TWO CONJECTURES CONCERNING MAXIMUM PARSIMONY TREES

MP1

There exists a constant $c>0$ such that, for any fully-resolved phylogenetic tree \mathcal{T}, there exists a sequence of at most $\lfloor c \cdot \log (n(\mathcal{T}))\rfloor$ binary characters on X that has \mathcal{T} as its unique maximum parsimony tree, where $n(\mathcal{T})$ is the number of leaves of \mathcal{T}.

MP2

Suppose we generate a 2-state character ('site pattern') on the leaves of a binary phylogenetic tree by the symmetric 2 -state Markov model (also known as the CFN, or Neyman 2-state model). Suppose that each edge of the tree has the same substitution probability p. Let $\mu_{\mathcal{T}}\left(\mathcal{T}^{\prime}\right)$ denote the expected parsimony score on \mathcal{T}^{\prime} of a character evolved under the 2 -state Markov model on \mathcal{T}. Then if p is sufficiently small (as a function of n, the number of leaves of \mathcal{T}) it is relatively easy to show that:

$$
\begin{equation*}
\mu_{\mathcal{T}}\left(\mathcal{T}^{\prime}\right)>\mu_{\mathcal{T}}(\mathcal{T}) \tag{1}
\end{equation*}
$$

for every binary phylogenetic trees \mathcal{T}^{\prime} that has the same leaf set as \mathcal{T} but which is different (in topology) from \mathcal{T}. However perhaps there exists a constant p_{0} that is independent of n for which (1) holds for all binary phylogenetic trees \mathcal{T} (and $\mathcal{T}^{\prime} \neq \mathcal{T}$ with the same leaf set as \mathcal{T}) for all $p \in\left(0, p_{0}\right)$ [Note: This is equivalent to asserting the statistical consistency of maximum parsimony on all binary trees for this restriction on the substitution probabilities, and is a special case of a more general conjecture by Vic. Albert in his book 'Parsimony, Phylogeny and Genomics', Oxford UP, 2005 (Conjecture 1.3.1, p.8)]

