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CONVEX TREE REALIZATIONS OF PARTITIONS
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Abstract—Given a collection P of partitions of a label set L a problem arising in biological and
linguistic classification is deciding whether there is a “tree-structure” on L which is “compatible”
with P. While this problem is, in general, NP-complete we show that it has a polynomial time
solution if the number of sets in each partition is at most three.

1. INTRODUCTION

A problem arising in certain branches of classification such as taxonomy [1] is to determine
whether a collection of partitions of some label set has a tree-like representation in a sense which
we will define shortly. In order to do this, and to place this question in a context which relates it
to a simpler problem in which the partitions are already endowed with some tree-like structure
we must first make a number of definitions.

(1) Given a tree T = (V(T), E(T)) and a subset A of V(T') let < A >7 denote the minimal
connected subset of V(T') which contains A.

(2) A semilabelled tree on L is a pair 7 = (T, f) where T is a tree, f : L — V(T') is a map, and
if v ¢ f(L) then deg(v) > 2. Two such pairs 7 = (T, f) and 7/ = (T", f') are considered
identical if there is a tree isomorphism H : V(T) — V(T") with f' = Ho f.

(3) A partition X of L into disjoint subsets a,b, ..., is convez on a semilabelled tree 7 = (T, f)
if for all a,b € X,a # b,< f(a) >r N < f(b) >r=10.

(4) A collection P of partitions of L is compatible if there exists a semilabelled tree 7 on which
each partition is convex (we say T is compatible with P).

(5) Given two trees T,T' a function h : V(T) — V(T") is a contraction if T' is obtained (up
to isomorphism) by collapsing edges of T, and h is the induced vertex identification map.

(6) For semilabelled trees 7 = (T, f), 7/ (T’ f') we say 7 is a refinement of 7’ if there is a
contraction h : V(T) — V(T") satisfying f' = ho f.

(7) A collection S of semilabelled trees on L are compaizble if there exists a semilabelled tree
7 which is a refinement of each semilabelled tree in S (we say r is compatible with S).

(8) A semilabelled tree 7 = (T,f) on L defines a partition w(r) of L by setting
n(r) = {f~1({o}) : v € V(T), f-*({v}) # 0}.

(9) Given a semilabelled tree 7 = (T, f) deleting any edge e € E(T') partitions V(T') into two
connected subsets; applying f~! to these sets partitions L into at most two sets. Let 8,
be the set of bipartitions of L which can be generated in this way from 7. For a set S of
semilabelled trees on L let B(S) = Uresfr.

(10) Following Buneman [2] a set B = {o1,...,0%} of bipartitions of L defines a connected
graph G[B] = (V, E), and a labelling function f : L — V as follows: V consists of all sets
v = {Si1,...,St} where S; € o; and S;NS; # 0 for all 7, j. Two such sets v, v’ are the ends
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of an edge in E precisely if [vNv'|=k-1 ForveV,v= {S1,-.-, S}, let I, = n;S;.

Then it can be checked that {I, : v € V, I, # 0} partitions L, and thus the function

f:L-YV,
f(z) = {S:1(z), ..., Sk(z)}, with z € Si(z) € o,

is well defined and its range contains all v € V' of degree at most two.

In taxonomy, a partition of L is called an “unordered qualitative character”, while a semilabelled
tree is called an “undirected cladistic character”. In taxonomic and other applications an im-
portant class of semilabelled trees (T, f) are phylogenetic trees, for which f is a bijection from L
onto the degree one vertices of T'. In case’all the remaining vertices of T have degree 3, (T, f) is
called a binary (or nondegenerate) phylogenetic tree.

2. PRELIMINARIES

The following result summarizes the fundamental relationships between the definitions intro-
duced above. Most of (2) is due to Buneman [2]; see also Barthélemy [3]. Result (3a) follows
from the first part of (1) and the observation that a bipartition o is convex on 7 precisely if
o € B,, while (3b) follows from (2b). Result (5) was stated by Buneman [4] and Meacham [1].
The remaining results are largely part of the folklore (see, for example [5]).

THEOREM 1.

(1) 7 is a refinement of v/ precisely if By 2 By Furthermore, B, = B, implies T = 7/; thus
semilabelled trees are partially ordered by refinement.

(2a) Two bipartitions {A;, A2},{B1, B2} are compatible precisely if§ € {A4;NB; :i,j € {1,2}}.

(2b) G[B) is a tree precisely if B is pairwise compatible. In this case 7(B) = (G[B), f) is
a semilabelled tree which is compatible with B; f(g) = B; any other semilabelled tree
compatible with B is a refinement of (B), and (assuming B has no repeated bipartitions)
G[B] has |B| + 1 < 2|L| — 2 vertices. :

(3a) A collection S of semilabelled trees is compatible (with ) if and only if the induced
bipartitions B(S) are compatible (with 7). ‘

(3b) A collection B of bipartitions is compatible (with 7) if and only if B is pairwise compatible
(with 7).

(4) A collection P of partitions is compatible (with 7) if and only if there exists a collection
Sp of semilabelled trees which is compatible (with r) and such that P = {n(t) : 7 €
Sp}. Furthermore in case P is compatible we may insist, for each (T, f) € Sp, that f is
surjective. ,

(5) A collection P of partitions is compatible if and only if the intersection graph of the

set system |J) X can be transformed into a chordal graph by introducing additional
. XeP
edges, but subject to the restriction that vertices a,a’ remain non-adjacent if for some

Xe€ePadelX. ,
(6) If a collection of partitions or of semilabelled trees are compatible then the collection is
compatible with a binary phylogenetic tree (as defined in the introduction).

Combining 3(a) and 3(b) gives the following result, due to Estabrook, Johnson and McMorris
(6)-

COROLLARY 1. “The Pairwise Compatibility Theorem” A collection S of semilabelled trees is
compatible if and only if it is pairwise compatible. Indeed, by Theorem 1, there is a unique
semilabelled tree which is both compatible with S and minimal with respect to refinement,
namely (G[B(S)], f)-

Applying Theorem 1(5) it is easily shown that two partitions are compatible precisely if the
bipartite intersection graph of the two partitions is acyclic, a result proved explicitly by Estabrook
and McMorris [7].

-
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3. AN EXTENSION

By the above corollary, the compatibility of a set of semilabelled trees can be established in
polynomial time. In particular, as is well known, deciding whether a collection B of bipartitions
of L is compatible, and constructing a compatible tree, can be carried out in polynomial time
(see [8] or [9] for an 0(|L| x |B|) algorithm). -

Polynomial time also applies if a bound is placed on the number of partitions. However,
deciding whether an arbitrary set of partitions is compatible is N P-complete, even if each set
in each partition has cardinality at most two [10]. A natural question then is whether the
compatibility of sets of partitions, each having a bounded number of sets, can be decided in
polynomial time. Corollary 2 (below) answers this affirmatively in case each partition has at
most three sets. It is not known whether the same applies if each partition has at most k sets

_(for fixed k), even when k = 4. Recall that a star-shaped tree is a tree having all but one of its
vertices of degree 1,

THEOREM 2. For a collection P of partitions of L constructing a compatible collection Sp of
star-shaped semilabelled trees such that P = {r(r) : 7 € Sp}, or deciding that no such collection
exists, can be achieved in 0(|L| x p?) time, wherep=| |J X|.

XeP

ProoF. Regard the sets occuring in at least one partition in P as the vertices of a graph G, in
which two sets A, B are joined by an edge of G precisely if {A, A’} and {B, B’} are incompatible
partitions (here ’ denotes complement). Note that each partition is an independent set of vertices
of G (that is, no two vertices are adjacent). Also, deciding whether an edge exists between
two vertices takes O(|L|) time, and there are 0(p?) pairs of vertices, so G can be constructed in
0(|L|x p?) time. For X € P there is a natural bijection Ax from X* := {V : V C X, |V| > |X|-1}
to {8y : 7 is star-shaped, 7(7) = X}, namely

Ax({An, - A)) = {{A1, A1}, ..., {4, A}, s = | X or [X| = 1.

By the definition of G, if Vx € X* for all X € P, then UAx(Vyx) is pairwise compatible precisely
if UVx is an independent set of vertices in G. Thus by Theorem 1(3) the collection Sp in the
statement of the theorem exists precisely if G has an independent set of vertices containing at
least |X| — 1 vertices from each X € P. We now describe a simple procedure which finds such an
independent set if it exists. Essentially we describe a way of building up a set I, which is always
an independent set, by testing the effect of adding one more new vertex. Set I = @ and while
there exists X € P, with [N X| < |X|~1select z € X — I, and let A := {z},B := ¢. Apply
the following rule:

R : While
(1) ANB =10 and
(2) there exists a € A which is adjacent to y ¢ B,

then replace A and B by AU (Y — {y}) and B U {y}, respectively.
yeYeP
Eventually, in 0(p) steps, either (1) or (2) fails. If (2) fails but not (1), then replace I

by I U A. If (1) fails replace A and B by |J X — {z} and {z} respectively, and apply
XeP

z€X€E
rule R again, and in this case if (2) fails but not (1) then again replace I by I U A, while
if (1) fails then no independent set of the type required can exist (since it would have to
simultaneously include and exclude z). Thus, provided this does not occur, |I| is enlarged
by at least one element, and, by induction, all the elements of I are non-adjacent. Thus,
in 0(p) steps, the procedure described gives the required independent set. '
Since every semilabelled tree 7 with |m(7)| < 3 is star shaped, combining Theorem 2 with part

(4) of Theorem 1, and applying a reconstruction algorithm, like that described in [9], we obtain
the following,

COROLLARY 2. If P is a collection of partitions of L into at most three disjoint sets then con-

structing a semilabelled tree which is compatible with P, or deciding that no such tree exists can
be achieved in O(|L| x |P|?) time.
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