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a b s t r a c t

Attention Schema Theory (AST) is a recent proposal to provide a scientific explanation for the basis of
subjective awareness. In AST, the brain constructs a representation of attention taking place in its own
(and others’) mind (‘the attention schema’). Moreover, this representation is incomplete for efficiency
reasons. This inherent incompleteness of the attention schema results in the inability of humans to
understand how their own subjective awareness arises (related to the so-called ‘hard problem’ of con-
sciousness). Given this theory, the present paper asks whether a mind (either human or machine-
based) that incorporates attention, and that contains a representation of its own attention, can ever have
a complete representation. Using a simple yet general model and a mathematical argument based on
classical topology, we show that a complete representation of attention is not possible, since it cannot
faithfully represent streams of attention. In this way, the study supports one of the core aspects of
AST, that the brain’s representation of its own attention is necessarily incomplete.

! 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The question of explaining the basis and nature of human
consciousness remains an outstanding scientific question that
straddles several disciplines, from neuroscience, cognitive psychol-
ogy and biophysics (Baars, 1988; Dehaene et al., 2017; Lau and
Rosenthal, 2011; Llinás et al., 1998; Rolls, 2007) to philosophy
(Chalmers, 1995; Dennett, 1992). The question is often divided into
two parts: the so-called ‘easy’ and ‘hard’ problems (Chalmers,
1995). Roughly speaking, the ‘easy’ problem seeks to identify the
neural processes that give rise to the experiences one typically
associates with consciousness (perception, subjective awareness,
introspection, thought and emotion). The second (‘hard’) problem
is more fundamental: it asks how is it that humans experience sub-
jective awareness at all (i.e. the experience of ‘qualia’), rather than
simply processing information in an unconscious but purely
computer-like fashion.

A great deal has been learned in recent decades concerning the
first problem, and theories have been proposed to describe how
conscious experience might arise within a brain or within a suffi-
ciently complex neural network. Two leading approaches are (neu-
ronal) Global Workspace Theory (GWT) (Baars, 1988; Wallace,
2005) and Integrated Information Theory (Esteban et al., 2018;
Tononi, 2008), though many other related ideas have been put for-
ward, including, for example, thalamocortial resonance (Llinás

et al., 1998) or the emergence of consciousness as a phase transi-
tion in brain dynamics (Werner, 2013).

Here, we consider an approach to consciousness that deals with
both problems, namely Attention Schema Theory (AST), pioneered
by Michael Graziano and colleagues (Graziano and Webb, 2014;
Graziano, 2014, 2019; Webb and Graziano, 2015). AST builds on
approaches such as GWT to describe how attention arises within
a brain by well-studied processes in which the focus of attention
(which can be on external stimuli or internally on memories or
thoughts) is governed by a competitive process of excitation, rein-
forcement and inhibition. AST further suggests that conscious
awareness requires an additional aspect – an internal concept of
the self, and an internal cognitive model of how attention works
(the ‘Attention Schema’) – the latter having evolved by natural
selection in higher animals, because of the selective advantage of
the brain controlling its own attention processes, as well as provid-
ing a way for an individual to model the minds of other individuals
in social settings (Graziano and Webb, 2014).

According to AST, a central reason why the ‘hard’ problem of
consciousness appears hard is simply because the attention
schema is highly incomplete, because it is a grossly oversimplified
internal model that does not include all the neural details of how
attention actually arises (greater completeness and additional neu-
ral detail in an attention schema would reduce computational effi-
ciency, and so be unlikely to evolve). This incompleteness leads
individuals to conclude they have a mysterious essence inside of
them, consciousness, instead of the physically real process of
attention that they actually have.
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Thus, AST provides a specific structural process for conscious-
ness to arise and for a mind to know that it is conscious, yet with-
out having the ability to completely understand why. AST also
suggests that current machines are unlikely to be conscious but
could be designed to be so (though it is not enough to simply
increase computational power). For further details, the reader is
referred to Graziano and Webb (2014), Graziano (2014, 2019),
Webb and Graziano (2015).

In this paper, we provide a simple mathematical analysis of a
question that arises from AST. We ask whether a mind could, in
principle, have an attention schema that is complete, in the sense
that any stream of attention – at least over a short time-frame –
can be faithfully represented within the attention schema. Using
a simple argument based on standard concepts from topology,
we show that a complete attention schema is inherently impossi-
ble, providing a further and more fundamental reason for the
incompleteness assumption in AST.

2. Mathematical model

The model we describe is particularly simplified; however, by
making minimal assumptions and working in a high-level setting,
the results we describe — while less detailed — are more generic
than those that might be derived from a detailed and finely-
tuned model. Our approach is based on concepts and results from
topology, which is the mathematical study of ‘space’ (and maps
between spaces) in a very general sense (topological spaces include
many familiar examples that form the basis of physics, biology and
other fields in science) (Ghrist, 2014; Hatcher, 2002).

We view attention within an individual mind as moving across
some open, bounded and connected subspace A of a high-
dimensional Euclidean space (thus A comprises a n-dimensional
manifold, with each point in A having an open neighbourhood that
is (homeomorphic to) an open n-cell). The space A could, for exam-
ple, describe neuronal firing patterns, fluctuating neural states and
changing parameters within the brain; alternatively, A might be
taken to be a purely phenomenological space, or perhaps some
space that involves aspects of both types. In this paper, we impose
no restriction on n; for example, n could be in the order of the
number of synaptic junctions in a brain or greater.

Throughout we will adopt a convention in topology of using the
wordmap to refer to any continuous function; also, a map is said to
be injective if it is one-to-one.

We will let ot denote an open set in A that is the focus of atten-
tion at time t (thus, ot is also a manifold of dimension n). Consistent
with approaches such as GWT, we will describe ot as the region of
A that has reached the threshold required for attention at the given
instant t. More formally, consider a function F that assigns a non-
negative real value to each pair ðt; xÞ (t = time, x is an element of
A); we will assume throughout that F is continuous in both vari-
ables and refer to it as an attentional activity function.

Given a threshold d > 0, we will formally define ot to be the por-
tion of A that lies above this threshold at time t and thereby
becomes the focus of attention at time t.1 More precisely:

ot ¼ fx 2 A : Fðt; xÞ > dg: ð1Þ

Notice that F may vary with t while ot remains constant.2

We now introduce two further (related) definitions. First, given
an interval I of strictly positive length, we say that ot is a frozen

stream of attention if, for all t; t0 2 Iwith t < t0, we have ot ¼ ot0 . Thus
a frozen stream of attention is onewhere the focus of attention does
not shift (as in Fig. 1 between t0 and t1). Next, given an (open or
closed) interval I, let OI denote the subspace of I $A defined by:

OI ¼ fðt; xÞ : t 2 I; x 2 otg;

and consider the quotient space:

oI ¼ OI= %;

where % is the equivalence relation on OI defined by ðt; xÞ % ðt0; x0Þ if
x ¼ x0 and ot is a frozen stream of attention on the closed interval
with endpoints t and t0. Thus, OI describes the stream of attention
over the time period I, whereas the quotient space oI collapses
any portions of this space that consist of frozen streams of attention
(thus, oI describes just the changes in attention over the time inter-
val I). The motivation for introducing this quotient step is to allow
the possibility for a mind to hold a representation of attention over
time if the attention is not shifting with time, and thereby strength-
ening the statement of our main result.

2.1. Attention schema

A formal attention schema3 for ðA; FÞ is a connected open sub-
space AS of A together with a map uI from any quotient (fixed or
moving) stream of attention oI for A into AS . We denote the collec-
tion of the maps uI (over all intervals I and for a fixed A) by u.

A simple but trivial attention schema is provided by selecting
some fixed point a 2 AS , and letting u map each point in oI (for
all I) to a in AS . A slightly less trivial example, would be to map
each oI to its own particular (distinct) point in AS; however, this
still misses much of the detail of oI , even when ot is frozen in the
interval I. To provide a formal attention schema for ðA; FÞ that
has greater representational detail we will say that ðAS ;uÞ is com-
plete if uI is injective for all time intervals I of length up to some
given (positive) duration T, otherwise, we say that ðAS ;uÞ is incom-
plete (the latter means that different streams of attention (up to
duration T) cannot be distinguished, as they map to the same state
in the attention schema).

Note that we are not necessarily assuming (in a given mind)
that each stream of attention oI is continually being encoded in
AS . Rather, completeness simply means that the attention schema
is sufficiently detailed that it has the capability to do so over any
(short but positive-length) interval, and in such a way that the
encoding is faithful (i.e. injective).

2.2. Moving streams of attention

In contrast to a frozen stream of attention, we say that ot as
defined by (1) is a moving stream of attention, as t varies over an
interval I, provided that the following two conditions both hold
for each t 2 I:

(m-i) If ot ¼ ot0 for t0 2 I, then t ¼ t0.
(m-ii) ot can be written as fgðt; xÞ : x 2 og, where o is an open set

in A and g : I $ o ! A is a map for which x # gðt; xÞ is
injective.

In words, a moving stream of attention is one that moves con-
tinuously over a period of time (e.g. across A, or by becoming lar-
ger or smaller) without either stalling or returning to a previous
state (i.e. violating (m-i)) or suddenly jumping to a different region
ofA (i.e. violating (m-ii)). Fig. 1 illustrates these notions in a simple
and low-dimensional setting.

1 One could further allow d to depend continuously on t, but this gives no further
generality since d can be absorbed into F; indeed, by rescaling, one could assume that
d ¼ 1.

2 In topological terms, ot need not be connected (we give an example shortly), or
even contractable, and ot could also contain ‘holes’ of varying dimensions (i.e. non-
trivial homology).

3 The word ‘formal’ is to emphasise a mathematical abstraction of the notion from
AST.
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An example of a moving stream of attention would be the con-
tinuous changes in attention from observing the mouse move
towards the apple in Fig. 1. Notice that although ot in Fig. 1 con-
tains moving streams of attention, ot is not a moving stream of
attention over the entire interval from t2 to t3. To see why, observe
that Condition (m-ii) implies that ot and ot0 are homeomorphic (i.e.
topologically equivalent) for any pair t; t0 2 I, since they are both
isotopic embeddings of o into A; in particular, ot is connected if
and only if ot0 is also connected (however, ot is disconnected at t2
and connected at t3).

It may be tempting to suppose that if OI is not a frozen stream of
attention, then it must contain a moving stream of attention on
some sub-interval I0 of strictly positive length. However, it is easy
to construct counterexamples, even when ot is described by Eq.
(1), as we will formally demonstrate in the next section.

3. Formal result

In the following result, recall that an injective map refers to any
continuous function that is one-to-one (i.e. no two elements are
mapped to the same point).

Proposition 1. Suppose that ðAS ;uÞ is a formal attention schema for
ðA; FÞ and I is an interval of time that has positive length. The
following then hold.

(i) If OI contains a moving stream of attention (on a subinterval of I
that has strictly positive length), then oI cannot be mapped
injectively into AS . In particular, a complete attention schema
is not possible in the presence of moving streams of attention.

(ii) For any sequence o1; o2; . . . ; ok of open sets in A (with no bound
on k), there is a (continuous) attentional activity function
F ¼ Fðt; xÞ for which OI contains consecutive frozen streams of
attention consisting of o1; o2; . . ., and for which oI can be
mapped injectively into AS .

The proof of Proposition 1 is given in the Appendix. Here, we
make two remarks. Firstly, although Part (ii) suggests a way in
which a stream of attention is moving over the interval I, the
changes are not continuous; instead, they proceed via a sequence
of ‘jumps’ (each of which may be small, though some (or all) could
also be large). Second, if we were to allow part or all of the formal
attention schema AS to inhabit a space of higher dimension than
the rest of A (i.e. to be an open bounded subspace of RN for
N > n), then moving streams of attention (not involving AS) could
now be mapped injectively into AS . However, this does still not
allow for a complete formal attention schema, since attention
could now move across this higher-dimensional part of AS (i.e. a
moving stream of attention across the attention schema itself).

4. Concluding comments

Proposition 1 required a number of assumptions, and we com-
ment briefly on the impact of relaxing or removing them. Firstly, if
A is allowed to have cells of infinite or arbitrarily high dimension
(e.g. to be a subspace of the countably infinite union of the finite-
dimensional spaces Ri for i ¼ 1;2;3 . . .), then Proposition 1(i) need
not hold. Similarly, if A is allowed to vary with t, so that cells of
increasing dimension can continue to be generated as time
advances, then Proposition 1(i) may again not hold (at any given
time). However, if one accepts that a mind is entirely dependent

Fig. 1. A schematic illustration of the model in a highly simplified setting where ot is two-dimensional. Left: A stream of attention ot of an individual mind described by the
portion of A that has attentional activity (indicated by F) larger than a threshold (d). Initially, attention is focused on the apple but then shifts when a mouse appears, and
eventually eats the apple. The open sets ot are two-dimensional (in the horizontal plane) and involve a frozen stream of attention on the interval ½t0; t1', after which a jump
occurs (when the mouse is noticed), resulting in ot briefly having two components. Subsequently, ot contains two (or more) moving streams of attention as the mouse moves
towards the apple and then begins to eat it. Middle: The streams of attention in OI map to the quotient space oI (i.e. the initial frozen stream of attention has been collapsed).
Right: Amapping of oI into a formal attention schemaAS . Since AS has the same dimension asA in this example and ot contains a moving stream of attention, the map cannot
be injective (by Proposition 1(i).
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on a nervous system (and external stimuli), which, though extre-
mely complex, are nevertheless of bounded dimensions, the
assumption of a finite (albeit large) dimensional topological space
seems reasonable.

Our theoretical result offers some insight into the generic prop-
erties of such models such as AST. Other mathematical approaches
to consciousness have been explored in a number of recent papers
(see e.g. Aleksander (2020); Maguire et al. (2016); Moyal et al.
(2020); Rudrauf et al. (2017); Signorelli and Meling (2021);
Velazquez (2020)); however, the approach here is quite different.
The use of topology has proven useful in identifying generic prop-
erties for a range of other processes and systems in applied science
(see e.g. Ghrist (2014)). Indeed, an applied branch of algebraic
topology — persistent homology — has led to some important
data-driven insights into the structural topology of brain processes,
including the neural correlates of consciousness (Expert et al.,
2019; Petri et al., 2014); again, the approach here (which focuses
on AST) has no direct relationship to this earlier work.
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Appendix A. Proof of Proposition 1

Part (i): Suppose that OI0 is a moving stream of attention (for
some subinterval I0 of I of strictly positive length). Recall that
OI0 ¼ fðt; xÞ : t 2 I0; x 2 otg# I0 $A, and oI0 is the quotient space
OI0= %. By Condition (m-i), no two points of OI0 are equivalent under
the relation %, so oI0 is homeomorphic to OI0 .

Now consider the function g that is the subject of Condition (m-
ii) (using I0 in place of I), let

Y ¼ fðt; xÞ : t 2 I0; x 2 og;

and let

H : Y ! OI0

be defined by Hðt; xÞ ¼ ðt; gðt; xÞÞ.
We claim that H is an injective map. To see this, observe that the

continuity of H follows from the continuity of g, whereas for injec-
tivity, the equality Hðt; xÞ ¼ Hðt0; x0Þ implies that
ðt; gðt; xÞÞ ¼ ðt0; gðt0; x0ÞÞ and so t ¼ t0, and hence gðt; xÞ ¼ gðt; x0Þ,
thus x ¼ x0 by the injectivity of the function x# gðt; xÞ for each
fixed t, from Condition (m-ii)).

The set Y contains an open cell enþ1 of dimension nþ 1 (since I0

contains an open 1-cell, and o contains an open n-cell, and the
resulting product space of these two cells is an open ðnþ 1Þ-cell).

Let us now suppose thatuI is injective (we will show that this is
impossible by deriving a contradiction). We then have the follow-
ing composition of injective maps:

enþ1 !
i Y !H OI0 !

! oI !
uI AS !

i0
Rn; ð2Þ

where i and i0 are subspace inclusion maps, and ! : OI0 ! oI maps x
to ½x' where ½)' refers to the equivalence class under % (! is injective
by Condition (m-i)).

We now apply a classical result from algebraic topology: the
Invariance of Domain theorem (e.g. Hatcher (2002)). One form of

this theorem states that if f : o ! o0 is an injective map from an
open m-cell to Rn, then m 6 n. Applying this with m ¼ nþ 1, and
noting that the composition of injective maps in (2) gives an injec-
tive map f ¼ i0 *uI * ! * H * i from enþ1 into Rn which results in the
contradiction nþ 1 6 n. Thus uI cannot be injective, as claimed.

Part (ii): We first show that if o is an open set in A and d > 0 is a
threshold, then there is a continuous function wo : A ! RP0 for
which o ¼ fx 2 A : woðxÞ > 0g. To see why this holds, let @ðoÞ denote
the boundary (topological frontier) of o in A (since o is open in A,
this is the set of points inA that are in the closure of o but not in o),
and let Dðx; @ðoÞÞ ¼ inffdðx; yÞ : y 2 @ðoÞÞ, where d is any standard
metric on Rn (e.g. the Euclidean metric). Since @ðoÞ is closed and
bounded, and therefore compact (by the Heine-Borel theorem), it
follows that Dðx; @ðoÞÞ is realised by at least one point y 2 @ðoÞ. Let:

woðxÞ ¼
Dðx; @ðoÞÞ; if x 2 o;
0; if x 2 A+ o:

!

The function wo is well-defined, continuous, and woðxÞ > 0 if x 2 o
and woðxÞ ¼ 0 if x 2 A+ o. In particular, o ¼ fx 2 A : woðxÞ > 0g, as
claimed.

Without loss of generality, we may assume that I is the open
interval ð0;1Þ. Write I as a sequence of open intervals of I of equal
length interspersed with singleton elements of I as follows:

ð0;1
k
Þ; ½1

k
'; ð1

k
;
2
k
Þ; ½2

k
'; ð2

k
;
3
k
Þ , , , ½k+ 1

k
'; ðk+ 1

k
;1Þ:

For j ¼ 1; . . . ; k, let Ij denote the open interval ðj+1
k ; jkÞ, and for t 2 Ij let

cjðtÞ ¼
min t + j+1

k ; jk + t
n o

; if t 2 Ij;

0; otherwise:

(

Thus cjðtÞ is continuous on I, and is non-zero and strictly positive
precisely on Ij. We now define an attentional activity function
F : ð0;1Þ $A ! RP0 by setting:

Fðt; xÞ ¼ dþ
Xk

j¼1

cjðtÞ , woj ðxÞ:

The function F is then well-defined, continuous in both variables,
and F has the property that ot defined by Eq. (1) coincides with oj
throughout Ij for j ¼ 1; . . . ; k (at the singleton element tj ¼ j

k that
appears between Ij and Ijþ1 for j ¼ 1; . . . k+ 1 we have: otj ¼ £).
Thus OI contains frozen versions of o1; o2; . . . ; ok (in this order) and
oI consists of k connected components, namely disjoint copies of
o1; o2; . . . ; ok. Since each set oj is an open set in A (and therefore
an open set of Rn), there is an injective map of each set oj into
any given open n-cell en contained in AS; therefore, there is an
injective map of oI into en as well (by selecting k disjoint open n-
cells within en to map each oj set into).

Note that our construction provides just one way of guarantee-
ing the existence of a (continuous) attentional activity function F
satisfying the property required; many other possible choices for
F are possible. h
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