vertex 𝑣𝑖 ∈ 𝑉 ′.
Consequently, 𝑉 ′ must either form a simple chordless cycle in 𝐺, or
be comprised of the disjoint union of several simple chordless cycles
in 𝐺. Suppose WLOG that 𝑉 ′ comprises of two simple chordless cycles
𝑣0, 𝑣1,… , 𝑣𝑢−1 and 𝑣𝑢, 𝑣𝑢+1,… , 𝑣𝑘−1. By Lemma 6, both 𝑣𝑅0 , 𝑣

𝑅
1 ,… , 𝑣𝑅𝑢−1 ⊂

𝑅′ and 𝑣𝑅𝑢 , 𝑣
𝑅
𝑢+1,… , 𝑣𝑅𝑘−1 ⊂ 𝑅′ must be RAFs in 𝑄𝐺. However, this is a

contradiction as 𝑅′ was assumed to be irreducible. We conclude that 𝑉 ′

must contain the vertices of a single simple chordless cycle in 𝐺. □

Proof of Theorem 4.2. We apply Lemma 7 to the complexity questions
surrounding RAF irreducibility. Recall that this lemma states that if we
fix a digraph 𝐺 = (𝑉 ,𝐸), then 𝑣0,… , 𝑣𝑘−1 is a simple chordless cycle in

Fig. 13. A digraph 𝐺 displayed on the left (a) with the constructed elementary CRS 𝐺 on the right (b) (the food molecule is at the centre, highlighted in blue). The simple
chordless cycle in 𝐺 of size 3 (edges highlighted in green) corresponds to an irrRAF in 𝐺 of size 3 (reactions highlighted in green).

10



O. Weller-Davies, M. Steel and J. Hein Mathematical Biosciences 325 (2020) 108365

𝐺 if and only if {𝑣𝑅0 ,… , 𝑣𝑅𝑘−1} is an irrRAF in 𝐺. Finding the longest
simple chordless cycle is a known NP-hard problem [27], so the proof
follows immediately from Lemma 7. □

5. Concluding comments

In this paper, we have settled a number of computational com-
plexity questions concerning the detection of subRAFs of particular
types.

Our results also have relevance to other computational complexity
questions arising in RAF theory. We will describe two examples (with-
out details). First, by using Lemma 7, it can be shown that the question
of whether or not a RAF can be partitioned into disjoint irrRAFs is
NP-hard in general. Second, many intractable questions concerning
RAFs have polynomial-time solutions when every reaction has all its
reactants in the food set [11]. However, relaxing this condition so that
each reaction has all its reactions within 𝑘 reaction steps of the food
set (a possible direction suggested in [11]) turns out to be NP-hard,
even when 𝑘 = 2 (by arguments similar to those used in the proof of
Theorem 3.1).

As many of the interesting questions arising in RAF theory turn
out to be NP-hard, it may be helpful to develop tailored SAT-solver
or Linear Programming techniques for analysing CRS datasets (e.g. to
determine uRAF and minimum RAF sizes), and to thus extend the
computational results beyond what was previously tractable. We plan
to investigate this in future work. Meantime, heuristic approaches can
still provide a possible way to search for computationally difficult
types of subRAFs, and such approaches have been implemented in RAF
software.1
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