
ELSEVIER 

Modeling the Covarion Hypothesis of Nucleotide 
Substitution 

CHRIS TUFFLEY AND MIKE STEEL 
Biomathematics Research Centre, Department of Mathematics and Statistics, 
University of Canterbury, Christchurch, New Zealand 

Received 31 October 1996; revised 10 June 1997 

ABSTRACT 

A "covarion" model for nucleotide substitution that allows sites to turn "on" and 
"off" with time was proposed in 1970 by Fitch and Markowitz. It has been argued 
recently that evidence supports such models over later, alternative models that 
postulate a static distribution of rates across sites. However, in contrast with these 
latter well-studied models, little is known about the analytic properties of the former 
model. Here we analyze a covarion-style model and show (i) how to obtain the 
evolutionary distance between two species from the expected proportion of sites 
where two species differ, (ii) that the covarion model gives identical results to a 
suitably chosen rates-across-sites model if several sequences are compared in pairs 
by using only the expected proportion of sites at which they differ, (iii) conditions 
under which the two models will give identical results if the full joint probability 
matrix is examined, and (iv) that the two models can, in principle, be distinguished 
when there are at least four mon0phyletic groups of species. This last result is based 
on a distance measure that is tree additive under certain versions of the covarion 
model but, in general, will not be additive under a rates-across-sites model. The 
measure constructed does not require knowledge of the parameters of the model 
and so shows that sequences generated by the covarion model do in fact contain 
information about the underlying tree. © 1998 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

To accurately reconstruct evolutionary trees and time scales from 
aligned nucleotide sequences, it is helpful to model the mechanism by 
which the sequences came to differ. Such models can be used to devise 
new techniques for tree reconstruction and analysis and to determine 
cases  for  which  exist ing m e t h o d s  are  l ikely to  l e ad  to  e r r o n e o u s  resul ts  
- - s e e ,  for  example ,  [1]. 

T h e  s imples t  and  ear l ies t  m o d e l s  a ssume tha t  each  site evolves 
i n d e p e n d e n t l y  and  is ident ica l ly  d i s t r ibu ted  (i.i.d.) a t  the  same  ra te  and  
accord ing  to  s imple  Markov-s ty le  assumpt ions .  However ,  this s ingle- ra te  
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assumption appears to be unrealistic, and accordingly models incorpo- 
rating some variation of rates across sites have been proposed and 
studied [2-5] to take into account different functional constraints at 
different sites. An alternative approach to accounting for differing 
selective constraints is Fitch and Markowitz's "concomitantly variable 
codons," or "covarion," hypothesis [6]. This approach proposes that, at 
any given time, some sites are invariable owing to functional or struc- 
tural constraints but, as mutations are fixed elsewhere in the sequence, 
these constraints may change, so sites that were previously invariable 
may become variable and vice versa. The pool of variable sites is 
therefore changing with time (Figure 1). Since 1970, it has been argued 
that evidence supports the covarion hypothesis, both on biochemical 
grounds and by providing a better description of certain data [7-9]. 
However, in contrast with the rates-across-sites models, little is known 
about the analytic properties of covarion-style models. 

In this paper, we present and analyze a simple covarion-style model. 
Although the motivation for this model dearly says that the i.i.d. 
assumption is not valid, without it the mathematies becomes much more 
difficult. We therefore keep this assumption and model only the behav- 
ior of a covarion-style process with a two-state Markov process that acts 
as a "switch," turning sites "on" (variable) and "off" (invariable). We do 
not impose any restrictions on the Markov process that operates at the 
variable sites other than that it is stationary and reversible. With the use 
of techniques from the theory of Markov processes, such a model can 
be analyzed and compared with rates-across-sites models in terms of the 
expected frequencies of site patterns that the models should generate. 
This is the first step in comparing the two models because, if they 
cannot be distinguished with the use of infinite sequences, there is no 
prospect of distinguishing between them with finite sequences. 

The i.i.d, assumption may be justified as an approximation to the 
covarion hypothesis by the following remarks. We are concerned here 
with the limiting frequency of site patterns in sequences as the se- 
quence length becomes large and without reference to the order in 
which the patterns occur along the sequence. If the dependency be- 
tween sites is spatially localized (perhaps under some reordering of the 
sites), then the frequencies of the patterns will converge toward those 
generated under an i.i.d, model. This follows from an argument similar 
to the proof of Bernstein's theorem--see, for example, R6nyi [10], page 
379--which requires only that the correlation between the sites, re- 
ordered if necessary, falls off sufficiently quickly. In our setting, the 
assumption of local dependency between sites is reasonable. This type 
of approach is already commonly employed (albeit tacitly) when model- 
ing a distribution of rates across sites. In real sequences, high rates are 
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FIG. 1. Contrasting a covarion-style process and rates across sites. Under a 
covarion-style process, each site is either "on" or "off." Sites that are off are unable 
to change state but may later turn on (owing to state changes elsewhere in the 
sequence) and be able to change. Under rates across sites, sites evolve at different 
rates (shown here as "fast" and "slow"), with faster sites changing more frequently 
than slower ones. The rate at a given site is assumed constant across the entire tree. 

often associated with particular positions in the sequence (such as the 
third position in a codon) or proximity to other high rate sites (as in 
hypervariable regions), so the sites are clearly neither independent nor 
identically distributed. Nevertheless, because the dependency is local, it 
is usual to suppose that the rate at each site is chosen i.i.d, f rom some 
distribution, and the resulting i.i.d, model  produces pat tern frequencies 
indistinguishable from those of the original model as the sequence 
length tends to infinity. 

In Section 3.1, we find an expression for the joint probability matrix 
of  states for two species separated by an evolutionary distance ~'. This 
allows ~" to be determined from the expected proport ion of sites where 
two species differ. Such relationships are useful to the biologist, because 
the evolutionary distance between pairs of  species allows for both the 
underlying evolutionary tree and its edge lengths to be recovered. We 
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then compare the joint probability matrix with the equivalent expression 
under a rates-across-sites model in Section 3.4 to address the question 
of whether the covarion model will give different results from those of 
rates across sites when several sequences are analyzed by comparing 
each pair in turn. We show that the covarion model gives identical 
results with those of a suitably chosen rates-across-sites model if only 
the trace of the joint probability matrix (i.e., the probability that the two 
species are in the same state at a given site) is considered and give a 
partial answer to the question of when the two models can give identical 
results if the full joint probability matrix is considered. 

In Section 4, we show that the two models can, in principle, be 
distinguished when there are at least four monophyletic groups of 
species. This result is based on the construction of a distance measure 
that is tree additive under certain versions of the covarion model but, in 
general, will not be additive under a rates-across-sites model. The 
measure constructed does not require knowledge of the parameters of 
the model and so shows that sequences generated by the covarion 
model do in fact contain information about the structure of the underly- 
ing tree. 

2. THE MODELS 

2.1. A C O V A R I O N - S T Y L E  M O D E L  

We model a covarion-style process with two parts: (1) a "switch" 
process and (2) an "observable" process, which operates while the 
switch is "on."  Only the state of the observable process, and not that of 
the switch process, is able to be measured. 

The switch is governed by a two-state continuous-time Markov pro- 
cess with state space @ ={on ,  o f f}  and rate matrix 

S=(-si s~ ) 
S 2 - -  S 2 ' 

where s i > 0 for each i. It is assumed to have the stationary initial 
distribution o. = (o" 1, o.2), where 

S 2 S 1 

O.I = $1 + S2 ' 0"2 S 1 "l- S 2 ' 

so it is stationary and time reversible. For a background in Markov 
processes, the reader is referred to [11] and [12]. 

While the switch is in state " o f  f , "  the observable process is unable 
to change state; however, when the switch is in state "on,"  the observ- 
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able process is governed by a second stationary and time-reversible 
Markov process with state space ~¢ = {1,..., r}, rate matrix R satisfying 
R u > 0 if i 4= j, and initial distribution ~r. Stationarity and time re- 
versibility are equivalent to the conditions 

7rR = 0 and ~riRii = 7rjRji for all i , j .  

In general, for positive integer n we denote the set {1,..., n} by [hi, and 
we write C = (R, S) for the covarion model C with observable process 
rate matrix R and switch process rate matrix S. 

This model may be alternatively formulated in terms of a single 
time-reversible Markov process with state space ~¢ x G [which we 
identify with [2r] according to (i, on) ~ i, (i, o f f )  ~ i + r], initial distri- 
bution It '  = (tr17r 1 . . . . .  oq~r~, o-2~-1,..., o'27r ~) and 2r X 2r rate matrix 

R -  SII r SlI  r ] 

R ' =  szlr __Szlr], 

where I r denotes the r × r identity matrix. We assume that we are 
unable to distinguish between the states (i, on) and (i, o f f ) .  With the 
use of this formulation, the probability of observing each site pattern 
(given a tree and the values of the parameters) can be calculated for 
such purposes as maximum likelihood estimation. As usual, if each edge 
e of the tree is given a nonnegative weight z e, the transition matrices pe 
are given by 

p e = exp(~'e R ' ) .  

The probability of generating a particular pattern is given by a sum over 
all possible assignments of states in ~¢ x G to the remaining vertices of 
the tree. In practice, this can be found quickly by using a simple 
modification of the usual dynamic programming technique. 

It is easy to check that R '  is stationary and time reversible whenever 
R and S are. Both formulations lead to the same random process with 
state space ~¢, and this random process is not itself Markov. 

2.2. RATES ACROSS SITES 

A rates-across-sites model D = (Q, ~ )  consists of a stationary and 
time-reversible continuous-time Markov process with rate matrix Q, 
initial distribution 0, and a distribution ~ of rates v, which may be 
either discrete or continuous. We denote the cumulative distribution 
function -~ by F~. 



68 C. TUFFLEY AND M. STEEL 

Each site evolves according to rate matrix vQ where ~, is chosen 
i.i.d, according to ~ .  The rate at a given site is assumed constant across 
the whole tree. This kind of model has been well studied; see, for 
example, [2-5]. 

3. THE TWO-TAXA TREE 

Here we calculate the joint probability matrix for the two-taxa tree 
(i.e., the matrix whose ij entry is the probability that taxon 1 is in state i 
and taxon 2 is in state j )  and give conditions under which a suitably 
chosen rates-across-sites model will agree with a covarion model on all 
two-taxa trees. We also consider the limiting cases of the covarion 
model as the rate of the switch tends either to zero or to infinity. 

3.1. UNDER THE COVARION MODEL 

The joint probability matrix may be calculated by using either of the 
two formulations of the covarion model. We present the calculation by 
using the first formulation. With the use of the second formulation the 
ij entry of this matrix is found by summing the probability that taxa 1 is 
in state ( i ,o I) and taxa 2 is in state ( j , o  2) for o i ---on, O i ----off, i = 1,2. 

Time reversibility implies that we may assume the tree to be rooted 
at either of the leaves. Let the process operate for time z on the edge 
between the two taxa and write Jc(z) for the joint probability matrix. 
We regard z as the "length" of the edge. Put II = diag(~) and let J(t) 
be the joint probability matrix of the unswitched observable process 
(i.e., the Markov process with rate matrix R and initial distribution ¢r 
operating in the absence of the switch) for time t. If the occupation 
time of state "on"  in time z is the random variable X(~-), then, as far as 
the observable process is concerned, the edge has effective length X(~-). 
The joint probability matrix, given the value of X(z), is then J(X(z)). It 
follows that 

= 

Reversibility allows us to obtain a spectral representation of J ( t ) - - see  
Keilson [12], pages 32-35. Because I IR is symmetric, so is II1/2Rrl - 1/2, 
which therefore has real eigenvalues {Aj} and orthonorrnal eigenvectors 
{u/} (related to the eigenvectors {v/} of R by vj = II-1/2uj and Rv/= 
Ajvj). We then find that 

t'=l 
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where wj = II1/2uj and the superscripted T denotes transposition. Hence 

Jc(z)  = eXjX(,) 
J 

= ~ E[e~jX(')lw, wT. 
j = l  

w ere 0:(10°) 
following lemma. 

Darroch and Morris [13] give the moment generating function E[e xx(')] 
of X(r )  by 

E[eXX(~)] = o-Ter (S+XD) l ,  

and 1 = ~ f ~/. Diagonalizing S + AD we obtain the ] 

LEMMA 1 

The joint probability matrix Jc(r ) is given by 

Jc(z )  = ~ [c 7 e " ; ' +  c; e" , ' lw jw 7, 
j = l  

(1) 

where i~ 7 and i~}- 

and 

are the positive and negative roots respectively of 

jt,~ 2 ÷ ( S  1 ÷ S 2 --  }[ j ) l~ --  $ 2 ~  j = O, 

- ( s ,  + s~ + i , ;  )J , ;  
c ;  = ( s, + s~)( ~,; - ~'7 ) ana c ;  = 

(s, + s2 + ~ ) ~  
(Sx ÷ s 2 ) ( ~  - ~ )  

1 We note that by examining I + ~R, where k > max{lRiil}, and using the 
Perron-Frobenius theorem [11], page 134, it can be shown that the 
eigenvalues of R are nonnegative, with zero occurring as an eigenvalue 
exactly once. 

A common measure of the extent to which two sequences differ is 
the proportion of sites at which they disagree, known as the dissimilarity. 
The expected proportion of such sites is given by one minus the trace of 
the joint probability matrix. From Equation (1) we obtain 

+ 

/ = 1  
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For  the zero e igenvalue A 1 = 0 we have /x~ = 0, /x~- = - ( s  1 + s 2) and 
w 1 -- zr T, so we have the following lemma.  

LEMMA 2 

The probability that two sequences have the same state at a given site is 
given by 

t r a c e ( J c ( ~ ' ) ) : r r r r  T +  ~ [c;e~'; ~ + c]-e"fTltrace(wjw~). (2)  
j=2  

T o  p roceed  any fur ther  with this calculation, we need  to be  able to 
calculate t r a c e ( w j w ~ ) =  t r a c e ( I l u j u ~ )  for  the remain ing  eigenvalues,  
which requires  some  knowledge  of  R. However ,  in the case of  the 
equi f requent  s ta t ionary distr ibution 7r = ( 1 / r  . . . . .  1 / r )  we have simply 
trace(wjw~) = t race( luj .u~)  = 1 / r ,  so 

1 1 ~ [c;e~,;~+c/e~,?~] " t r a c e ( J c ( r ) )  = r + r 
j=2  

W e  conclude this section by establishing some  proper t ies  of  the 
coefficients in Equa t ion  (1) that  are  helpful  in de te rmin ing  the behav ior  
of  the covar ion model .  

LEMMA 3 

(i) /.~+ and Ix- are real increasing functions of h satisfying i~- <~ 
- - ( S  1 + S 2 )  < - -  S 2 < 1 £ +  -~< 0 on ( - -  ~,0]. 

(ii) C/ , C~ >1 0 (with equality only for A = O, when c-  = O) and c~ + 
C;=1. 

(iii) t race(wjw T)  > 0 and 5".~= 1 trace(wj wT) = 1. 

Proof (i) Suppose  A 1 < A 2 and  consider  the functions 

= + ( s ,  + s2 - s 2 A j  

I f  f~ ( / z )  = f ~ ( / z )  then  we f i n d / z  = - s2, at  which point  f~(  - s 2) = - sis z 
t . . . .  1 • • 

and f ~ ( -  s z) = s I - s z - Aj. Thus  the mtuat ion is as i l lustrated in Figure  
2, and,  because  g /  and /xf are  the roots  o f  fa = 0 it follows that  

- -  - -  + + • . • J _ 
/x 1 < / x  2 and /x 1 < tx z . Fo r  the mequa lmes ,  we have IX = - ( S l  + s2), 
/.t + = 0 when  A = 0, and f a ( -  s2) = - s1$2 <( 0 SO [ £ -  < - -  S 2 < 1£+, be- . J 
cause fa, are r ight-way-up parabolas .  
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/ f ~ 2  

# 

FIG. 2. The function fA~ lies above fA2 on (-s2,oo) and below on ( - % -  $2 ), 
with fxl( - s 2) = f~2 ( -  s 2) < 0. Hence /x i- < /z  2 < tz~ </*~'. 

The inequalities in (ii) follow from (i), and the equality c,. + + c~- = 1 
T ~ ~2 may be verified directly. For (iii), we have trace(wjwj ) = wj = Iwjl > 0 

and 

trace(wjw[)  = trace ~ wjw 7 = t r ace ( J (0 ) )  = t race(H)  = 1. 
j = l  j = l  

3.2. UNDER RATES ACROSS SITES 

In the rates-across-sites case, put ® = diag(0) and let Q have eigen- 
values {aft. Argued as for the covarion model,  if 01/2QO -1/2 has 
or thonormal  eigenvectors {yfl, then the joint probability matrix JD(r) of 
the rates-across-sites model  D is given by 

Jo(r) = ~ E[ e ''~" ]zjz~., 
j = l  

where zj = O1/2y i. We may write this as 

Jo(,) = E M( ,,s )zjz  (3) 
/ = 1  
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where M(x)= E[e ~x ] is the moment generating function of ~ ,  given by 
the Lebesgue-Stieltjes integral 

M( x) = fore ~x dF~( v). 

This calculation is not new, and similar or equivalent calculations 
appear in other papers dealing with rates-across-sites models, such as 
[2, 14, 15]. 

As in the covarion case, the probability that the two sequences have 
the same state at a given site is given by 

trace(Jo(z))=00 T+ ~ M(aff)trace(zjzf);  (4) 
j=2 

in the equifrequent stationary distribution case 0 = ( 1 / r  . . . . .  l / r ) ,  this 
is 

1 1 ~ M(aff) 
t r ace (J° ( r ) )  = r + r 

j = 2  

3.3. RECOVERING THE EVOLUTIONARY DISTANCE UNDER THE TWO 
MODELS 

Equation (3) may be written 

Jo(r) = OM(zQ), (5) 

where M is the moment generating function of ~ applied to matrices. 
This expression has the advantage of enabling us to calculate the 
expected number of substitutions K between the two taxa without 
requiring knowledge of Q by 

K= -trace{O[M-l(O-1Jo(¢))]} (6) 

[14, 15]. Here M -1 is the inverse of the moment-generating function, 
again applied to matrices. This expression gives a treelike distance and, 
because row i of Jo(~) sums to 0 i, requires knowledge only of ~ to 
reconstruct the tree from Jo(r). 

If both Q and ~ are known, we may express K in terms of just the 
trace of Jo(z) as 

K = - trace(OQ) f~o 1 (trace(Jo(~')), (7) 
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where fo(z)=trace(Jn(z)) is given by Equation (4). Note that f~o 1 
exists because fn is monotone decreasing. 

The property of Equation (3) that allows it to be written in the form 
of Equation (5)--namely, M is applied to products of the form 
ay~'--does not hold for Equation (1), and it appears that a transforma- 
tion analogous to Equation (6) does not exist for the covarion model. 
However, if R and S are known (or estimated), then, as in Equation (7), 
we may express K in terms of trace(Jc(r)) as 

K = - t race(IIR) trlfcl(trace(Jc(T)), 

where fc(~') = trace(Jc(r)) is given by Equation (2). Again fc is mono- 
tone decreasing (by Lemma 3), so fc  1 exists. 

Note that, in applications, the joint probability matrix (Jc or Jo) is 
estimated from the observed joint frequency matrix f. Because Jc and 
J,9 are both symmetric, it is usual practice to take the symmetrized 
matrix ( f+ J"r)/2 as the estimate. 

3.4. PAIR-BY-PAIR COMPARISONS OF SEQUENCES 
Simultaneous pair-by-pair comparisons of several sequences are fre- 

quently used as a method of building trees--for  example, through the 
construction of treelike distances. Here we address the issue of whether 
the covarion model will give different results to rates across sites when 
making such comparisons. For a fixed ~- = ~'1, if the rates are distributed 
according to the distribution of X(T1)/~h, then we have Jc(zl) = JD(r  1) 
for C=(R,S) and D = ( R , ~ ) ,  so the covarion model gives results 
identical with those of a suitably chosen rates-across-sites model if only 
one pair of sequences is examined. However, the distribution of X(T)/r 
depends on r, which opens the possibility that the models may give 
different results if more than one pair is considered. 

A common measure of the dissimilarity of two sequences is one 
minus the trace of the joint probability matrix, which is the probability 
that they disagree at a given site. In applications, this is estimated from 
the proportion of sites at which the aligned sequences from the two taxa 
differ. We show here (Theorem 5) that, given any covarion model, there 
is always a rates-across-sites model that will generate exactly the same 
data if only the trace is considered. We also characterize the conditions 
(Theorem 6) under which C = (R, S) and D = (Q, ~ )  satisfy Jc(r)= 
Jn(~') for all ~'. Models satisfying this equality will give identical results 
under any form of pair-by-pair comparison and on any tree; however, 
models that do not satisfy this equality may still give identical results on 
certain trees. 
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A related question is whether  it is possible to distinguish between the 
covarion model and rates across sites on the basis of  simultaneous 
pair-by-pair comparisons of  several sequences. On this question, the 
results of  this section are largely negative and suggest that pair-by-pair 
comparisons are inadequate for distinguishing the covarion model from 
rates across sites. Thus, a test of  the two models will probably require 
the simultaneous comparison of three or more sequences. Section 4 
gives an alternative approach to distinguishing between the covarion 
and rates-across-sites models based on such a comparison. 

We begin with a preliminary result. Stationary and reversible rate 
matrices with exactly one distinct nonzero eigenvalue will be of  rele- 
vance to us in what follows, so we give a characterization of them here. 

LEMMA 4 

(i) Given a distribution 7r o f  states, there is a stationary and reversible 
rate matrix R= having 1r as its stationary distribution and possessing exactly 
one distinct nonzero e igenvalue--namely ,  

R~ = 1 ~ ' -  L , 

where 1 = (1 . . . . .  1) a'. 
(ii) I f  the stationary and reversible rate matrix R with stationary distribu- 

tion 7r and ]gij[ > 0 for  all i , j  has exactly one distinct nonzero eigenvalue 
- A, then R = AR~.  

Proof  (i) We have ( l ~ r -  I,)-1 = l ( T r l ) =  1 - 1  = 0, so the rows of 
R,~ sum to zero. All the off-diagonal entries are positive and therefore 
R~ is a rate matrix, zrR~ = 7r(17r - I r) = (~l)Tr - ~r = 7r - rr = 0 T, so 
R= has stationary distribution 7r, and if i ~ j  then (R=)q=Tr j ,  so 
• ri(R,~)ij = ~rirr j = rrj(R~)ji. Hence R~ is reversible. 

The matrix l~r has rank 1 and hence null space of dimension r - 1, 
so 0 is an eigenvalue of multiplicity r - 1. The remaining eigenvalue is 1 
because (1Ir)1 = 1. Hence  R= has eigenvalues - 1  (multiplicity r -  1) 
and 0 (multiplicity 1). 

(ii) Consider the matrix Q = I r + ~R, which has eigenvalues 0 (mul- 
tiplicity r -  1) and 1 (multiplicity 1). By the reversibility assumption, 
R has a full complement  of  eigenvectors, so Q has null space of dimen- 
sion r - 1 and hence rank 1. Further,  Q has row sums equal to 1, f rom 
which Q = Iv,  where E~= 1 vi = 1. In fact, we must have v = ~r, because 
the left eigenvector corresponding to 1 is ~r. Hence R = A ( Q -  I , ) =  
A(l'rr -- Ir) ~- AR,~. 
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THEOREM 5 

For any covarion model  C, there is a rates-across-sites model  D such 

that 

t r a c e ( J o ( z ) )  = trace(Jc(~-)) 

for all ~" >~ 0. 

Note that this result does not imply that, given a rates-across-sites 
model D, there is necessarily a covarion model C for which the 
preceding equality holds. 

Proof. By Equation (2) and Lemma 3, trace(Jc(~-)) has the form 

trace(Jc(~-)) = 7rTr T + ~ [c;+e~;~+ c ; - e~ ;~] ,  
j = 2  

t +  - r t +  , ' -  and Ej=2[cj + c ) - ] =  1 -7 r~  -T. If R has k distinct whe rec j  cj > 0  
nonzero eigenvalues, we may collect terms in e ~±~ for each eigenvalue, 
writing trace(Jc(~-)) in the form 

2 k  

t race(Jc(~) )  = a o + ~_, ai e-v 'r ,  
i = 1  

~i=o ai = 1. where a i, 1, i > 0 for each i and 2k 
I~ t  .~ be the discrete distribution of rates such that 

ai 
P[ v = vi] = 1 -  ao 

i = 1 , . . . ,2k .  

Then ~ is well defined and, if D = (R~, ~ ) ,  then, by Equation (4) and 
Lemmas 3 and 4, 

t r ace ( Jo ( r ) )  =Tr~rT + ~ M ( - z ) t r a c e ( z j z [ )  
j=2 

= ~-Tr T + M( - r ) (1  - 1rlr T) 
2 k  

ai vir 
= a o + ( 1 - a 0 )  ~ l _ a o  e -  

i = 1  

2 k  

= a o W ~_~ ai e-vi~ 
i = 1  

= trace(Jc(~-)). 
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THEOREM 6 

(i) For a given covarion model C = (R, S), there is a rates-across-sites 
model D = ( Q, ~ ) such that 

= Jo( ) 

for all ~- >i 0 if  and only i f  R has only one distinct nonzero eigenvalue, in 
which case ~ is a discrete two-rate distribution and Q is a scalar multiple 
of  R. 

(ii) For a given rates-across-sites model D = (Q, ~ ), there is a covarion 
model C = (R, S) such that 

for all z >1 0 if and only if  Q has only one distinct nonzero eigenvalue and 
is a discrete two-rate distribution, with both rates greater than zero. 

Proof. Suppose Jc(~') = Jo ( r )  for all r. Because they agree for 
z = 0, when Jc(¢)= II and Jo(zr )=  O, we must have 0 = w. Multiply 
Jc(r)  = Jo(r) on the left and right by 1-1-1/2 to get 

r 

E T= E M( j )yjyT, 
j ~ l  j = l  

where C y ( ' r ) = c ; e ~ ; ~ + c T e ~ ; L  Now UfUk=Sik implying II -1/2 
j c ( ¢ ) i  I -  l;,2 has eigenvalues {Cj(~-)} and corresponding eigenvectors {u j}. 
Similarly I I -  1/zjo(z)11-1/2 has eigenvalues {M( %.¢)}. So there must be 
some ordering for which Cj(z)= M ( a j z )  for each j. We will suppose 
that the functions have been ordered in this way. 

Write My(z) for M(%~'). For the zero eigenvalue ( j  = 1), we have 
C1(~-) = 1 = MI(¢), so we need worry about only the nonzero eigenvalues 
( j  >~ 2). The M r ( j  ~> 2) have the property that Mk(Otl~'/Ot k) = M/(¢) ,  
that is, we may transform from one to another simply by rescaling r. 
Clearly the Cj must satisfy this also. Suppose Ck(Y¢) = Ct(z). Then 

Ck(Yr  ) = c ~ e ~  • + C k e ~  ~ = Ct ( r )  = c~e~;  • + Cl e~?~, 

+ = ct + , and c~- = c 7 because so we must  have "y/x~- = / t t  + , 3,/z~- = / ~ 7 ,  ck 
exponential  functions are independent  (note  that /zj- < / z  7 which pre- 
cludes the possibility of  matching 3q~- with /xT, etc.). Hence ,  from the 
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definition of c[, we have 

c ;  = ( s, + s~)(  ~;- - m ) 

(s~ + s: + y g ;  ) y g ;  

(S1 -[- $2 ) (  ~1'£; -- ~]~k ) 

(sl + s2 + y#~- ) M 
(Sx + s~)( ~ ;  - ~ ;  ) '  

which by hypothesis equals 

( S 1 -I- S 2 + /J,k- ) I£ ;  
c ;  = (sl + sO( ~ -  - ~ ;  )" 

Hence y = 1. Lemma 3 (i) then implies that )L k = )LI, and it follows that 
R has only one distinct nonzero eigenvalue A. Now Mk(Z)= Ck(¢)= 
Cj(T)=MjO'),2<~j,k<r, so Q has only one distinct nonzero eigen- 
value also and, because both R and Q have stationary distribution w, 
by Lemma 4 both are scalar multiples of R~. ~ has moment-generating 
function M(~')=c~e~'~+cfe~';~ and so is two rate with both rates 
greater than zero. 

Conversely, if R = - AR,~, then 

r 

J c ( r )  =wTw +[c~ e~':'~ +c; e~';~'] E wjwf. 
j=2 

Let ~ be the two-rate distribution such that 

P [v  = I tz~ I] = c~, * = + ,  ~ .  

Then ~ is well defined and, if D = ( R ~ , ~ ) ,  we have 

j = 2  

= 7rTzr + [c; e~ '+  c; e ~i" ] ~ wywf 
j=2 

= Jc(7) .  

It remains to show that, if D = ( y R ~ , ~ ) ,  where ~ is a two-rate 
distribution such that 

P [  v = v~] = p i ,  i=1,2 ,  
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then we may choose a covarion model C = (R, S) such that J c ( r )  = J o ( r )  
for all ~. By scaling /)1 and v 2, if necessary we may assume that 3' = 1, 
and 0 < v I < v 2. We must then find A < 0 and s l , s  2 > 0 such that 

/ £ ;  = --  /)1' /£A- = --  /)2 a n d  c~- = P2 

and then take R = - AR,~ (note that the third condition implies c~- = 
Pl). Using 

( / £ +  1 '1)(  / £ +  /)"2) = ( / £ - -  /2"; ) (  / £ - -  /£A- ) - -  /£2 + ( $ 1  + S  2 __ )k)/£ __ $2/~., 

we obtain the system of equations 

Vlg2 = - - $ 2 ~  

V 1 + V 2 = S 1 + S 2 --  A, 

(S1+$2-- V2)V 1 
= + s 2 )  ' 

which may be solved (uniquely) to give 

/,2 P l  + 1)2/92 
A 

vlt91+ v2P2 '  

t91 P2/)1/)2(/)1 --  /)2) 2 

$ 1 =  ( / ) 1 P l  + /"2 P 2 ) ( V ? P l  + / ) 2 p 2 )  ' 

v l v 2 ( v l  pl + v 2 P 2 )  

$2 = /)? Pl -j" 112 P2 

This defines the required covarion model. 

3.5. LIMITING CASES 

We consider the limiting cases of  the covarion model when the 
switch is very slow (Sl,S 2 ---, 0) and very fast (Sl,S 2 -000% keeping s 1 / s  2 
(the ratio of  " o f f "  sites to " o n "  si tes)constant .  

For  very slow switches, we expect few changes between the states 
" o n "  and " o f f "  to occur, so sites in state " o n "  will tend to remain in 
state "on , "  and sites in state " o f f "  will tend to remain in state " o f f . "  
In the limiting case s 1, s 2 -o 0, we expect tr 2 of  the sites to be invariable 
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and o" 1 of them to be variable. Calculating this limit we find 
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J c ( T )  ~ o-2J(0) + O-IJ(T),  

as expected. 
For fast switches, we expect sites to flip back and forth between "on" 

and " o f f "  very rapidly and each to spend about the same amount of 
time in state "on." The expected time in state "on" is o-1 ~" and, in the 
limiting case s 1, s 2 ~ ~ with s I / s  2 constant, we find that 

JC(T)  ---> J (o - l ' r )  • 

4. A TREELIKE MEASURE ON MONOPHYLETIC GROUPS 
UNDER THE COVARION MODEL 

One approach to testing the covarion model against rates-across-sites 
models is to examine the sites that are varied and unvaried in two 
widely separated groups of closely related species. Under the rates- 
across-sites model, if a given site is in the same state for each member 
of a group of closely related taxa, then it is likely that the rate of 
evolution at that site is slow. Because the rate does not change across 
the tree, we might expect little change to occur in another group of 
closely related species that is widely separated from the first. On the 
other hand, under the covarion model, if each species has the same 
state at a given site, it seems likely that the site was off for much of the 
time. In a distant part of the tree, the switch might be on, so we no 
longer expect the unvaried sites in the two groups to match up. This 
observation was made by Fitch [16] and examined by Miyamoto and 
Fitch [9], who compared Cu, Zn superoxide dismutase sequences from 
seven mammals and seven plants with simulated sequences generated 
under covarion and gamma distribution rates-across-sites models, find- 
ing that the covarion hypothesis explained the evolution of the protein 
better than rates across sites. 

The following discussion also is motivated by Fitch's observation. For 
a certain class of events and parameters of a covarion model, we obtain 
a treelike distance measure between monophyletic groups of species 
that will not in general be treelike under rates-across-sites models. This 
shows, first, that infinite sequences can in fact distinguish between the 
two models and, second, that infinite sequences do contain information 
about the tree without requiring knowledge of the parameters of the 
model. Standard statistical techniques (such as maximum likelihood for 
tree reconstruction) may then be used to address these questions, given 
finite sequences. 
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The class of covarion models for which this is relevant includes those 
whose underlying observable process is based on the Kimura [17] 
three-substitution-type model (K3ST) or one of its submodels--the 
Kimura [18] two parameter (K2P) and Jukes-Cantor [19] (JC) models. 

4.1. TREELIKE DISTANCES 

Trees with positively weighted edges induce a natural distance func- 
tion Pij between leaves i and j of the tree--simply sum the edge 
weights along the path from leaf i to leaf j. Such a distance function 
has all the properties of a metric, as well as an additional property 
known as the four-point condition. That is, if the subtree induced by 
leaves i, j, k, and 1 is as shown in Figure 3, where ~xy is the net sum of 
the edge weights along the path from vertex x to vertex y, then 

P~j + Pkt ~< P~k $ Pyt = P~t + Pjk" (8) 

The distance between u and v also may be recovered, because 

1 

Furthermore, the four-point condition [Eq. (8)] characterizes metrics 
that may be realized as edge-weighted trees: if the metric function p 
satisfies the four-point condition, then there is a unique tree T and a 
unique edge weighting w such that (T,w) realizes p [20]. Such metrics 

i k 

Tiu TUV Tkv 

j 1 

FIG. 3. The subtree induced by leaves i, j, k, and 1. 
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are called treelike and are accordingly of interest in phylogeny, because 
they enable the tree to be recovered uniquely and quickly (by an 
algorithm whose running time grows polynomially in the number of 
taxa). 

4.2. SEPARABLE E V E N T S  

We describe a class of events that give rise, under the covarion 
model, to a treelike metric that is not in general treelike under a 
rates-across-sites model. 

Suppose E is an event involving an r-state site pattern X on a set C 
of species--for example, the events 

ES = " x ( i )  is the same state for all i ~ C" 

and 

E d = " x ( i )  is not the same state for all i ~ C". 

Given two monophyletic groups C 1 and C 2 of species with correspond- 
ing rooted trees T 1 and T2, the tree joining them will be as shown in 
Figure 4. Let E i be the event "E occurs for group Ci" for i = 1,2. We 
say that event E is separable under the covarion model (R,S) if 

P[E, A E 2 IO 1 =O1,02 = 0 2 ]  = P[E, IO 1 =Ol]P[E 2 IO 2 =02] (9) 

for all Ol, 02 e { o n ,  o f f } .  Note that the separability of a given event 
may depend on R and S. An analogous condition that might be satisfied 
by a rates-across-sites model (Q,5~) is the following independence condition: 

P [ E ,  A E 21 v l  = P [ E I I v I P [ E 2  I v ] .  (10) 

C 1 (72 

~ V l T V 2  ~ 

FIC. 4. The tree joining two monophyletic groups of species C 1 and C 2. The 
circles denote the rooted subtrees T 1 and T 2, the roots being v 1 and rE, respectively. 
The edge {vl,v 2} has length ~'. 
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Let 

P12 = P[EI A Ez], 

p i - -  P[Ei ] ,  i = 1 , 2  

and, further, in the case of  the covarion model, let oi be the state " o n "  
or " o f f "  of  the switch at the vertex v~ and 

p?n = P[EilO i = on], 

p.~ff = P[ E i l0 i = o f f ] ,  

8i _~_ p f n  __ p ? f f  

for i = 1,2. Then under  conditions (9) and (10), we have the following 
lemma. 

LEMMA 7 

(i) I r E  is separable under the covarion model (R,  S), then 

P12 - PiP2 = ° v 1 ° ' 2 e - ( S l  +S2)Z 8 1 8 2  . (11) 

(ii) I f  the independence condition holds for the rates-across-sites model 
(Q, ~.7.7~), then Pa2 - P l P 2  does not depend on ~. 

THEOREM 8 

For a tree with several monophyletic groups C1, . . . ,C n (IC~l >12 for 
each i) at its tips, the measure 

Pij -- - - l n l p q  - p~pfl i # j 

is treelike under a covarion model for which E is separable but, in general, 
is not under a rates-across-sites model for which the independence condi- 
tion holds. 

Proof o f  Lemma 7 and Theorem 8. In the covarion case, 

el2 = ~ P I E 1 A  E 2 101 =01,02 -02]P[o I ---01,02 =02] 
01,02 

= E P[E1 [O, =o,]P[E 2 Io2 =02]P[o, =0,,02 =02] 
01,02 
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because E is separable, and 

P,P2 = E P[E1[01=o1]  
O 1 , O  2 

X P[E  2 I0 2 = 02 ]P[o I = 01]P[O 2 = o 2 ]. 

Thus 

P12 --  P l P 2  = 
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~_, P[E1 I01 =Ol ]  
O1,O 2 

xP[E 210 2 =02](P[o 1=O1,02 =02]-P[01=O1]P[02 =02] ) 
(12) 

Now the joint probability matrix for the switch operating for time 7 is 

( P [ o  1 = 0 1 , 0 2  = 02 ] )  = 0-10- 2 

$2 - -  + e - (s '+s2)r  1 --  e -(s'+s2)': 
S1 

S1 1 - e - (s l+sz)r  - -  + e - (s l+s2)r  
s 2 

see, for example, [11] page 156; so the matrix of P[O 1 =01,02 =02]-- 
P[O 1 = 01 ]P[o 2 = 0 2 ] is 

1 -1) Orlor2e-(S'+S2)~'( - - 1  1 " 

Hence, from Equation (12), 

poff I P l 2 - - p l P 2  = O ' l O ' 2 e - ( s l + s z ) r ( p ~ n  - - p ~ f f  l ( p ~ n  -- 2 ] 

= O. lO-2e-(Sl+S2)7~l~2 ' 

as claimed. 
Under rates across sites with the independence condition holding, 

oo 

P[E 1 A E2] =fo PIE1 A E 2 I v]dF~(v) 

= f0°°P[ El I v]P[E 2 I vldF~(v), 

which does not depend on z, and, similarly, 

P[E,] = f f P [  E, I ,,] aFt(,,) 
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does not depend on r ,  so P 1 2 - P I P 2  = la[E1 A E 2 ] - P [ E 1 ] P [ E  2] does 
not depend on r either. 

Because P~i does not depend on the length of the edge between T/ 
and T i in the rates-across-sites case, we may rearrange the tree on the 
groups without changing the value of P,7, so the tree on the groups is 
not uniquely determined by 19. In the covarion case, if the edge between 
T x and Ty has total length ~-~y, then 

Pxy = - lnlpxy - PxPyl 

= -!n(o1o"2 e-(sl +s2)rxYlSxll6y[) 

= - -  l n ( ~ r l  0"2)  - ~ ( s  1 -~ s2)~'xy - ln l~xl- ln lSyl .  

Referring to Figure 5,,we have r~i = r~ + rj, r~, = r i + z,,, + r k, etc., and 
Theorem 8 follows. 

Note that the set of equations 

Pij = - l n ( t r l t r 2 )  +(S l  + s2) ¢i~ -InlSil-ln1811, 

ci C 

rk 
7" m 

FIG. 5. The tree on the four monophyletic groups of species Ci, Cj, Ck, and C t. 
The r x are the edge lengths. 
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where 1 ~< i < j ~< 4 is a system of six linear equations in the six un- 
knowns In(trio'2), (s 1 + s2)z k --lnl6kl, 1 ~< k ~< 4 and (s I + s2)z 5. How- 
ever, this system is singular (because P13 + Pz4 = P14 + P23) and only 
(s I + s2)z 5 may be solved for uniquely if only the Po are known. 

Further, although Pij is not in general additive under a rates-across- 
sites model, the four-point condition may still hold, albeit in the form 

Pij -b Pkl  = Pik q- Pjl = Pil "k Pjk" (13) 

For example, if trees T/, Tj, Tk, and T t are exactly the same, this will 
certainly be the case. Less restrictively, if the T x are all two-taxa trees 
with their leaves separated by a distance ~-x and we assume the fully 
symmetric model (Qij = ot if i 4: j and Qu = (1 - r )a ) ,  then the Pxy may 
be calculated relatively easily and it appears that Equation (I3) holds 
for any choice of z i, rj, ~'k, and ~'t if and only if 5~ is a discrete one- or 
two-rate distribution. 

4.3. EXAMPLES OF SEPARABLE EVENTS 

We begin by giving a sufficient condition for separability, which will 
allow us to show that, under a model that regards the states somewhat 
interchangeably, any event that respects that interchangeability will be 
separable. We will then be able to find some examples of separable 
events. 

Let A~ be the state of the observable process at vertex v i. 

LEMMA 9 

(i) Under the cooarion model (R,  S), if  E i is independent of  A i for 
o i = on and o i = of_f, then E is separable. 

(ii) Under the rates-across-sites model (Q, ~ ) ,  if Ei is conditionally 
independent of  A i given v, then the independence condition holds. 

Proof. The proofs of parts (i) and (ii) are entirely similar, so we 
prove only (i). For any reversible Markov tree model, we have 

P [ E  1 A E  zl0 aA02 ,A  a A A 2 ] = P [ E  l l 0 1 A A I ] p [ E  2102AA2].  (14) 

Let pi(ai) = P[ E i 1oi A ( A i = ai)]. Then, from Equation (14), 

P[ E 1 A E 2 IO 1 A 0 2 ] 

= E Pl(aOp (aOP[(A =aO^(A:=a )lQ^Od. 
a l , a 2  E 5~ ¢ 
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P[E~ I q ]  = 2~ p~(a~)P[A~ =- a i IOi], 
a i ~ ..g#" 

A = p [ E  a A E 2 IO1 /xO2 ] -P [E~ IO1 ]P [E  z Ioz]  

= ~_, P l ( a I ) P 2 ( a 2 ) ( P [ ( A I = a l ) A ( A 2 = a 2 ) I O 1 A 0 2 ]  
al,a2 ~.3~ 

- P [ A ,  = a I I O , ] P [ A  2 = a  2 IOz] ). 

Now, if E i is independent of A i for O i = on and for 0 i = off, then we 
may write pi(ai) = Pi, and so 

A = P I P 2 (  ~ P [ ( A I = a t ) A ( A z = a 2 ) I O 1 A 0 2 ]  
a l , a 2  E , . ~  " 

- ~_~ P [ A l = a l l o l ] P [ A 2 = a 2 1 0 2 ] )  
a l ,  a 2 E 

= p i P 2 ( 1 -  1) = 0 .  

Hence E is separable. 

Given a permutation tr ~ S, (the symmetric group on r objects), the 
permutation matrix P~ corresponding to tr is the matrix whose i~(i)-  
entry is 1, with all other entries being zero. If R is an r × r matrix, then 
P~ R is the matrix that results if the rows of R are swapped according to 
tr, whereas R P f  is the matrix that results if the columns of R are 
swapped according to tr. Consequently P~ R P f  is the result of swapping 
both the rows and columns. 

The map R ~ trR = P~ R P f  defines a group action on the set of all 
r × r rate matrices. If R = P,~ RPf ,  we say that R is invariant under tr; 
further, if G is a subgroup of S, and R is invariant under tr for all 
tr ~ G, we say that R is invariant under the action of G. We note that, 
because pT = P~-t = p - l ,  the set of matrices invariant under the action 
of G is closed under multiplication. 

As an example, consider the matrices 

/ a - 8  3' 3' 
R r =  and Rc= 

13 3' - 8  3 
3' /3 a 8 

--8 ot fla 

T - 8  
/3 y 8 

(15) 
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where ~ = a +/3  + y. It is easily checked that R r (which is the matrix 
used in the K3ST model) is invariant under the action of 

K 4 = { i d , ( 1  2)(3 4) , (1 3)(2 4) , (1 4)(2 3)}, 

which is isomorphic to the Klein 4-group, whereas R c is invariant under 
the action of 

C 4={ id , (1  2 3 4) , (1 3)(2 4) , (1 4 3 2)}, 

which is isomorphic to the cyclic group Z 4. 
In a similar way, we may define a group action on site patterns by 

X ~ o'x, where ~ x ( i ) =  or(x(i)) .  Because events concerning states of 
the taxa are sets of site patterns, this extends to an action on such 
events by 

irE = { tr X I X ~ E}. 

Again, if o-E = E for all o- ~ G, we say that E is invariant under the 
action of G. As an example, if C is a set of species, then the event E s 
that a given site takes the same state at each species is invariant under 
the action of any subgroup of S r. For a less-trivial example, consider the 
events on two species with four states (1, 2, 3, and 4) given by 

and 

E 2 = "the states differ by 2" (e.g., 1 and 3 or 4 and 2) 

E 1'3 = "the states differ by I or 3" (e.g., 1 and 2 or I and 4). 

Again, it is easily checked that E 2 and E 1'3 are invariant under the 
action of both K 4 and C 4. Note that, if the states are the nucleotides A, 
C, G, and T in that order, then E 2 is the event "the states differ by a 
transition," whereas E 1'3 is the event "the states differ by a transver- 
sion." 

The usefulness of these concepts in the present context is given by 
the following theorem. Invariance of the rate matrix under the action of 
a group G breaks the state space up into classes of states that "look the 
same." If there is just one class of states that "look the same" (i.e., if 
there is just one orbit under the action of G; such an action is called 
transitive), then any event invariant under G will be separable. 

THEOREM 10 

Let  R be a stationary and time-reversible r × r rate matrix, and let E be 
an event involving r-state site patterns on monophyletic sets o f  species. I f  
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both R and E are invariant under the action o f  some G c_ Sr that acts 
transitivdy on [ r], then 

(i) E is separable under the covarion model ( R , S )  for any switch 
matrix S. 

(ii) The independence condition holds for E under the rates-across-sites 
model ( R, ~ ) for any distribution .~. 

Proof The result follows from a simple symmetry argument. For 
part (ii), the transition matrices p c =  exp(reR) inherit invariance under 
the action of G from R, so 

for all a , /3 ~ [r] and all edges e of T v It follows that, on renaming all 
states according to (Jr ~ G, we have P[Ei lA  i = a i] = P[E i I A i = or(ai)]. 
Because G acts transitively on [r], (ii) now follows from Lemma 9 (ii). 

For part (i), we use the second formulation of the covarion model 
and argue similarly to part (ii). We again have 

e(eo.(o,),oXo.(/3),o, ) = P(e,ox/3,o, ) 

for all a , / 3 e [ r ] ,  o , o ' e { o n ,  of f}  and all edges e of T/, so, on 
renaming all states according to or, we get 

P[E i I (Zi ,o i )  = ( a i , o i )  ] = P[ E i [(Zi,Oi) = ( or( a i ) , o i ) ]  . 

Because G acts transitively on [r], Eg is independent of A i for Oi = on 
and oi = <9 f f ,  so E is separable by Lemma 9 (i). • 

Theorem 10 will allow the construction of many examples of separa- 
ble events, and we state some examples as a corollary below. Part (ii) is 
of interest in its own right. Fu and Li [21], in constructing certain 
quadratic invariants, showed that the heretofore defined events E s, E 2, 
and E 1'3 satisfy the independence condition on four taxa trees if all 
transition matrices have the form R r ,  without placing any conditions on 
the location of the root or the distribution of states there. The proof of 
part (ii) of Theorem 10 requires only that all transition matrices be 
invariant under the action of G (they need not be generated by a single 
continuous-time Markov process); no requirements are placed on the 
distribution of states at the root, the number of taxa, or the number of 
states. This extends Fu and Li's result, fitting it into a much broader 
framework. 

We will say that R is permutable if it is invariant under the action of 
some G _c Sr that acts transitively on [r]. 
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COROLLARY 11 (Some examples of separable events) 

1. The events E s and E d referred to earlier are separable under the 
covarion model (R,  S)  and satisfy the independence condition under the 
rates-across-sites model ( R, ~ ) whenever R is permutable. In particular, R 
is permutable if  it has one of  the following forms: 

(i) R = R r ,  where R r is as given in Equation (15) and is the form of  
the matrix used in the K 3 S T  model. This includes as special cases the K 2 P  
model (/3 = T) and the JC model ( a =/3 = T ). 

(ii) R is the r X r matrix given by Rij = ~ if i 4: j and R u = (1 - r )a  for 
any r. This gives the fully symmetric model and includes as particular cases 
the Cavender-Farris model (r = 2) and the JC model (r = 4). 

2. The events on pairs o f  species E 2 (differ by a transition) and E 1"3 
(differ by a transversion) are separable under the covarion model ( R, S)  
and satisfy the independence condition under the rates-across-sites model 
( R , ~ )  whenever R is o f  the form RK. 

(Note that the matrix R c is not time reversible unless a = 7, in which 
case it is of the form RK). 

5. CONCLUSION 

We have presented and analyzed a simple covarion-style model, 
comparing it with the better known rates-across-sites models. 

We have shown that, even for infinitely long sequences, a covarion 
model will give results identical with those of a suitably chosen rates- 
across-sites model when making simultaneous comparisons of pair-by- 
pair dissimilarities between a collection of sequences. Consequently, if 
one wishes to test between these two models by using real (finite length) 
sequences, it is necessary to consider further properties of the data than 
just pair-by-pair dissimilarities. We also showed how the expected 
pair-by-pair dissimilarities could be transformed so as to estimate the 
evolutionary distance between the two sequences; however, this re- 
quired knowledge of the underlying rate matrices R and S. 

In Section 4, by following an observation of Fitch [16], we showed 
how certain versions of the covarion model could be used to construct a 
treelike distance on monophyletic groups of species--again for in- 
finitely long sequences but this time without using knowledge of the 
underlying rate matrices R and S. The significance of this result for real 
sequences is twofold. First, it shows that treelike information can be 
recovered from sufficiently long sequences under the covarion-style 
model, given knowledge of monophyletic groupings. The particular 
treelike distance described could be used directly on real sequences, 
provided they are reasonably long, in much the same way as similar 
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logari thmic t ransformations are routinely used in phylogenetics.  Alter-  
natively, more  powerful  (but also more  computat ional ly  intensive) statis- 
tical techniques such as maximum-l ikel ihood could be e m p l o y e d - - o u r  
result simply shows that treelike information is there in the sequences 
to be recovered.  

Second, because the treelike measure  is not, in general,  treelike 
under  the rates-across-sites model ,  this shows that the two models  can 
indeed be distinguished, given sufficiently long sequences.  A useful 
project  for future work  would be the development  o f  such tests. A test 
that  did not  depend  on restrictions to the model  such as the separability 
condit ion o f  Equa t ion  (9) would be particularly desirable. 
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