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Historical sciences like evolutionary biology reconstruct past events by using the traces
that the past has bequeathed to the present. Markov chain theory entails that the passage
of time reduces the amount of information that the present provides about the past. Here
we use a Moran process framework to show that some evolutionary processes destroy
information faster than others. Our results connect with Darwin’s principle that adaptive
similarities provide scant evidence of common ancestry whereas neutral and deleterious
similarities do better. We also describe how the branching in phylogenetic trees affects
the information that the present supplies about the past.

1. Introduction. What is the epistemic relation of present to past? Absent a
time machine, we are trapped in the present and must rely on present traces
to learn about the past. There are memory traces inside the skull, but outside
there are tree rings, fossils, and traces of other kinds. People use these traces
to reconstruct the past. Sometimes they simply assume that the traces pro-
vide unerring information about the past, but often they realize that the jump
from present to past is subject to error. A bevy of epistemic concepts can
be pressed into service to investigate the relation of present traces to past
events, ranging from strong concepts like knowledge and certainty to more
modest ones like justified belief and evidence.
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We are interested in how the natural processes connecting past to present
constrain our ability to know about the past by looking at the traces found in
the present. An optimistic view of these processes is that the past is po-
tentially an open book; all we need do is understand the connecting pro-
cesses correctly and look around for the right traces. If the relation of the
past state of a system to its present state were deterministic and one to one,
this optimistic view would be correct. If only we could know the present
state with sufficient precision, and if only we could grasp the true mapping
function that connects present and past, we would be home free. This op-
timism is something that Laplace ð1814, 4Þ affirmed when he discussed une
intelligence ðnow referred to as “a demon”Þ:

We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know
all forces that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to submit these
data to analysis, it would embrace in a single formula the movements of
the greatest bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just like the past
would be present before its eyes.

It is worth noting that determinism is not sufficient for the optimistic view to
be true; without the one-to-one assumption, distinct states of the past may
map onto the same state of the present, with the consequence that the exact
state of the past cannot be retrieved from even a perfectly precise grasp of
the present.

Is determinism necessary for the optimistic view to be true? It is not,
provided that we set to one side strong concepts like knowledge and cer-
tainty and take up an epistemic evaluation that is more modest. Consider,
for example, a process in which the system is, at each moment, in one of
two states ðcoded 0 and 1Þ. Suppose Past5 0 makes Present5 0 extremely
probable ðsay, 0.96Þ and that Past 5 1 makes Present 5 1 extremely prob-
able as well ðsay, 0.98Þ. This means that when we observe the system’s
present state, we gain strong evidence that discriminates between the two
hypotheses Past 5 0 and Past 5 1. We cannot infer from Present 5 0 that
the past state was certainly 0; in fact, we cannot even infer that the past state
was probably 0. But we can conclude that the observation favors the hy-
pothesis that Past5 0 over the hypothesis that Past5 1. This conclusion is
licensed by what Hacking ð1965, 59–62Þ calls the Law of Likelihood:

Observation O favors hypothesis H1 over hypothesis H2 if and only if
Pr ðOjH1Þ > PrðOjH2Þ.

Royall ð1997, 9–11Þ suggests that this qualitative principle should be
supplemented by a quantitative measure of favoring:
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The degree to which O favours H1 over H2 is given by the likelihood ra-
tio Pr ðOjH1Þ=PrðOjH2Þ.

Royall further suggests that a reasonable convention for separating strong
evidence from weak is a ratio of 8. Royall’s suggestion entails that the prob-
abilistic process just described has the consequence that Present 5 0 pro-
vides strong evidence favoring Past5 0 over Past5 1, since the likelihood
ratio is 0.96/0.025 48.

This simple example should not be overinterpreted. If there were a pro-
cess connecting past to present in the way described, the present would pro-
vide strong evidence about the past. Do not forget the if. Perhaps there are
such processes, especially when the past under discussion is the recent past.
But what if we consider not just the recent past, but past times that are more
and more ancient? How does increasing the temporal separation between
present and past affect the amount of information that the present provides
about the past?

2. Two Theorems. A simple theorem provides an answer to the question
just posed ðCover and Thomas 2006Þ. Consider a system that at any time is
in one of n possible states ðs1, s2, . . . , snÞ. For simplicity we shall think of the
system as evolving in discrete time steps. We stipulate that the system has
the following two properties:

The Markov property. For any two times t1 < t2, the state of the system at
time t1 screens-off the system’s history prior to t1 from the state at t2. That is,
for all states x and y:

Prðsystem is in state y at t2jsystem is in state x at t1Þ5
Prðsystem is in state y at t2jsystem is in state x at t1 & system’s

history prior to t1Þ:

Note that the Markov property does not require that the transition probabil-
ities are constantwith time ðoften called ‘time-homogeneous’ chainsÞ; rather,
they may vary from step to step.

The second property we stipulate is sometimes referred to, in the time-
homogeneous, finite-state setting, as theMarkov chain’s being “regular”; we
will use the same term in the broader settingwe are considering inwhich time
homogeneity is relaxed:

Regularity. For some positive integer n, and some strictly positive real
value ε, the following holds for all ordered pairs of states ði, jÞ: given that the
system at any given time t is in state i, the probability that the system is in
state j at time t 1 n is at least ε.
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This condition asserts that it is possible to move from any given state to any
other state ðincluding the original stateÞ in a fixed finite number of steps with
a probability that remains bounded above zero. Regularity for finite-state
time-homogeneous Markov processes is equivalent to the condition that
theMarkov chain is ‘aperiodic’ and ‘irreducible’ ðfor details, see Häggström
½2002, corollary 4.1�Þ.

For any system of this sort, the following result holds ða precise state-
ment and proof is provided in app. AÞ:

Exponential information loss theorem. If a finite-state system satisfies the
Markov property and regularity, then IðPast; PresentÞ is less than or equal to
a term that approaches zero exponentially fast as the time between the
present and past increases.

Here IðX; YÞ is the “mutual information” linking the two variables. If the
variables are discrete, the formula for this quantity is

IðX ; Y Þ5 o
y∈Y
o
x∈X

pðx; yÞlog pðx; yÞ
pðxÞpðyÞ

� �
;

where pðx, yÞ is the joint probability that X5 x and Y5 y, and pðxÞ, pðyÞ are
the ðmarginalÞ probabilities that X 5 x, and that Y 5 y, respectively. Mutual
information measures how much ðon averageÞ you learn about the state of
one of the variables by observing the state of the other. Its value is zero when
X and Y are independent; otherwise it is positive. Mutual information is sym-
metrical: IðX; Y Þ5 IðY; X Þ.

The exponential information loss theorem generalizes the special case
where transition probabilities are constant with time ðSober and Steel 2011,
proposition 6Þ. This generalization is important, since many processes ðin-
cluding the biological examples we will discussÞ often change their rates
from one period of time to another.

Note that the theorem does not ensure a monotonic decline in informa-
tion as the temporal separation of past and present is increased. That extra
element is provided by a different result, the so-called Data Processing In-
equality ðDPI; Cover and Thomas 2006, 32Þ:

The Data Processing Inequality: In a causal chain from a distal cause D to
a proximate cause P to an effect E, if P screens-off D from E, then IðE; DÞ
is less than or equal to both IðE; PÞ and IðP; DÞ.

For a discrete-state process, these two inequalities are strict whenever P is nei-
ther perfectly correlated with D or with E, nor is P independent of them ðsee
app. BÞ. The Data Processing Inequality does not require that the process link-
ing D to P is the same as the process linking P to E.
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The information-processing inequality is “chain internal.” It does not
say that the present always provides more information about recent events
than about ones that are older. Consider figure 1. Suppose that R screens-
off A from D1 & D2 Then the information-processing inequality says that
IðD1 &D2; RÞ ≥ IðD1 & D2; AÞ. It does not say that IðD1 & D2 & : : :&
D100; RÞ ≥ IðD1 &D2 & : : :& D100; AÞ. It is perfectly possible that the hun-
dred descendants that now exist provide more information about A than
they do about R. Note that R does not screen-off A from D1 & D2 & . . . &
D100. The heightened information that the leaves provide about A is not due
to the simple fact that A has a larger number of outgoing lineages than R
does; it is possible to modify this tree so that each nonleaf node ðincluding
the root node AÞ has just two descending lineages ðSober and Steel 2011,
fig. 5b, 243–34Þ, and still the leaves provide more information about A than
they do about R, owing to the values of the transition probabilities attach-
ing to branches.

Both the exponential information loss theorem and the Data Processing
Inequality are very general. They characterize any system whose laws of mo-
tionhave the requisiteprobabilistic features.Thesystemmightbeachamberof
gas, but it also might be an evolving population of organisms. Indeed, if there
were disembodied spirits that changed probabilistically, the results would
apply to them. Both results are more general than physics—they cover the
systems and properties that are discussed in the laws of physics, but they also
apply tosystemsandproperties that arenot. Inaddition,both resultsare apriori
mathematical truths, although of course it is an empirical matter whether a
given system satisfies the antecedent of the conditional that each result ex-
presses ðSober 2011aÞ.

Figure 1. A case in which it is possible for the present to provide more information
about an ancient event ðAÞ than about a more recent event ðRÞ.
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3. Five Evolutionary Processes. Since our interest here is in how evolu-
tionary processes affect the amount of information that the present provides
about the past, it is worth making clear how the exponential information
loss theorem applies to models of biological evolution. In phylogenetics,
the rapid loss of information in models of nucleotide substitution with time
has been highlighted as a significant problem for using DNA sequence data
to accurately resolve deep divergences of species lineages ðfor a recent re-
view, see Salichos and Rokas ½2013�Þ and for inferring ancestral states deep
within a given tree ðMossel 2003; Gascuel and Steel 2014Þ.

We will return to phylogenies in a later section, but for now we consider
information loss in population genetics. The application of information the-
ory to population genetics has been investigated a bit. For example, Frieden,
Plastino, and Soffer ð2001Þ explore a variational principle ð“extreme phys-
ical information”Þ based on Fisher information to study genotype frequency
changes. The questions we consider here are different, as our primary
interest is in the relative ranking of likelihood ratios across different evo-
lutionary processes, including both drift and different types of selection.
The Moran ð1962Þ models of evolution will be our workhorse in what
follows. We consider a population containing N individuals. The popula-
tion evolves through a sequence of discrete temporal “moments” ðhow
long a moment is will not matterÞ. At each moment, one of those N in-
dividuals produces a copy of itself and one of those N individuals dies. We
consider two traits A and B; each individual has one of them or the other.
At any moment, the population is in one of N 1 1 states ðranging from 0%
A to 100% AÞ. This Moran framework can be articulated in different ways
to represent different evolutionary processes. For example, if individuals
are chosen at random to reproduce and die, then we have a drift process.
Selection processes of different kinds can be represented by letting A
individuals have chances of dying or reproducing that differ from those
possessed by B individuals. A population undergoing a Moran process
forms a Markov chain, with its recent past screening-off its more remote
past from the present.

Suppose we observe the population in the present and see that all N in-
dividuals are in state A. How much information does that observation pro-
vide about the state of the population at some earlier time? If all states are
accessible to each other ðwhich requires that mutations can prevent the pop-
ulation from getting “stuck” at 100% A or 100% BÞ, then the exponential
information loss theorem applies and so the mutual information declines
asymptotically to zero with time. However, if there is no mutation, then the
populationwill evolve to either 100%Aor 100%Bandwill stay there. In this
case, the present state of the population provides information about its past
even if the two are infinitely separated. For example, if we observe that the
population is now100%Aand the population has been evolving by drift, this
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observation favors the hypothesis that the population was at more than 95%
A at some earlier time over the hypothesis that it was 5% A or less, and this
is true regardless of the time separation between the past and the present.

JohnMaynard Keynes ð1924, chap. 3Þ once said that “in the long run, we
are all dead.” His point was to pooh-pooh the relevance of claims about the
infinite long run. What should matter to us mortals is finite time. This point
applies to the bearing of the exponential information loss theorem on our
knowledge of the evolutionary past. Who cares if mutual information goes
to zero as the time separating present from past goes to infinity? Life on
earth is a mere 3.8 billion years old. What is relevant is that information
decays monotonically in Markov chains. But in addition, we know that
there are different kinds of evolutionary process. Which of these speeds the
loss of information and which slows it?

The five processes we want to investigate are represented in figure 2;
each of them can result in our present observation that all N of the in-
dividuals in the population now have trait A. In panel i, trait Awas favored
by selection. In panel iii, there was selection against trait A. In panel ii, the
traits are equal in fitness, and so the traits evolved by pure drift. In panel iv,
selection favored the majority trait. And in panel v, selection favored the
minority trait. We are not asking which of these process hypotheses is most
plausible, given the observed state of the population at present. Rather, we
want to explore what happens to information loss under each of these five
scenarios, in each case thinking of the process in the context of the Moran
framework of a finite population of fixed size N.

To compare the five processes in this respect, we calculate the following
likelihood ratio for each of them:

Rij 5
PrðPresent5 N jPast5 iÞ
PrðPresent5 N jPast5 jÞ ; for i > j:

Although our main interest is to compare cases in which i is close to N and
j is close to 0, the Moran framework makes it easy to derive results for the
more general case in which i > j.

So the observation is that all N of the individuals now in the population
have trait A. Does this observation favor the hypothesis that there were
exactly i individuals at some past time who had trait A over the hypothesis
that there were exactly j, where i > j? It does; Rij > 1 for each of the five
processes we are considering ðsee app. CÞ. Our question is how the mag-
nitude of Rij depends on the underlying evolutionary process. It is worth
noting that although the likelihood ratio Rij is “past-directed” ðin that it
describes the degree to which a present observation discriminates between
two hypotheses about the pastÞ, evaluating this ratio requires one to consider
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Figure 2. Five processes that can result in all N of the individuals now in the
population having trait A.



two “future-directed” probabilities—the probability of reaching Present5N
if the system begins at Past5 i and the probability of reaching Present5N if
the system begins at Past 5 j.

We begin by adopting an assumption that we treated above with Keynes-
ian disdain. Let us assume that the temporal separation of past and present
is infinite and that there is zero mutation. We will relax this idealization in
due course. For each of the processes we are considering, we now can de-
scribe what the value of Rij is for each pair of values for i and j such that i >
j. For example, under neutral evolution the value of Rij is i/j. The values
for the other four processes are given in appendix C. The ordering of the
Rij values for the five processes is depicted in figure 3.

Let us first consider three of the cases described in figure 3—drift and the
two cases of frequency-independent selection. The ordering of Rij values for
these three processes means that the observation that all the individuals in
the population now have trait A provides more information about the past
state of the population the less probable it was that A would evolve to
fixation. Selection for A is at the bottom of the pile, with neutrality next, and
selection against A at the top.

The ordering of these three processes has an intuitive interpretation.
Suppose we observe that trait A is fixed in a population and we wish to
estimate whether Awas common ðat frequency iÞ or rare ðat frequency j < iÞ
at some time in the past. Selection for A makes it easy for A to go to 100%
in the population, regardless of whether it starts off common or starts off
rare, which is why selection for A comes in last in the part of figure 3 that
describes frequency-independent processes. The evidence in favor of the
former hypothesis relative to the latter, as measured by the likelihood ratio,
is stronger under selection against A than under a drift model. This is be-
cause the drift model provides more opportunity for a rare allele A to fix at
100% in the population than the model in which A is selected against. For a

Figure 3. Comparing Rij values for five processes, assuming infinite temporal sep-
aration of Past from Present and zero mutation. The relation of the two frequency-
dependent processes to drift is derived using the assumption that j < N/2.
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formal proof concerning how the Rij values for different processes compare,
see appendix C.

The three results depicted in figure 3 that describe frequency-independent
processes echo an insight that Darwin expresses in the Origin: “Adaptive
characters, although of the utmost importance to the welfare of the being,
are almost valueless to the systematist. For animals belonging to two most
distinct lines of descent, may readily become adapted to similar conditions,
and thus assume a close external resemblance; but such resemblances will
not reveal—will rather tend to conceal their blood-relationship to their
proper lines of descent” ðDarwin 1859, 427Þ. Darwin illustrates this idea by
giving an example: whales and fish both have fins, but this is not strong
evidence for their common ancestry, since the trait is an adaptation for swim-
ming through water. Far stronger evidence for common ancestry is provided
by similarities that are useless or deleterious. One of us has called this idea
Darwin’s Principle, in view of its centrality to Darwin’s framework ðSober
2008, 2011bÞ.

Darwin’s topic in the passage quoted is inferring common ancestry, not
inferring the past state of a lineage from its present state, but the episte-
mologies are similar. Here is a simplified argument that illustrates why.
Suppose trait A has probability p of being fixed in a recent species. If two
species x and y diverged from their most recent common ancestor very
recently, the probability that they both have trait A is approximately p. On
the other hand, if they have no common ancestor, then the probability of
them both having A is p2. This means that the likelihood ratio of the hy-
potheses “x and y have a recent common ancestor” and “x and y have no
common ancestor” is approximately p/p2 5 1/p under Markovian trait
evolution. Thus, the smaller p is, the greater this likelihood ratio will be.
And the value for p if there is selection for A is larger than the value for p if
there is drift, which in turn is larger than the value for p if there is selection
against A.

There are two cases of frequency-dependent selection represented in
figure 3. One of them ðfrequency-dependent selection for the majority traitÞ
shows that it would be an overstatement to say that the current state of the
population ðall individuals having trait AÞ always provides scant evidence
concerning the population’s past state if trait A evolved because of natu-
ral selection. It matters a great deal what sort of selection process we are
talking about. Frequency-dependent selection for the majority trait is bet-
ter than drift in terms of how much information the present state of a line-
age provides about its past. Figure 3 also locates the evidential meaning of
frequency-dependent selection for the minority trait; it has an informational
yield that is worse than that provided by drift. As noted in appendix C, our
results for both cases of frequency-dependent selection make the assump-
tion that j <N/2. This assumption ensures that the ordering of the frequency-
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dependent selection cases is always maintained as shown in figure 3; it is
an innocent assumption since, as noted above, we are mainly interested in
the case where i and j are majority and minority values, respectively.1

Figure 3 provides only a partial ordering of the five cases depicted. The
reason for this is that a comparison of, say, frequency-independent selection
against A with frequency-dependent selection for the majority trait would
depend on the values of specific parameters.

We now can remove the idealization of infinite time and zero mutation.
The ordering of the Rij ratios for the five processes, when time is infinite and
mutation is zero, is the same as the ordering of those processes for the
following slightly different likelihood ratio, when time is finite ðand suffi-
ciently largeÞ and there is a sufficiently small mutational input:

PrðPresent5 N jPast ≈ NÞ
PrðPresent5 N jPast ≈ 0Þ :

See appendix D for a proof of this ordinal equivalence result. Here “Past ≈
N” and “Past ≈ 0” just mean any states close to N and to 0 ðrespectivelyÞ,
which are then held fixed across the five models. With mutational input,
the exponential information loss theorem applies to all five processes. The
mutual information between present and past declines monotonically as
their temporal separation increases, but the decline is faster under some
processes than it is under others.

Our results are derived within the setting of the Moran model of popu-
lation genetics. This is a finite-state Markov chain that forms a “continuant
process” ðEwens 2010Þ. That is, at each step the number of individuals car-
rying a particular allele in the population of fixed size N either goes up by 1,
or goes down by 1, or it stays the same. We expect similar conclusions
concerning the partial ordering of the Rij ratios for other continuant pro-
cesses, provided the transition probabilities faithfully reflect the various
types of selection being compared. Our results also apply to a slightly dif-
ferent problem: how does the kind of evolutionary process at work in line-
ages affect the strength of the evidence that similarity provides for common
ancestry ðSober 2008Þ?

4. Mutual Information and the Likelihood Ratio. We began our discus-
sion of information loss by using the concept of mutual information but
then shifted to considering the likelihood ratio. Have we illicitly changed

1. The situation is messier if you want to consider frequency-dependent processes for
the full range of all i, j values such that i > j. If i > j > N/2, then frequency-dependent
selection for the majority trait is rather like frequency-independent selection for trait A,
and we know that Rij for frequency-independent selection for trait A is less than Rij for
drift.
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horses in midstream? We think not. Consider the mutual information be-
tween the binary random variable E that takes the value 1 if allele A is fixed
in the present population ðE5 0 otherwiseÞ, and the frequency X of allele A
in the past population, under some strictly positive prior distribution. In this
case, mutual information and the likelihood ratio are linked as follows:

IðX ; EÞ5 0 precisely when Rij 5 1 for all past states i; j:

If we now observe E 5 1, then instead of comparing IðX; EÞ across the dif-
ferent processes, it is more relevant to compare the values of Rij. That is, we
are thinking of a single observation ðPresent 5 NÞ, so we are not consider-
ing all the possible observations that we might make of the present state.
This is why we used the likelihood ratio Rij rather than mutual information to
carry out the cross-process comparison.

5. The Impact of Branching on Information. We have emphasized that
loss of information within a lineage is a fact of life. However, the branching
that takes place in evolution is a force that pushes in the opposite direction,
since it creates new lineages. As illustrated in figure 1, it is possible for an
ancient ancestor to have more present-day descendants than a more recent
ancestor has, and this means that the information lost to the passage of
time can be offset by the proliferation of descendants that each bear wit-
ness to the ancient ancestor’s state. If the process is a symmetric one on
two states, it is possible to describe precisely how often branching must
occur if information loss is to be offset in this way ðEvans et al. 2000Þ; for
more general processes, one must usually be content with upper and lower
bounds.

It might be asked why one needs to worry about observing descendants
to infer the characteristics of ancestors. Doesn’t observing fossils provide a
simpler and more definitive solution? Our answer has three parts. First, one
cannot assume that a fossil comes from an ancestor of extant species; it may
just be an ancient relative. Second, fossils provide evidence about the
morphological hard parts of ancient organisms; molecular characters, not to
mention phenotypic features of physiology and behavior, typically do not
fossilize. And finally, fossil traces degrade and are subject to the exponen-
tial information loss theorem if fossils change state in conformity with the
regularity assumption and have the Markov property.

Just as the process at work in lineages has an impact on information loss,
so too does the topology of the branching process itself. It might seem
intuitive to conjecture that the star phylogeny shown in figure 4i is “better”
than the bifurcating topology shown in figure 4ii in the sense that the former
topology allows the observations to provide more information about the
root than the latter topology does. In order to hold other factors fixed, we
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assume that the two topologies have the same number of leaves and that the
process at work in branches is the same in the two topologies ðin particular,
that the expected number of substitutions—the branch lengths—between
the root and each leaf match up for the two treesÞ. The conjecture just stated
seems reasonable, since in figure 4i the observations are independent of
each other, conditional on the state of the root, whereas in 4ii, the obser-
vations are not conditionally independent. The guess is correct for a two-
state symmetrical process when we compare the two trees in figure 4 ðSober
1989, 280Þ. More generally, this guess holds whenever we compare any
binary tree with a matching star phylogeny on the same number of leaves
when a two-state symmetric process is at work ðEvans et al. 2000Þ. But,
surprisingly, the guess is not always true for symmetric Markov processes
with more than two states.

More precisely, consider a completely balanced binary tree with 2n leaves,
on which a constant symmetric process on five ðor moreÞ states operates
with a constant substitution probability on each edge of the tree. Then if this
substitution probability lies in a certain region, and n is large enough, the
mutual information between the leaf states and the root state can be higher
for the binary tree than for a comparable star tree on the same number of
leaves ðSly 2011, theorem 1.2Þ. Here “comparable”means that the expected
number of substitutions from the root to any tip is the same in both trees.
In other words, the root state of a tree can sometimes be more accurately
predicted from the state of its leaves when the tree is binary ðand the leaves
are correlatedÞ than when the tree is a star ðand the leaves are independentÞ,
where the two trees have the same marginal distribution. A similar result
holds for strongly asymmetric two-state models ðMossel 2001, theorem 1Þ.
So the intuitive maxim that testimony from independent witnesses of an

Figure 4. Does observing the four leaves of the star phylogeny ðiÞ provide more
information about the state of the root than observing the four leaves of the bi-
furcating phylogeny ðiiÞ?
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event provides more information about the event than testimony from oth-
erwise similar dependent witnesses is sometimes false.

6. Conclusion. In summary, the view of evolution as an “information-
destroying process” is basically right, but it overlooks some interesting de-
tails. For some special processes ðe.g., zero mutation in simple population
genetic modelsÞ, information never completely disappears, even after infinite
time. For example, under a drift model with zero mutation, some information
concerning whether allele A was initially in the minority or the majority is
always detectable at any time in the present frequency ofA ðwhich eventually
fixes at 0 or NÞ in the population. At the other extreme there are certain
ðdiscrete timeÞ processes for which the information can collapse completely
to zero in finite time ðMossel 1998; Sober and Steel 2011, 233Þ.

The more usual situation lies between these two extremes; for processes
that are Markovian and regular, the information between past and present
decays at an exponential rate and vanishes only in the limit. Here we can
still compare the relative support such models provide in estimating an an-
cestral state from an observation today. For the five models considered, this
support varies in a predictable way depending on the type of model assumed.

We are well aware that the Moran framework contains various simplifi-
cations ðe.g., constant population sizeÞ, but the model’s simplicity allows for
explicit calculations and results and does not raise questions as to whether
the ordering might depend on the complexities that might be introduced in a
more intricate model. We hope that our results will provide a foundation for
exploring how adding complexities affects information loss. In philosophy as
well as in science, it is reasonable to walk before one runs.

The estimation of an ancestral state from the leaves of a phylogenetic tree
exhibits further subtleties, along with a surprise: the independent estimates
obtained from a star phylogeny may or may not be more informative than
the correlated estimates obtained from a binary tree, depending on the num-
ber of states, the size of the tree, and the substitution rate. The episte-
mological principle that “the testimony of independent witnesses always
provides more evidence than the testimony of otherwise similar dependent
witnesses” is wrong.

Appendix A

Formal Statement and Proof of the Exponential Loss Theorem

Proposition 1. Suppose Xt; t ≥ 0 is any discrete, finite-state Markov process
that satisfies the following condition. For some ε > 0, and integer N > 0 the
following inequality holds for all t ≥ 0 and states i, j:
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PrðXt1N 5 jjXt 5 iÞ ≥ ε :: ðA1Þ

Then IðX0; XtÞ ≤ C expð2ctÞ for constants C, c > 0.
Proof. Let Yn be the ‘N-step’ Markov chain defined by Yn 5 XnN for all

n ≥ 0. Note that equation ðA1Þ implies that Yn satisfies the following in-
equality for all n, i, j:

PrðYn11 5 jjYn 5 iÞ ≥ ε: ðA2Þ

We will show that

IðY0; YnÞ ≤ B expð2bnÞ ðA3Þ

for constants B, b > 0, from which proposition 1 follows because if t 5 nN
1 r for 0 ≤ r < N then

IðX0; XtÞ5 IðY0; XtÞ ≤ IðY0; YnÞ ≤ B exp ð2bnÞ < Bebexpð2ðb=NÞtÞ;

where the first inequality is from the Data Processing Inequality, and the
second inequality is from ðA3Þ. Thus we can take C 5 Beb, and c 5 b/N to
obtain ðA1Þ from ðA2Þ.
To establish inequality ðA3Þ we apply a standard type of coupling ar-

gument. For k ≥ 0 let pkðiÞ:5 PrðYk 5 iÞ for each state i. Consider the fol-
lowing Markov process Y 0

k defined as follows: Y 0
0 5 Y0ð5 X0Þ; and for each

k ≥ 0, the state of Y 0
k11 is determined as follows: At each step of this chain, we

toss a biased coin, which returns a head ðHÞ with probability ε ðindependently
of the chainÞ or a tail ðHÞ with probability 12 ε. If a headH is returned, Y 0

k11 is
assigned a random state according to the distribution pk11. If the coin toss
results in a tail H outcome, then Y 0

k11 selects a state that depends on Y 0
k as

follows: if Y 0
k 5 i, then Y 0

k11 is assigned state j with probability

PrðYk11 5 jjYk 5 iÞ2 εpk11ð jÞ
ð12 εÞ : ðA4Þ

Note that this expression is greater than or equal to zero ðby 2Þ, and is less than
or equal to 1; moreover,

o
j

PrðYk11 5 jjYk 5 iÞ2 εpk11ð jÞ
ð12 εÞ 5 1;

so ðA4Þ describes a legitimate probability distribution conditional onH .
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By the law of total probability we can express PrðY 0
k11 5 jjY 0

k 5 iÞ as
follows:

Pr ðY 0
k11 5 jjH & Y

0
k 5 iÞPr ðH jY 0

k 5 iÞ1 Pr ðY 0
k11 5 jjH & Y

0
k 5 iÞPrðH jY 0

k 5 iÞ
5 pk11ð jÞε1 ½Pr ðYk11 5 jjYk 5 iÞ2 εpk11ð jÞ�5 PrðYk11 5 jjYk 5 iÞ:

Summarizing, we have: Y 0
0 5 Y0, and Pr ðY 0

k11 5 jjY 0
k 5 iÞ5 PrðYk11 5 jjYk

5 iÞ, and so Yk and Y 0
k describe the same Markov chain. In particular,

IðY0; YnÞ5 IðY 0
0; Y

0
nÞ, and pnð jÞ5 PrðY 0

n 5 jÞ. Let
pnði; jÞ :5 Pr ðY0 5 i & Yn 5 jÞ5 PrðY 0

0 5 i & Y
0
n 5 jÞ;

and let An be the event that H occurs at least once in the first n biased coin
tosses that are performed in the construction of the chain Y 0

1; Y
0
2; : : : . Then

pnði, jÞ can be written as the sum of two terms:

Pr ðY 0
n 5 jjAn & Y

0
0 5 iÞPr ðAn & Y

0
0 5 iÞ

1 Pr ðY 0
n 5 jjAn & Y

0
0 5 iÞPrðAn & Y

0
0 5 iÞ: ðA5Þ

Now, the first term in ðA5Þ is exactly pnð jÞð12 ð12 εÞnÞp0ðiÞ since

• conditional on An, Y
0
n is independent of Y

0
0 and, in addition, Y 0

n is dis-
tributed as pn; and

• An and Y 0
0 are independent, and so

Pr ðAn & Y
0
0 5 iÞ5 Pr ðAnÞPrðY 0

0 5 iÞ5 ½12 ð12 εÞn�p0ðiÞ:
The second term in ðA5Þ can be written as p0ðiÞ multiplied by a term that
lies between 0 and ð12 εÞn, since

0 ≤ Pr ðAn & Y
0
0 5 iÞ ≤ PrðAnÞ5 ð12 εÞn:

Thus, selecting b > 0 so that e2b 5 ð12 εÞ we can write:

pnði; jÞ5 p0ðiÞ½pnð jÞ1 Oðe2bnÞ�; ðA6Þ
where, as usual, ‘f ðnÞ5 OðgðnÞÞ’ is shorthand for the statement that f ðnÞ is
at most some constant times gðnÞ. Finally, observe that, from ðA2Þ, pnð jÞ
≥ ε > 0 and so, from ðA6Þ:

IðY 0
0; Y

0
nÞ5o

i; j

pnði; jÞlog pnði; jÞ
p0ðiÞpnð jÞ
� �

5o
i; j

pnði; jÞlog 11 Oðe2bnÞð Þ ≤ Be2bn;

for a constant B > 0. Since IðY0; YnÞ5 IðY 0
0; Y

0
nÞ, this establishes ðA3Þ, as

required. QED
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Appendix B

Proposition 2. Suppose that X → Y → Z forms a Markov chain, where the
state spaces for X, Y, and Z are discrete, and PrðX 5 x & Y 5 yÞ > 0 and
PrðY 5 y & Z 5 zÞ > 0 for all choices of states x, y, z for X, Y, Z, respectively.
Then the DPI is an equality if and only if X, Y, and Z are mutually inde-
pendent.

Proof. First, observe that if X, Y, Z are independent then they are pair-
wise independent and so IðX; YÞ 5 IðX; ZÞ 5 IðY; ZÞ 5 0 and thus equal-
ity holds trivially. Next, suppose that Pr ðX 5 x & Y 5 yÞ > 0 and PrðY 5
y & Z 5 zÞ > 0 for all choices of states x, y, z for X, Y, Z, respectively. Then
PrðX 5 x & Y 5 y & Z 5 zÞ > 0 holds also ðsince X → Y → Z is a Markov
chainÞ. Suppose further that the DPI is an equality; we will show that X, Y,
and Z are independent. Since the DPI is an equality, X→ Y→ Z and X→ Z
→ Y are both Markov chains ðCover and Thomas 2006Þ. We write pðxyzÞ
as shorthand for the probability PrðX 5 x & Y 5 y & Z 5 zÞ and similarly
for conditional and marginal probabilities ðthus, e.g., pðxjzÞ5 PrðX 5
xjZ 5 zÞÞ. First observe that the positivity condition pðxyzÞ > 0 for all ðx, y,
zÞ implies that pðxyÞ, pðxzÞ, pðyzÞ, pðxÞ, pðyÞ, pðzÞ are also strictly positive.
Since X → Y → Z is a Markov chain, and pðxyÞ > 0:

pðxyzÞ5 pðzjxyÞpðxyÞ5 pðzjyÞpðxyÞ; ðB1Þ

and since X→ Z→ Y is also a Markov chain, and pðxzÞ > 0, we have pðxyzÞ
5 pðy|xzÞ pðxzÞ 5 pðy|zÞ pðxzÞ. Applying Bayes’s theorem, the last term
can be written as

pðzjyÞpðyÞ
pðzÞ pðxzÞ

ðnote that pðzÞ > 0Þ and so, combining this with equation ðB1Þ gives

pðxyzÞ5 pðzjyÞpðxyÞ5 pðzjyÞpðyÞ
pðzÞ pðxzÞ;

and so

pðzjyÞpðxyÞpðzÞ5 pðzjyÞpðyÞpðxzÞ: ðB2Þ

Since pðz|yÞ > 0 ðbecause pðyzÞ > 0Þ we can cancel this term on the left and
right of equation ðB2Þ to obtain:

pðxyÞpðzÞ5 pðyÞpðxzÞ: ðB3Þ
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Now, we can further write pðxyÞ 5 pðx|yÞ pðyÞ and pðxzÞ 5 pðx|zÞ pðzÞ
which, upon substitution into equation ðB3Þ gives:

pðxjyÞpðyÞpðzÞ5 pðyÞpðxjzÞpðzÞ;

in otherwords,pðx|yÞ5pðx|zÞ ðnoting thatpðyÞ,pðzÞ>0Þ.Now, this equation
must hold for all choices of x, y, and z so pðx|yÞmust be constant as y varies—
which implies that X and Y are independent. Similarly X and Z are indepen-
dent. Finally, reversing the two Markov chains gives that Z is independent
of Y. Thus X, Y and Z are pairwise independent.
Moreover they are independent as a triple since X → Y → Z is a Markov

chain and so

pðxyzÞ5 pðzjxyÞpðxyÞ5 pðzjyÞpðxÞpðyÞ5 pðyzÞpðxÞ5 pðxÞpðyÞpðzÞ:

QED

Appendix C

Rij Ratios with Zero Mutation at the Infinite Time Limit

Consider the Moran model in population genetics, with two trait values A
and B and population size N. Let Xt ∈ f0; 1; : : : ; Ng be the number of
copies of A in the population at time t. In this section we assume zero
mutation, and we consider neutral evolution, selection for A, selection
against A, and frequency-dependent selection ðfor the majority state and
against the majority stateÞ. Since each of these Markov processes has ab-
sorbing states 0 and N ðbecause of zero mutationÞ eventually one allele will
be fixed and the other lost. Let E ∈ f0; Ng be this end state, and S ∈
f0; 1; : : : ; Ng the starting state ðthus S 5 X0 and E 5 limt→`XtÞ.
We are interested in comparing the ratio of conditional probabilities:

Rij :5
PrðE 5 N jS 5 iÞ
PrðE 5 N jS 5 jÞ ;

for i > j under the various models.

Proposition 3.

ðiÞ Under neutral evolution Rij 5 ði=jÞ, for all 0 < i, j ≤ N.
ðiiÞ Under frequency-independent selection Rij 5 ½ð12 ciÞ=ð12 c jÞ�,

for all 0 < i, j ≤ N, where c is a positive constant with c < 1 when
there is selection for A and c > 1 when there is selection against A.
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ðiiiÞ For any two values i, j ∈ f1, 2, . . . , Ng with i > j the Rij value for
selection against A exceeds the Rij value for neutral evolution,
which in turn exceeds the Rij value for selection for A.

ðivÞ For frequency-dependent selection, where the fitness of trait A is
proportional to its frequency, the associated Rij value exceeds that
for neutral evolution for all i, j ∈ f1, 2, . . . , Ng with i > j provided
that j < N/2.

ðvÞ For frequency-dependent selection, where the fitness of trait A is
proportional to the frequency of the alternative trait B, the asso-
ciated Rij value is lower than that for neutral evolution for all i, j ∈
f1, 2, . . . , Ng with i > j, provided that j < N/2.

ðviÞ In all the cases considered above we have Rij > 1 for all i > j.

Proof: Part i. For any integer x : 0 ≤ x ≤ N it is a well-known result ðfor
many neutral modelsÞ that

PrðE 5 N jS 5 xÞ5 x=N

ðsee, e.g., eq. 3.49 of Ewens 2010Þ, from which i immediately follows.
Part ii. From Ewens ð2010, eq. 3.66Þ we have, for any x ∈ f1, . . . , Ng:

PrðE 5 N jS 5 xÞ5 12 cx

12 cN
;

for a positive constant c which is greater than 1 for selection against A and
less than 1 for selection for A. Part ii now follows immediately.
Part iii. By parts i and ii, part iii is equivalent to the assertions that for i >

j, if c ∈ ð0, 1Þ then:

12 ci

12 c j
<

i

j
;

while if i > j and c > 1 then:

12 ci

12 c j
>

i

j
:

Now, using the identity 1 2 ck 5 ð1 2 cÞ ð1 1 c 1 c2 1 . . . 1 ck21Þ we
have

12 ci

12 c j
5

11 : : :1 c i21

11 : : :1 c j21
; ðC1Þ
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and so we wish to compare

11 : : :1 c i21

11 : : :1 c j21
and

i

j
;

which is equivalent to comparing

11 : : :1 c i21

i
and

11 : : :1 c j21

j
:

Now, the left-hand side is merely the average of the terms ck from k 5 0 up
to k5 i2 1 while the right-hand side is the average of these terms up to j2
1 and since i > j the left-hand side is smaller than the right when c < 1 and
greater when c > 1. This completes the proof.
Part iv. When selection is frequency dependent, we need to use the

expression:

PrðE 5 N jS 5 iÞ5 11 o
i21

j51
Pj
k51

gk

fk

 !�
11 o

N21

j51
Pj
k51

gk

fk

 !
; ðC2Þ

where fk and gk denote the fitnesses of alleles A and B, respectively, when k
individuals have allele type A ðsee, e.g., Huang and Traulsen 2010, eq. 6Þ.
If we now take the fitness of trait A to be proportional to its frequency, that
is fk 5 a � k for a constant a > 0, and take the fitness of trait B to also be
proportional to its frequency ðwith the same coefficientÞ—that is, gk 5 a �
ðN 2 kÞ—then equation ðC2Þ gives

Rij 5 o
i21

m50

N 2 1
m

� ��
o
j21

m50

N 2 1
m

� �
: ðC3Þ

As before, this ratio exceeds i/j precisely when the average of the first i terms

N 2 1
m

� �

ðfor m 5 0, 1, 2 . . .Þ exceeds the average of the first j terms

N 2 1
m

� �
;

this holds for all i > j with j < N/2.
Part v. If we take the fitness of trait A to be proportional to the frequency

of B, that is fk 5 a � ðN2 kÞ for a constant a > 0, and take the fitness of trait
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B to be proportional to the frequency of A ðwith the same coefficientÞ—that
is, gk 5 a � k—then equation ðC2Þ gives

Rij 5 o
i21

m50

N 2 1
m

� �21�
o
j21

m50

N 2 1
m

� �21
; ðC4Þ

and this ratio is lower than i/j precisely when the average of the first i terms

N 2 1
m

� �21
ðfor m 5 0, 1, 2 . . .Þ is lower than the average of the first j terms

N 2 1
m

� �21
;

this holds for all i > j with j < N/2.
Part vi. The inequality Rij > 1 for i > j is trivial for neutral evolution, while

for the other processes the inequality follows from equations ðC1Þ, ðC3Þ,
and ðC4Þ, noting that when i > j the i terms in the numerator include the j
terms in the denominator along with some additional positive terms.
Note thatN plays no role in the expression of the ratio Rij in cases i–iii, but

it does for iv and v.

Appendix D

Rij Ratios with Finite Time and Nonzero Mutation Rate

The results in the previous section assume zero mutation and consider the
infinite time limit. However, they also have some bearing on what happens
at finite time and for nonzero mutation. First assume zero mutation and
consider the ratio Rij at finite times t. Since these ratios are continuous
functions of t and converge to values that satisfy the partial order described
in figure 3, this ordering also holds for t sufficiently large ðbut finiteÞ. Select
any such sufficiently large value t0 of t, and consider this ratio Rij at t0 as a
function of the mutation rates. Again, Rij is a continuous function of these
mutation rates ðwith t fixed to t0Þ, and so, for sufficiently small ðbut non-
zeroÞ mutation rates, the five Rij values will still be ordered as in figure 3 at
t0. In summary, for a sufficiently large value of time, we can take small but
strictly positive mutation rates that preserve the order of the Rij ratios shown
in figure 3. This ordering may change if the mutation rates are then held
fixed and time increased. In other words, the order of quantifiers here is
important. We are merely asserting that for any sufficiently large value of
time, there exist positive mutation rates that preserve the orderings of the
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ratios—if we select a larger time, the mutation rates may need to be reduced
ðbut will still be strictly positiveÞ.
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