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Dissimilarity Maps and Substitution Models:
Some New Results

Vincent Moulton, Mike Steel, and Chris Tuffley

ABSTRACT. In part one we describe some new results on reconstructing trees
from distance measures, based on results in Peter Buneman’s pioneering (1971)
paper. In part two we analyse a covarion-style model, of the type suggested
by Walter Fitch (and colleagues) in 1971 that offers a plausible explanation
for why sequence sites “appear” to evolve at different rates.

INTRODUCTION

This paper summarises some new results. Further details (and most of the
proofs) will appear elsewhere (see [28, 32]). The paper is in two parts:

Part One: Trees with positively-weighted edges induce a natural metric
on any subset of vertices, however not every metric is representable in this way.
A problem arising in areas of classification, particularly in evolutionary bioldgy,
is how to approximate an arbitrary distance function by such a tree metric, and
thereby estimate the underlying tree that generated the data. Such transformations,
from distances to tree metrics (and thereby to edge-weighted trees) should have
some basic properties such as continuity, so that a small change in the input data
does not result in a drastically different tree, but this is lacking in several popular
methods, for example (as pointed out by Buneman) in methods that attempt to
find a closest fit tree metric, and (as we show) in the popular neighbor joining
method. However known continuous transformations, such as Buneman’s original
construction, often produce uninteresting (unresolved) trees, which led Buneman to
suggest that perhaps this was “the price paid for continuity”. One way to extract
more information (and continuously!) from distances is Bandelt and Dress’ elegant
split decomposition theory. Based on a modification of Buneman’s construction,
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this continuous map produces a much larger number of splits than Buneman’s map,
though these splits generally do not form a tree. Here we suggest an alternative
modification to the Buneman construction that always leads to trees, and which
are, in general, more resolved than those obtained via Buneman’s construction. Yet
we can achieve this goal without sacrificing continuity. This suggests the possibility
of finding other such maps.

Part Two: A “covarion” model for nucleotide substitution which allows sites
to turn “on” and “off” with time was proposed 25 years ago by Fitch and Markowitz.
It has been argued that evidence supports such models over later, alternative models
which postulate a static distribution of rates across sites. However, in contrast to
these latter well-studied models, little is known about the analytic properties of
the former model. Here we analyse a covarion-style model and show (i) how to
obtain the evolutionary distance between two species from the expected proportion
of sites where two species differ (ii) that the covarion model cannot be distinguished
from a suitably chosen rates-across-sites model on pairs of taxa if only the trace
of the joint probability matrix is considered (i.e. the probability that the two
taxa are in the same state) and give conditions under which the two models may
be distinguished if the full matrix is examined, (iii) that the two models can, in
principle, be distinguished when there are at least four monophyletic groups of
species. In particular, with a view to a possible test of the covarion hypothesis
(against a rates-across-sites model) we construct a distance measure which is a tree
metric under certain versions of the covarion model (satisfying a certain separability
condition) but which, in general, will not be a tree metric under a rates-across-sites
model. Such a measure may also be useful for reconstructing the tree on the
monophyletic groups when the covarion model applies.

PART ONE: DISSIMILARITY MAPS
1. Tree metrics, edge-weighted S-trees and indices
Let S :={1,...,n}, and define
D(S):={d:Sx S = Rso : dyy =dyz, dog =0 forall z,y € S}

to be the set of distance functions on S. A distance function which satisfies the
triangle inequality (dsy < dy, +d,y for all z,y, 2z € S) is said to be a pseudo-metric.
Endow D(S) with the [P norm, that is, set

S ildi; —dP)r p=1,2,...
d—dl, = ( 1,5 1044 ij 14
[ llp { maxg; |dij — ;| p = oo.

A distance function d on a finite set S is said to be a tree metric if there exists
atreeT = (V,E),amap L:S — V, called a labelling, and a map w : E — Ry,
called an edge weighting, such that for all z,y € S, d,y is the sum of w(e) over all
edges e in the unique path in T connecting vertices L(z) and L(y).

We may assume that the tree T" has no vertices in V — L(S) of degree less than
or equal to two, since, as is easily seen, any tree metric on S can be realized by
such a tree with a suitable edge weighting. We call such a tree T (together with its
associated labelling L) an S-tree. S-trees and tree metrics arise in many contexts,
particularly in phylogenetic analysis in evolutionary biology (see, for example, {2,
20)).
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Two fundamental results concerning the characterisation of tree metrics and
their uniqueness of representation date back to the 1960s and work by the Russians
Zaretsky [36] and Smolensky [30], and we recall these results and their recent
extensions here. One classical result is that a tree metric can arise from only one
triple (T, L, w) where T is an S-tree, and w is an edge weighting of T' [1, 6, 30, 36].
Thus tree metrics are in a natural bijective correspondence with positively edge-
weighted S-trees, and, furthermore, there exist fast algorithms for recovering the
triple (T, L,w) from d (see, for example, [1, 2, 19]). We refer to T' (with its
associated labelling L) as the S-tree associated with d.

Given d € D(S) and § > 0, d is said to be d-hyperbolic if

dij + du < max{dix + dj,dy +dj} + 0

for all 4,7, k,l € S. This is a relaxation of the four-point condition, in which é =0
(for a discussion of this point see [9]). A second classical result states that a pseudo-
metric d is a tree metric if and only if d is 0-hyperbolic [6, 30, 36]. More generally,
a result originally given in [17], and which is also described in [5], states that if a
pseudo-metric d is é-hyperbolic, then there exists a d' € T(S) with

[|d — d'l|oc < (1 + log, n)d,

where n = |S]. Thus, if § is small, then d is close to a tree metric up to a term
that grows slowly in n. For a different generalisation of the O0-hyperbolic result to
“distance” functions taking values in a suitably structured Abelian monoid A (and
the realisation of such functions by S-trees with edges weights in A\ {0}) see [4].

Let T(S) be the subspace of D(S) consisting of tree metrics, and S(S) be the
set of splits of S, that is, bipartitions of S. Note that each edge of an S-tree induces
a split of S defined by the two non-empty subsets of S that label the two subtrees
of T' when e is deleted. We say that this split is a split of T and is associated to
edge e. Notice also that any tree metric d € 7(S) can be conveniently written in
the form

(L.1) d=X%,es5(5)A0 06,
where
Mo = A (d) = { w(e) %f o is associateq‘ toe
0 if o is not associated to any edge of T,
and where

. ... | 1 if oseparatesi and j
00 (2,5) = { 0 otherwise
(6 = {A, B} separatesi and jif ¢ # j, and |{i,5} N A] = 1).
Given d € D(S) we can define some maps from S(S) into R, which we call
indices. We adopt the convenient shorthand zy for d,. Suppose that o = {4, B}
is a split of S. Let

_ . l 171 ’ [ ’
o = po(d) 1= 2 aa eAbb’ {mm{ab+ab ab' + a'b} — (aa’ + bb')},
pa = 3 (d) := max{0, o},
- =1 o 'y g
ar = ay(d) == 5 awrdlin, {max{ab+ab ab’' + a'b} ~ (aa’ + bb')},

o} = o (d) := max{0,a,}.
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The map p is the Buneman index [6], while ot is the isolation indez [3]. Clearly,
for any o € S(S), we have yu, < @, and p} < af. The proof of the following
lemma can be found in [3] and [6].

LEMMA 1.1. Ifd is an element of T(S) withd = £,A;-0,, then A, = pF = of
for all ¢ € S(5).
Let A(d) be the vector [A,(d)] which lies in RIS(5)}]
W(S) :={A(d) : d € T(9)},
and endow W(S) C RIS()l with the I? norm. The I' norm on the the space W(S)
was proposed in [29] as a natural metric for comparing edge-weighted trees. The
following theorem shows that W(S) and 7(S) are homeomorphic. In particular the
question of whether or not a map of D(S) into 7(S) is good does not depend on
whether we view the output as a distance function or as an edge-weighted S-tree.
The second inequality in Theorem 1.2 is also established, using a slightly different
approach, in [10, Lemmas 6,7].
THEOREM 1.2. For d,d' € T(S), we have
ld~dlle < lIAMd) — A1,
IAd) = MdMloo < 2+ ]ld =~ d'l|oo,
and both of these inequalities can be equalities for any S.
PROOF. Writing d,d' in the form of equation (1.1) we have

ld=dle = Hf;x!dij —dj;]
= Ul!?;fxm{aesw)}()\a - Ay) - 80(i, )]

< max Eioes($)HAs — Agl - 00 (4, 7)

IA

Zioesn e = Aol - max{de (i, 1)}
IA(@) — A(d)ll -

To obtain the second inequality, we show that for any o € S(S5),
[As —AL| <24,

where ¢ = ||d — d'||o-
Now

Ae = A5 |l (d) ~ p3 (d)]
|;u'a(d) 7 (dl)‘
2.4

since, by definition of u, and the triangle inequality
Na(d) S ,Ucr(d,) +2- 57

IN A

and
tho(d') < po(d) +2-4.
This establishes the the two inequalities in the Theorem. To see that they can
both be equalities we give the following two examples.
For the first inequality let d be the tree metric induced by the S-tree given by
labelling bijectively the degree one vertices of a star tree (a tree having just one
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vertex of degree larger than 1) by the elements of S, and assigning weight « to each
edge. Let d' be defined in the same way, except that we assign one of the edges
weight 3 instead of . Then we immediately see that

lld — d'lloo = lIA(d) = Md)Il = |o — B].

For the second inequality, take a tree with four leaves, labelled bijectively by
S, and with five edges. Let d be the metric on S induced by assigning weight 2 to
all five edges; let d' be the metric on S induced by assigning weight 1 to the central
edge and 9/4 to the other four edges. Then,

IM(d) = AMd)lloo =1=2"||d - d'[|o-
This completes the proof.

2. Retractions

2.1. Preliminaries. A map ¢ : D(S) — D(S) is a retraction onto 7 (S) if

(i} ¢ is continuous,
(ii) o(d) € T(S) for all d € D(S), and
(ili) ¢(d) =d for all d € T(S).

Furthermore, if such a retraction ¢ is homogeneous, that is, if

p(Ad) = Ap(d)

for all A > 0 and d € D(S), and if ¢ is equivariant, that is, for all 7 € Xg (the
permutation group on S)

©(d”) = ¢(d)7,
where
(d")ij = dr(iyr (i)
then we say that ¢ is good. These last two properties are desirable in applications
in requiring the method to be independent of the units in which d is measured and
the names given to the objects in S, respectively [22, 34].

Define a partial order on the set of retractions as follows. Given two retractions
1,2 of D(S) onto T(S), and a metric d € D(S), let

pi(d) = EUES(S))‘?:(d) g, 1=1,2.
We say that ¢y refines @1, written @1 =< @2, if and only if for all d € D(S) we have
X (d) < A%(d),

for all ¢ € S(S). As can be easily verified, < is a partial order. Note that if
©1 =< @2, and if T1,T> are the S-trees associated with ¢1(d), ¢2(d), respectively,
then T3 is a refinement of T7, in the sense that 77 can be obtained from T3 by
collapsing a subset of edges.

As has been pointed out (see [6, 34]) many early maps for constructing tree
metrics fail to be continuous. It can also be shown that the currently popular (in
biology) “neighbour-joining” method (see [20, p. 488]) is also discontinuous, even
when n = 4 [28].
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2.2. The Buneman retraction. Two splits ¢ = {4, B},0’ = {4',B'} in
S(8S) are said to be compatible if at least one of the intersections AN A', AN B,
Bn A, AN B is empty. If two splits 0,0’ are not compatible then we say that
they are incompatible, and denote this by writing ¢ L ¢'. Clearly any S-tree gives
a set of pairwise compatible splits: just take the set of splits induced by the set
of edges of the tree. Moreover in [6] it is shown that a set of pairwise compatible
splits gives rise to a unique tree.

THEOREM 2.1. [6] The set {c : p, > 0} is a pairwise compatible collection of
splits, and thus gives rise to a unique S-tree.

The index p is the basis for the following good map, which is given in [6]. We
define the Buneman retraction ¢ : D(S) — T(S) by setting

SOB(d) = E{<7:u.¢-,>0}l“<7 X
= Z,es(s)Ha 9o

By the previous corollary and the properties of the Buneman index u, ¢p is a good
map. In addition, from [6], ¢g(d) < d, in the sense that

(PB(d)ij < d;5, for alli,j e S.

2.3. The Refined Buneman Retraction. In this section we define a new
index map 7, which refines the Buneman index, in the sense that i, > p, for all
o € §(S), with strict inequality holding for certain cases. We assume throughout
this section that n > 4.

Writing ¢ := abled to denote the bipartition {{a,b}, {c,d}} of the subset
{a,b,c,d} of S, let

1
By = §(min{ac + bd, ad + be} — (ab + cd)).
Thus, given a split ¢ = {A, B} of S, the Buneman index of ¢ is given by

Ho = a, a’eA b, b’€B{ﬂaal,bbl}

Let @ be the set of ¢ = aa’|[bb’ consisting of all unordered choices of a,a’ € A4, and
b,b' € B, insisting, furthermore, that if |A| > 2, then a # o' and if |B| > 2, then
b#b. Nowlet q1,...,qq| be an ordering of the elements in ) such that 8,, < 8,
for all 1 €i < j <|Q|, and define the refined Buneman index by

— 1 -

By = n_3 E?:13 By -

Note that, by definition, &, > p, for all ¢ € §(S5).

LEMMA 2.2 ([28]). If o and o’ are incompatible splits then
Bo + pe <0, Ty + e < 0.

This generalises Theorem 2.1, and is a useful tool for establishing the next
theorem.

THEOREM 2.3. [28] The map
P:de E{U:E,>0}ﬁ0‘ 05,
is a good map, and vp X Y.
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FIGURE 1. All edges are weighted 1 except dotted edges, which are
weighted k.

We now give a simple example to illustrate that, in certain cases, the refined
Buneman retraction gives us a tree which strictly refines the tree given by the
Buneman retraction i.e. pp < 1.

Consider the metric di on the set {1,...,5} given by the shortest (weighted)
path between vertices of the edge-weighted graph in Figure 1, where all edges have
weight one except those which are dotted, which have weight k, for some k& > 0.

The Buneman tree for dy depends upon the value of k. For the case 0 < k < 2
the Buneman tree is simply a vertex. If k > 2, then the Buneman tree consists of
one edge of length k — 2, with its endpoints labelled by {1,2,3} and {4,5}. Thus,
in either case, the Buneman tree is highly unresolved (in the sense of [2]).

However, in contrast to this, the refined Buneman tree (i.e. that given by using
the refined Buneman index), the topology of which also depends upon k, and which
is shown in Figure 2, is fully resolved for k£ > 0. Note that in the case where k =1
we get, as might be expected, a star tree.

Note that, in biological applications at least, a desirable feature of a good map
is that it be efficiently computable. We will address the computability of the refined
Buneman retraction and applications of the refinement to biological data elsewhere
[21).

2.4. Identifying S-trees using the Buneman retraction and its refine-
ment. We show how the Buneman retraction (or its refinement) essentially iden-
tifies the underlying S-tree of a tree metric d' when applied to a distance function
d that is close enough to d’. This is summarized in the following theorem.

THEOREM 2.4. Let ¢ = ppg or i (the Buneman retraction or its refinement).
Suppose that d' € T(S) has associated S-tree T and edge weighting w. Let

z := min{w(e) : e € T},

and suppose that for d € D(S) one has
z

! —
fld - d'ljc < 5"
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FIGURE 2. The refined Buneman tree: the top tree is for the case
0 < k <1 and the bottom for the case 1 < k.

Then the S-tree, t, associated to @(d) refines T and the weight of any edge in t that
does not correspond to an edge of T is less than x. In particular, if T is a fully
resolved tree (i.e. every verter has degree 1 or 3), thent =T.

PROOF. Suppose ¢ = ¢p and let o be a split of T corresponding to edge e.
Then u,(d') = w(e) > z. Now

(2.1) o (d) - Na(dl)l <26,
where 6 = ||d — d'||co, 8s in the proof of Theorem 1.2. Hence, since § < z/2,

Hoe(d) > po(d)—26
> z—x=0,

and so o is a split of t. Thus ¢ refines 7', and in particular, if T is fully resolved

then t =T.
If T is not fully resolved and o is a split of ¢ but not T, then by (2.1)

Ho (d) < o (d’) + 26

< O+z,

and we deduce that the edge e of t corresponding to ¢ has weight less than z.
The proof for ¢ = 1) is exactly the same, except that the justification of the

analogue of (2.1) is slightly more involved.
a
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PART TWO: SUBSTITUTION MODELS
3. The models

In order to accurately reconstruct evolutionary trees and time scales from
aligned nucleotide sequences it is helpful to model the mechanism by which the
sequences came to differ. Such models can be used to devise new techniques for
tree reconstruction and analysis, and also to determine cases where existing meth-
ods are likely to lead to erroneous results (see for example [11]).

The simplest and earliest models assume that each site evolvesi.i.d. at the same
rate, and according to simple Markov-style assumptions. However, this single-rate
assumption appears to be unrealistic, and accordingly models incorporating some
variation of rates across sites have been proposed and studied to take into account
different functional constraints at different sites (see for example [7, 31, 35]). An
alternative approach to accounting for differing selective constraints is Fitch and
Markowitz’s “concomitantly variable codons” or “covarion” hypothesis [15]. This
is that at any given time, some sites are invariable due to functional or struc-
tural constraints, but that as mutations are fixed elsewhere in the sequence these
constraints may change, so that sites that were previously invariable may become
variable and vice versa. The pool of variable sites is therefore changing with time
(see Figure 3). Since its proposal 25 years ago, it has been argued that evidence
supports the covarion hypothesis, both on biochemical grounds, and by providing
a better description of certain data [13, 14, 27]. However, in contrast to the rates-
across-sites models, little is known about the analytic properties of covarion-style
models.

Here we present and analyse a simple covarion-style model. Although the
motivation for this model clearly says that the i.i.d. assumption is not valid, without
it the mathematics becomes much more difficult. We therefore keep this assumption
and model the behaviour only of a covarion-style process, with a two-state Markov
process that acts as a “switch”, turning sites “on” (variable) and “off” (invariable).
We do not impose any restrictions on the Markov process that operates at the
variable sites other than that it is stationary and reversible. Using techniques from
the theory of Markov processes such a model may be analysed and compared with
rates-across-sites models in terms of the expected frequencies of site patterns the
models should generate.

3.1. A covarion-style model. We model a covarion-style process with two
parts: a “switch” process, and an “observable” process, which operates while the
switch is “on”. Only the state of the observable process, and not that of the switch
process, is able to be measured.

The switch is governed by a two state continuous time Markov process with
state space O = {on,off} and rate matrix :

s=( %)
S2 —82
where s; > 0 for each 4. It is assumed to have the stationary initial distribution
o = (01,02) where
S9 Si

g1 = 09 =
31+32, 6‘1+32,
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Covarion model Rates-across-sites model

on

on |G
G

off] C "
G

time

FIGURE 3. Contrasting a covarion style process and rates-across-
sites. Under a covarion style process, each site is either “on” or
“off”. Sites that are off are unable to change character state, but
may later turn on (due to character state changes elsewhere in the
sequence) and be able to change. Under rates-across-sites, sites
evolve at different rates (shown here as “fast” and “slow”), with
faster sites changing more frequently than slower ones. The rate
at a given site is assumed constant across the entire tree.

so that it is stationary and time-reversible. For a background in Markov processes,
the reader is referred to [16] and [24].

While the switch is in state off, the observable process is unable to change
state; however, when the switch is in state on, the observable process is governed
by a second stationary and time reversible Markov process with state space 4 =
{1,...,r}, rate matrix R satisfying R;; > 0 if ¢ # j, and initial distribution .
Stationarity and time-reversibility are equivalent to the conditions

7 R=0 and WiRij = 7T]'Rji for all Z,]

In general, for positive integer n we denote the set {1,...,n} by [n], and we write
C = (R, S) for the covarion model C with observable process rate matrix R and
switch process rate matrix S.

This model may be alternatively formulated in terms of a single time-reversible
Markov process with state space A x O (which we identify with [2r] according to
(i,on) — 1, (i,0ff) — ¢ + r), initial distribution n' = (o017, 027) and 2r x 2r rate
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matrix

R = < R—-s1, 511, )

SQIT —3217-

where I,. denotes the r x r identity matrix. In this formulation we assume that we
are unable to distinguish between the states (i,on) and (i, off).

It is easily checked that R’ is stationary and time-reversible whenever R and S
are. Further, both formulations lead to the same joint probability matrix for 4 x A.
Using this formulation we may also show that the resulting random process on A
is not in general Markov, so the covarion model may not be analysed by simply
treating it as a Markov process on A.

2. Rates-across-sites. A rates-across-sites model D = (Q, D) consists of

a stationary and time-reversible continuous time Markov process with rate matrix

@ and initial distribution 8, and a distribution D of rates v, which may be either

discrete or continuous. We denote the cumulative distribution function of D by Fp.

Each site evolves according to rate matrix v where v is chosen i.i.d. according

to D. The rate at a given site is assumed constant across the whole tree. This kind
of model has been well studied, see for example {7, 31, 35].

4. The two taxa tree

Here we calculate the joint probability matrix for the two taxa tree (that is,
the matrix whose i entry is the probability that taxa 1 is in state ¢ and taxa 2
is in state j), and give conditions under which a suitably chosen rates-across-sites
model will agree with a covarion model on all two taxa trees. We also consider the
limiting cases of the covarion model as the rate of the switch tends either to zero
or to infinity.

4.1. Under the covarion model. Time reversibility implies we may assume
the tree is rooted at either of the leaves. Let the process operate for time 7 on
the edge between the two taxa and write Jo(7) for the joint probability matrix.
We regard 7 as the “length” of the edge. Put II = diag(w) and let J(t) be the
joint probability matrix of the unswitched observable process (that is, the Markov
process with rate matrix R and initial distribution 7= operating in the absence of
the switch) for time ¢. If the occupation time of state on in time 7 is the random
variable X (7), then, as far as the observable process is concerned, the edge has
effective length X (7). The joint probability matrix, given the value of X (r), is
then J(X(7)). It follows that

Je(r) = E[J(X())].

Reversibility allows us to obtain a spectral representation of J(t) (see Keilson [24,
pp. 32-35]). Since IIR is symmetric so is II'/2RII~!/? which therefore has real
eigenvalues {A;} and orthonormal eigenvectors {u;} (related to the eigenvectors
{v;} of R by v; = I~Y/2y; and Ruv; = Ajv;). We then find that

3
Eewj
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where w; = I'/?u; and the superscripted T denotes transposition. Hence

Je(r) = E Ze’\fx(r)ij;-r
Jj=1
= Z]E[e’\j X(")]wj'w;r.
Jj=1
From Darroch and Morris [8] we have
(41) ]E[e/\X(T)] — UTeT(S+>\D)1,
10 1 . - .

where D = 0 0 and 1 = 1) and so, diagonalising S + AD we obtain
(4.2) Jo(r) = Z[c}'e“;’rr +cj et Twjw]

=1
where ,u;“ and p; are the positive and negative roots of
P4 (s14+s3—A)p—s5A=0
for A = A;, and

o —(s1+ 82+ ] )py and o= = (s1+ 80+ pj )y

7= - 7T + y

(1 + s2) (0] — 1j) (s1+ s2)(f — py)
These co-efficients may be shown to satisfy the following inequalities:

LEMMA 4.1.

1. XAj <0 forj=1,...,r, with zero occurring as an eigenvalue exactly once.

2. ut and p~ are real increasing functions of \ satisfying p= < —(s; + s2) <
—83 < ut <0 on (—o0,0].

3. cj,cj‘ > 0 (with equality only for A =0, when ¢~ =0) and cj +c¢; =1

4. tmce(ij;r) >0 and Z;=1 trace(ijjT) =1.

An additional expression of interest is the trace of the joint probability matrix,

which is the probability that the two species agree at a given site. Denoting the
zero eigenvalue by A;, from equation (4.2) we obtain

(4.3) trace(Jo (7)) = 7l + Z[c}fe“ﬁ + cj—e“i_T]trace (ij;-r) .
j=2

4.2. Under rates-across-sites. Put © = diag(6) and let Q) have eigenvalues
{a;}. Arguing as for the covarion model, if @*/2Q©~!/2 has orthonormal eigenvec-
tors {y;}, then the joint probability matrix Jp(7) of the rates-across-sites model D
is given by '

T
Jp(r) = Z]E[eaj "2z}
=1
where z; = ©'/2y;. We may write this as

(4.4) Jp(r) = ZT: M(ajT)zjz;r
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where M(z) = E[e”®] is the moment generating function of D, given by the
Lebesgue-Stieltjes integral

oo
M(z) = / e“*dFp(v).
0
If Fp has a continuous derivative fp (its probability density function) this is simply
M(x) :/ e”? fp(v)dy,
0

while if D has only finitely many rates vy, ...,y and Plv = v;] = p; we have

k
M(z) = E pie”e.
i=1
As in the covarion case we have

(4.5) trace(Jp(r)) = 66T + i M (a;jT)trace(z; 2} ).

=2

4.3. Recovering the evolutionary distance under the two models.
Equation (4.4) may be written

(4.6) Jp(r) = OM(TQ),

where M is the moment generating function of D applied to matrices. This ex-
pression has the advantage of enabling us to calculate the expected number of
substitutions K between the two taxa without requiring knowledge of @), via

(4.7) K = —trace {® [M~! (07 2Jp(1))]}

[18, 33]. Here M ! is the inverse of the moment generating function, again applied
to matrices. This expression gives a tree metric, and since row ¢ of Jp(7) sums to
f;, requires knowledge only of D to reconstruct the tree from Jp(7).

If both @ and D are known we may express K in terms of just the trace of
Jp(7) as

(4.8) K = ~trace(0Q) f" (trace(Jp(7))),

where fp(r) = trace(Jp(7)) is given by equation (4.5). Note that f;' exists since
fp is monotone decreasing.

The property of (4.4) that allows it to be written in the form (4.6) (namely, M
is applied to products of the form a;7) does not hold for (4.2), and it appears that a
transformation analogous to {4.7) does not exist for the covarion model. However,
if R and S are known (or estimated) then, as in (4.8), we may express K in terms
of trace(Jo (7)) as

K = —trace(IIR)o: f5' (trace(Jo(7))),

where fo(r) = trace(Jo(7)) is given by equation (4.3). Again fc is monotone
decreasing so fo ! exists.

Note that in applications, the joint probability matrix (Jo or Jp) is estimated
from the observed joint frequency matrix J. Since J¢ and Jp are both symmetric,
it is usual practice to take the symmetrised matrix (J + JT)/2 as the estimate.
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4.4. Distinguishing between the two models. A question of interest is
whether it is possible to distinguish the covarion model from rates-across-sites from
pair-wise comparisons of sequences. For a fixed 7 = 71, if the rates are distributed
according to the distribution of X(r;)/7; then we have Jo(m1) = Jp(r) for C =
(R,S) and D = (R,D), so we cannot tell the covarion model apart from rates-
across-sites. However the distribution of X (7)/7 depends on 7 which opens the
possibility that the models may be distinguished if more than one pair is considered.
A partial answer to this question is given by the following results:

THEOREM 4.2.

1. For any covarion model C there is a rates-across-sites model D such that
trace(Jp(T)) = trace(Jo (7))

for all T > 0.
2. For a given covarion model C = (R, S), there is a rates-across-sites model
D = (Q,D) such that

Je(r) = Jp(7)

for all T > 0 if and only if R has only one distinct non-zero eigenvalue, in
which case D is a discrete two rate distribution and Q is a scalar multiple
of R.

3. For a given rates-across-sites model D = (Q, D), there is a covarion model
C = (R, S) such that

Jp(r) = Jo(7)

for all 7 > 0 if and only if Q has only one distinct non-zero eigenvalue and
D is a discrete two rate distribution, with both rates greater than zero.

Furthermore stationary and reversible rate matrices with exactly one distinct
non-zero eigenvalue and stationary distribution m may be completely characterised
as scalar multiples of the matrix

R, =1n -1,

where 1 =(1,...,1)T.

It follows from Theorem 4.2 that the trace does not contain enough information
to distinguish the covarion model from rates-across-sites models, in the sense that
data generated by a covarion model could have been generated by a suitably chosen
rates-across-sites model. Note however that parts (ii) and (iii) do not completely
answer the question of when the two models may be distinguished on the basis of
pairwise comparisons and without knowledge of r. Firstly, the requirement that
the times 7 are the same is too strong: if Jo(r) = Jp(f(r)) for all 7 > 0 for an
increasing function f such that f(0) = 0 and f(r) = 0o as 7 — oo then we cannot
distinguish between C and D. Secondly, since we can only ever compare finitely
many sequences, it is important to know when we may have Jo (1) = Jp(r]) for
times Ti,... , Tk, Tl v v s The

Section 5 gives an alternative approach to distinguishing between the covarion
and rates-across-sites models.

We include a proof of Theorem 4.2 part (1). For proofs of the remaining parts
of this theorem see [32].
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PRrOOF. By (4.3) and Lemma 4.1, trace(Jo (7)) has the form
trace(Jo(r)) = 7mT + Z[c’;’ef‘ff + c’j‘e“f_f]
j=2

%
eigenvalues we may collect terms in e**7 for each eigenvalue, writing trace(Jo(7))
in the form

where ¢/, ¢/ > 0 and Z;=2[c’;L +¢;]=1-nzT. If R has k distinct non-zero

2k

trace(Jo (7)) = ag + Z a;e "7,

i=1

where a;,v; > 0 for each ¢ and Zfio a; = 1.
Let D be the discrete distribution of rates such that

Plv = 1] = —2 i=1,...,2k.

1- ag
Then D is well-defined, and if D = (R,, D) then by (4.5) and Lemma 4.1,

trace(Jp(7)) = mat + ZM(—-T)trace(zjz;r)
=2

= 7t + M(-1)(1 —77T)
2k

= a0+(1—a0)2

2k
= ao+E ae VT
i=1

= trace(Jeo(7)).

a;
l—ao

—WiT

e

d

4.5. Limiting cases. We consider the limiting cases of the covarion model
when the switch is very slow (s;,s2 — 0) and very fast (s1, 82 — 00), keeping s1/s2
(the ratio of “off” sites to “on” sites) constant.

For very slow switches we expect few changes between the states on and off
to occur, so that sites in state on will tend to remain in state on, and sites in state
off will tend to remain in state off. In the limiting case s1,s9 — 0 we expect o3
of the sites to be invariant and o7 of them to be variable. Calculating this limit we
find

JC(T) - 0‘2J(0) +0’1J(T)

as expected.

For fast switches we expect sites to flip back and forth between on and off
very rapidly, and each spend about the same amount of time in state on. Since
the expected time in state on is 017, in the limiting case s1,82 — 0o with 51/s2
constant we expect

Jo (1) = J(oy7).

Calculating this limit we find this is indeed the case.
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¢ C

FIGURE 4. The tree joining two monophyletic groups of species Cy
and Cs. The circles marked 7 and T, are rooted subtrees, with
roots vy and v, respectively. The edge {v1,v2} has length 7.

5. A tree-like measure on monophyletic groups under the covarion
model

One approach to testing the covarion model against rates-across-sites models
is to examine the sites that are varied and unvaried in two widely separated groups
of closely related species. Under the rates-across-sites model, if a given site is in
the same state for each member of a group of closely related taxa, then it is likely
that the rate of evolution at that site is slow. Since the rate does not change
across the tree, we might expect little change to occur in another group of closely
related species that is widely separated from the first. On the other hand, under
the covarion model if each species has the same state at a given site it seems likely
that the site was off for much of the time. In a distant part of the tree the switch
might be on so we no longer expect the unvaried sites in the two groups to match
up. This observation was made by Fitch [12], and examined by Miyamoto and
Fitch [27], who compared Cu, Zn superoxide dismutase (SOD) sequences from seven
mammals and seven plants with simulated sequences generated under covarion and
gamma distribution rates-across-sites models, finding that the covarion hypothesis
explained the evolution of the protein better than rates-across-sites.

The following discussion is also motivated by Fitch’s observation. For a certain
class of events and parameters of a covarion model we obtain a tree-like distance
measure between monophyletic groups of species that will not in general be tree-like
under rates-across-sites models and so could lead to a test of the covarion model
against rates-across-sites. The class of covarion models for which this is relevant
includes those whose underlying observable process is based on the Kimura [26]
three-substitution-type model (K3ST) or one of its submodels (the Kimura [25]
two parameter (K2P) and Jukes-Cantor [23] (JC) models).

5.1. Separable events. We describe a class of events that give rise, under
the covarion model, to a tree-like metric that is not in general tree-like under a
rates-across-sites model.

Suppose E is an event involving an r-state character x on a set C' of species,
for example the events ’

E? = “x(7) is the same state for all ¢ € C”
and
E? = “x(i) is not the same state for all i € C”.

Given two monophyletic groups C; and C5 of species, the tree joining them will be
as shown in Figure 4. Let E; be the event “FE occurs for group C;” for i = 1,2. We
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say that the event F is separable under the covarion model (R, S) if
(51) ]F[El A E2|01 = 01,05 = 02] = IP’[E1|01 = 01]P[E2|02 = 02]

for all 01,02 € {on,off}. Note that the separability of a given event may depend
on R and S. An analogous condition that might be satisfied by a rates-across-sites
model (@, D) is the following independence condition:

(5.2) P[E1 A Eq|v] = P[EL [VIP[Eslv].
Let
pi2 = PEAEy]
pi = PE], i=12

and further in the case of the covarion model let 0; be the state on or off of the
switch at the vertex v; and

p;-m = IP’[E1|D, = on]
p?ff = IP’[E¢|0, = Off]
b = PP pt

for i = 1,2. Then under conditions (5.1) and (5.2) we have the following:

LEMMA 5.1.
1. If E is separable under the covarion model (R, S) then

(5.3) P12 — P12 = 0109e” (31 H8DTE 5o

2. If the independence condition holds for the rates-across-sites model (Q,D)
then p1s — p1ps does not depend on T.

THEOREM 5.2. For a tree with several monophyletic groups Ci,...C, at its
tips the measure

pi; = —In|p;; — pip;|

is a tree metric realised by the under-lying tree under a covarion model for which
E is separable, but in general is not a tree metric under a rates-across-sites model
for which the independence condition holds.

ProOF OF LEMMA 5.1 AND THEOREM 5.2. In the covarion case,

P12 = Z P[El A EZIOI =01,0p = 02]]:[9[01 =o0,0, = 02]
01,02
- E P[E1[01 = 01]P[E;|0z = 05]P[01 = 01,03 = 03],
01,02 .

since F is separable, and
P1p2 = Z IE”[E1|01 = 01]P[E2|02 = O2]]P[01 = 01]1?[02 = 02].
01,02

Thus
(5.4) D1z —p1p2 = Z lPJ[1‘71|°1]]P’[E2|°2] (Po1,09] — P[Ol]ﬁb[oﬂ) .

01,02
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Now the joint probability matrix for the switch operating for time 7 is

52 4 e—(s14s2)7 ] _ g—(s1t+s2)7
(P[0; = 01,02 = 02]) = 0102 511 —e—(s1ts2)T 81 4 o—(s1ts2)T
52

(see for example [16, p. 156]) so the matrix of P[0; = 01,0, = o0y] — P[0; =

01]]?[02 = 02] is
(4 ).

Hence, from (5.4),
P12 — P1P2 = 0102e” (1T (PSR — pett) (pon . pott) = gy gye (1H02)75, 6,

as claimed.
Under rates-across-sites with the independence condition holding,

]P[El A Ez] = /oo P[El A Ele]dF'D(V)
0

oo
| BEPEIaFo ()
0
which does not depend on 7, and similarly
PE] = / PEi|V]dFp (v)
0

does not depend on 7, so that pia — p1p2 = P[F1 A Ez] — P[E1]P[E5] does not depend
on T either.

Since p;; does not depend on the length of the edge between T; and T in the
rates-across-sites case, we may rearrange the tree on the groups without changing
the value of p;;, so the tree on the groups is not uniquely determined by p. In the
covarion case, if the edge between T, and T} has total length 7, then

Poy = —In|pzy — popyl
= —In (o109e 15216, ]16,])
= —In(0102) + (51 + 52)Tey — In|dz| — In|dy].

Referring to Figure 5 we have 7;; = 7, + 7, Tik = Ti + T + 71 etc., and Theorem 5.2

follows.
O

We conclude by giving some examples of separable events. Details and results
in greater generality appear in [32].

THEOREM 5.3 (Some separable events). The events E* and E¢ above are sepa-
rable under the covarion model (R, S), and satisfy the independence condition under
the rates-across-sites model (R, D), if R has one of the following forms:

1. R = Rk, where

-5 a B 7
_| a -6 v B
Ry = 8 v -6 a
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FIGURE 5. The tree on the four monophyletic groups of species
C;, Cj, Cy and C;. The 7, are the edge lengths.

and is the form of the matriz used in the K3ST model. This includes as
special cases the Kimura two parameter model (8 = ~) and the Jukes-Cantor
model (o = 8 = 7).

2. R is the r x r matriz given by Ri; = o if i # j and Ry; = (1 —r)a, for any
r. This gives the fully symmetric model, and includes as particular cases the
Cavender-Farris model (r = 2) and the Jukes-Cantor model (r = 4).

CONCLUSION

In this paper we have investigated some properties of maps for constructing
tree metrics, and contrasted two models of nucleotide substitution. A feature of
such models (including the two we described) is that it is often possible to construct
distance functions on the sequences which converge in probability to a tree metric
(realised by the underlying evolutionary tree), as the sequence length tends to in-
finity. This is useful because, provided the underlying tree is fully resolved, then
any good map (as described in Part One) applied to these distance function will
reconstruct the correct tree with high probability for sufficiently long sequences.
While this might be interpreted as a further advertisement for the virtues of a map
being good, one in fact requires continuity only at points of 7(S) corrrsponding
to fully resolved trees, and most methods, including neighbor-joining, satisfy this
.condition. (In case the underlying tree is not fully resolved, then the reconstructed
tree will be, with high probability, a refinement of the underlying tree, for suffi-
ciently long sequences, and the maximal weight assigned to any edges that are not
in the underlying tree will tend to 0). An important additional issue is the rate
of convergence of the distance function to an additive metric, and the consequent
sequence length required to reconstruct the underlying tree with high probability.
Such issues have been addressed by other authors in this book.
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