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a b s t r a c t 

The extinction of species at the present leads to the loss of ‘phylogenetic diversity’ (PD) from the evolu- 

tionary tree in which these species lie. Prior to extinction, the total PD present can be divided up among 

the species in various ways using measures of evolutionary isolation (such as ‘fair proportion’ and ‘equal 

splits’). However, the loss of PD when certain combinations of species become extinct can be either larger 

or smaller than the cumulative loss of the isolation values associated with the extinct species. In this pa- 

per, we show that for trees generated under neutral evolutionary models, the loss of PD under a null 

model of random extinction at the present can be predicted from the loss of the cumulative isolation 

values, by applying a non-linear transformation that is independent of the tree. Moreover, the error in 

the prediction provably converges to zero as the size of the tree grows, with simulations showing good 

agreement even for moderate sized trees ( n = 64 ). 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Biodiversity is generally defined as the ‘variety of life’

 Gaston and Spicer, 2004 ), and much effort is expended to min-

mise its loss in the face of anthropogenic activity ( McCarthy

t al., 2012; Tittensor et al., 2014 ). One conceptually straightfor-

ard measure of the biodiversity encompassed by a subset (e.g.

y the bird species found in a wildlife preserve) is the evolution-

ry history that the subset embodies ( Vane-Wright et al., 1991 ).

his is usually operationalized as Faith’s Phylogenetic Diversity

PD) ( Faith, 1992 ) or the sum of the edge lengths of the mini-

um spanning tree that connects a subset of the leaves (here, the

pecies) with each other and with the root of some larger tree

e.g. the phylogeny of all bird species). This measure scales reason-

bly with the size of the subset, is set-monotonic and submodu-

ar ( Steel, 2016 ), and attributes more biodiversity to subsets of dis-

antly related leaves over subsets of more closely related leaves.

he original article that introduced the measure ( Faith, 1992 ) has

een cited nearly 1300 times 1 , and academic applications of PD

ave been well-received (see, e.g. Forest et al., 2007 ). However,

D has never, to our knowledge, been explicitly implemented in
∗ Corresponding author. 

E-mail addresses: mike.steel@canterbury.ac.nz (M. Steel), amooers@sfu.ca 

(V. Pourfaraj). 
1 Web of Science, accessed May, 2017. 
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 conservation intervention, such as allocating resources to sets of

pecies that encompass more rather than less PD. 

Because every leaf of a phylogenetic tree will contribute a mea-

urable amount of PD to a defined subset, leaf-specific diversity

easures are possible: the simplest is just the length of the pen-

ant edge leading to that leaf, or the decrement in PD if that leaf

s lost. So, for example, species on longer pendant edges are more

solated on the tree, contribute more PD to the tree, and therefore

ay warrant especial conservation attention ( Mace et al., 2003 ).

his concept of the ‘evolutionary isolation’ value of species was

xtended to several ad hoc measures by Redding ( Redding, 2003;

edding et al., 2008 ), specifically his ‘fair proportion’ and ‘equal

plits’ measures (defined in the next section). 

The fair proportion measure has been the focus of several high

rofile papers advocating the use of evolutionary history for con-

ervation (see, e.g. Frishkoff et al., 2014; Jetz et al., 2014; Stein

t al., 2017 ), and, importantly, is the basis of the ‘Edge of Exis-

ence’ conservation programme (see Isaac et al., 2007 and edge-

fexistence.org). Species-specific measures need to be calculated

nly once and, once generated, can be used in a variety of settings

ithout specialist phylogenetic expertise. However, they have also

een criticised by Faith (2008) , who showed with specific exam-

les how preferentially conserving leaves that score high for these

solation measures may not minimize loss of evolutionary history.

iven the continued use of evolutionary isolation, we return to this

uestion here and show how, under simple models of diversifica-

https://doi.org/10.1016/j.jtbi.2017.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.11.005&domain=pdf
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tion and extinction, the summed ‘fair proportion’ or ‘equal splits’

values of the species that are lost from a tree through extinction

strongly predicts the concomitant loss of PD. 

1.1. PD and isolation indices 

Let T be a rooted binary phylogenetic tree with branches e of

lengths λe . Given a subset Y of the leaf set X of T , let PD ( T , Y ) be

the phylogenetic diversity of Y on T (i.e. the sum of the lengths of

the branches connecting the leaves in Y and the root of T ), and let

PD ( T ) be the total length of T (the sum of all branch lengths; thus

P D (T ) = P D (T , X ) ). 

Let ϕ = ϕ T be an isolation index (e.g. fair proportion or equal

splits), which is a function that assigns a non-negative real value

to each leaf x of T and that satisfies: ∑ 

x ∈ X 
ϕ T (x ) = P D (T ) , (1)

for all assignments of branch lengths to T . 

The fair proportion isolation index for leaf x is: 

F P x = 

∑ 

e ∈ S(T,x ) 

λe 

c e 
, 

where S ( T , x ) is the set of edges in the tree T between leaf x and

the root r , λe is the length of edge e , and c e is the size of the

subclade each edge e in s subtends, such that every edge is divided

uniquely among the leaves, satisfying Eq. (1) above. 

The equal splits measure also uniquely apportions each internal

edge on the path from a leaf to the root to that leaf, but rather

than splitting an edge ‘fairly’ among all the leaves in the clade it

defines, it apportions each edge fairly to the two (or more) sister

clades it defines. This means that a leaf gets an exponentially de-

creasing portion of the internal edge lengths as a function of the

number of splits between it and the edge: 

ES x = 

∑ 

e ∈ s (T,x ) 

1 

�(e, x ) 
λe , 

where �(e, x ) = 1 if e is a pendant edge incident with x ; other-

wise, if e = (u, v ) , then �( e , x ) is the product of the out-degrees

of the interior vertices of T on the directed path from v to leaf x .

For example, if T is binary and there are k interior edges separat-

ing e and x , then �(e, x ) = 2 k . Essentially, the length of each edge

is evenly distributed at each branching point (regardless of how

many leaves are in each subtree). 

The fair proportion index has been shown to be formally equiv-

alent to a leaf’s contribution to the PD of a random sized random

subset (the Shapley Index, Haake et al., 2008; Steel, 2016 ). Though

less studied, the equal splits index (on binary trees) can be concep-

tualized as the expected contribution of a leaf to the PD remaining

if each of the subclades branching off the path from the leaf to the

root were to independently become extinct with probability 0.5. 

Notice that the fair proportion and equal splits indices satisfy

the following condition (for every choice of T and x ): 

ϕ T (x ) ≤
∑ 

e ∈ S(T,x ) 

λe , (2)

which says that the ϕT value of each leaf is bounded above by the

length of the path from the root to that leaf. 

We will use Y to denote the leaves that remain following some

pruning event (i.e. due to anthropogenic extinction) and E = X − Y 

to denote the leaves that are lost. For a subset E of X , let: 

�P D (T , E) = P D (T ) − P D (T , X − E) , (3)

which is the loss in PD if the species in E are lost. For a subset Y

of X , and an isolation index ϕT , let ϕ T (Y ) = 

∑ 

x ∈ Y ϕ T (x ) and let: 

�ϕ T (E) = ϕ T (X − E) = P D (T ) − ϕ T (E) , (4)
hich is how much the sum of the ϕT indices decreases if the

pecies in E are lost. 

.2. Convergence of diversity indices on birth–death trees under a 

field of bullets’ model 

Consider a phylogenetic tree generated by a constant rate birth–

eath process, with speciation and extinction rates b and d respec-

ively. We will assume throughout that b > d . Let us grow this tree

or time t and consider the resulting reconstructed tree T t (i.e. the

ree based on the tips that survive to the present) with leaf set X t .

et us now select each leaf of T t independently with probability

 (these remain), let Y t be the set of these remaining species and

et E t = X t − Y t be the species that become lost. This is the simple

field of bullets’ model of species loss ( Raup, 1993 ), operating on

he leaves of the reconstructed tree that has been generated by a

onstant rate birth–death model. Note that there are two random

rocesses at play here: firstly the process that generates the tree,

nd then the process that prunes leaves at the present. 

.3. Main result 

Let S t ( p ) be the random variable corresponding to the PD of the

andomly selected set of leaves (each chosen independently with

robability p ) on the random (reconstructed) tree T t . 

Note that S t (1) = P D (T t ) is the total length (the sum of the edge

engths) of T t and �P D T t (p) := S t (1) − S t (p) is the loss of PD. If

 t is the set of species that become extinct then, in terms of the

arlier notation ( Eq. (3) ), we can write �P D T t (p) = �P D (T t , E t ) . 

Let �ϕ T t (p) = �ϕ T t (E t ) which (by Eq. (4) ) is the random vari-

ble that measures the loss in the sum of the isolation indices of

he leaves of the random (reconstructed) tree T t when the species

n the random set E t become extinct. 

heorem 1. Suppose that ϕT is any isolation index for T that satisfies

ondition (2) (for example, fair proportion or equal splits). For a birth-

eath model with b > d ≥ 0 let θ = d/b. Then as t → ∞ , we have the

ollowing convergence in probability: 

�P D T t (p) 

P D (T t ) 

p −→ y θ

(
�ϕ T t (p) 

P D (T t ) 

)
here: 

 θ (x ) := 

{ 

1 + 

(1 −x ) ln (1 −x ) 
x 

, for θ = 0 (Yule pure-birth model)

1 + 

θ (1 −x ) ln ( 1 −x 
1 −θ ) 

(θ−x ) ln (1 −θ ) 
, for 0 < θ < 1 . 

oreover, the slope of the curve y = y 0 (x ) is −x −ln (1 −x ) 

x 2 
for 0 < x < 1,

hich converges to 1 
2 as x approaches 0 from above, while for d > 0,

he slope of the curves y = y θ (x ) as x approaches 0 from above is

iven by 1 − 1 
θ

− 1 
ln (1 −θ ) 

. 

Remarks: Stated less formally, Theorem 1 can be written as: 

Proportion of PD lost = y θ (proportion of isolation index lost)’ 

f course the terms on each side of this ‘equation’ are random

ariables, and Theorem 1 asserts that the informal equation be-

omes exact (i.e. the difference between the two expressions in the

nformal equation tends to zero) as t becomes large (or, more gen-

rally, if λt becomes large). The curves described in Theorem 1 are

llustrated in Fig. 1 . 

Simulations, as presented in Fig. 2 , show that Theorem 1 pro-

ides a reasonably unbiased prediction even for very moderate

ized trees ( n = 64 ). Notice also that the function 1 − 1 
θ

− 1 
ln (1 −θ ) 

n Theorem 1 when θ > 0 is undefined at θ = 0 (i.e. for pure-birth

rees); however, its limit as θ → 0+ exists and agrees with the

alue 1 
2 for the case θ = 0 . The curve for this function is illustrated

n Fig. 3 . 
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Fig. 1. The curves of y = y θ (x ) describing how the proportion of PD loss is related 

to the proportion of isolation score loss (in the limit of large t ), for pure-birth where 

d = 0 (top curve), birth–death with θ = d/b = 0 . 9 (middle curve), and birth–death 

with θ = d/b = 0 . 99 (bottom curve). 
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Fig. 3. The ‘initial slope’ function Y ′ (θ ) = lim x → 0+ 
dy θ (t) 

dt | t= x versus θ = d/b ∈ [0 , 1] . 

Y ′ ( θ ) is the slope of the function y θ ( x ) in the limit as x tends to zero from above, 

given in Theorem 1 for θ = 0 and for θ > 0). The limiting value of 1 
2 

for the slope 

at θ = 0 also follows from Steel and Mooers (2010) , where it was shown that the 

pendant edges account for half the expected PD in a pure-birth tree. 
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Proof of Theorem 1 . The proof relies on two lemmas. 

For the first of these, let 

 t := 

ϕ T t (Y t ) 

P D (T t ) 
= 

ϕ T t (Y t ) 

ϕ T t (X t ) 

e the random variable which measures the proportion of the to-

al isolation index that is spanned by the surviving species (under

 field of bullets model with survival probability p ) on T t (and for

 > 0 conditional on there being at least one species in the recon-

tructed tree prior to the application of the field of bullets model).

emma 2. For both the fair proportion and the equal splits isolation

ndices, the random variable R t converges in probability to p as t → ∞ .

roof. By definition, 

 T t (Y t ) = 

∑ 

x ∈ Y t 
ϕ T t (x ) = 

∑ 

x ∈ X t 
ϕ T t (x ) I x , (5)

here (I x , x ∈ X t ) are independent and identical Bernoulli random

ariables that take the value 1 with probability p and zero oth-

rwise. Thus we have the following equation for the conditional

xpectation of R t given T t : 

 [ R t | T t ] = E 

[∑ 

x ∈ X t ϕ T t (x ) I x 

ϕ T t (X t ) 
| T t 

]
= 

p 
∑ 

x ∈ X t ϕ T t (x ) 

ϕ T t (X t ) 
= p, 
ig. 2. The loss of phylogenetic diversity versus the loss of cumulative fair proportion on s

f size 64, with b = 1 and d = 0.1. The right panel shows the relationship across 10 0 0 tr

s depicted as the solid black line. 
here the last equation follows by the linearity of (conditional)

xpectation, and Eq. (1) (which holds for both fair proportion and

qual splits) and Eq. (5) , noting that E [ I x ] = p (note also that by

onditioning on T t the term in the denominator of the fraction in-

ide the expectation is treated as a constant). Thus, by the law of

otal expectation, we have E [ R t ] = E [ E [ R t | T t ]] = p. 

Turning to the variance of R t , the law of total variance gives: 

 ar[ R t ] = V ar[ E [ R t | T t ]] + E [ V ar[ R t | T t ]] , (6)

nd the first term is zero (since E [ R t | T t ] = p, as we have just

hown), while the second term is given by: 

 ar[ R t | T t ] = p(1 − p) 

∑ 

x ∈ X t ϕ T t (x ) 2 

( 
∑ 

x ∈ X t ϕ T t (x )) 2 
, 

y Eq (5) . By condition (2) , we have ϕ T t (x ) ≤ t and therefore: 
 

 ∈ X t 
ϕ T t (x ) 2 ≤ t 

∑ 

x ∈ X t 
ϕ T t (x ) . 

ombining this with Eq. (6) , we obtain 

 ar[ R t ] ≤ E 

[ 
t 

P D (T t ) 

] 
→ 0 , 

s t → ∞ by results from Lambert and Stadler (2013) , Lambert and

teel (2013) and Stadler and Steel (2012) . Thus R t converges in

robability to E [ R t ] = p. This completes the proof of Lemma 2 . �
imulated trees. The left panel shows the relationship across 10 0 0 birth–death trees 

ees of size 64, with b = 1 and d = 0.9. The expected relationship from Theorem 1 
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We now state the second technical lemma required (it is a

semi-standard result with a straightforward proof that is omitted).

Lemma 3. Suppose V t and W t are random variables indexed over t ∈
R 

≥0 and suppose that f is a real-valued function that is continuous

over the range of W t . If W t converges in probability to some constant

c , and V t converges in probability to f ( c ) (as t → ∞ ), then V t − f (W t )

converges in probability to 0 as t → ∞ . 

Returning to the proof of Theorem 1 , let r = b − d. Theorem 4.2

and Corollary 4.3 of Lambert and Steel (2013) state the following.

Firstly, for b > d > 0, and conditional on the reconstructed tree hav-

ing at least one leaf, S t ( p )/ S t (1) converges in probability to: 

f θ (p) := 

dp 

bp − r 
· ln (bp/r) 

ln (b/r) 
(7)

as t → ∞ for all values of r 	 = bp (at this value of p , there is no

discontinuity in Eq. (7) ). Secondly, in the case where d = 0 , (Yule

pure-birth), S t ( p )/ S t (1) converges in probability to 

f 0 (p) := 

−p ln p 

1 − p 
, 

which is also the limiting value of f θ as θ → 0 (i.e. as d → 0). 

Thus for all θ ≥ 0, �P D T t (p) /P D (T t ) = 1 − S t (p) /S t (1) converges

in probability to 1 − f θ (p) and, by Lemma 2 , �ϕ T t (p) /P D (T t ) con-

verges in probability to 1 − p (as t → ∞ ). Thus by Lemma 3 : 

�P D T t (p) 

P D (T t ) 
−

(
1 − f θ

(
1 − �ϕ T t (p) 

P D (T t ) 

))
converges in probability to 0 as t → ∞ . Straightforward (if tedious)

algebra now shows that y θ (x ) = 1 − f θ (1 − x ) , and Theorem 1 now

follows. This completes the proof. �

2. Discussion 

The use of evolutionary history as a metric of conservation

worth remains a somewhat contentious proposal. This is due, in

part, to a bewildering number of possible metrics ( Winter et al.,

2013 ), and confusion regarding what evolutionary history captures:

for some researchers, PD captures other values – for example, un-

measured ‘features’ of potential future worth ( Faith, 1992; Forest

et al., 2007 ) – while for other researchers, PD is valuable per se

( Rosauer and Mooers, 2013; Winter et al., 2013 ). Here, we deal

with the former issue and formalize a connection between two

complementary and well-known metrics, Faith’s phylogenetic di-

versity ( Faith, 1992 ), and a class of species-specific measures of

evolutionary isolation ( Redding et al., 2008 ). Faith’s PD is a set

metric, and was formulated to be used in an explicitly comple-

mentarity context, for example, to help decide which species or

areas should be prioritized based on how much additional PD they

would contribute to some growing set of species or places (see

Forest et al., 2007 for a well worked out example for genera of

plants in South Africa). Isolation indices such as fair proportion and

equal splits were also created with prioritization of places in mind

( Redding, 2003 ) but were not designed to capture complementar-

ity. The fair proportion index was, however, subsequently chosen

by the Zoological Society of London as a metric to help prioritize

at–risk species, with the express intent that the measure captures

‘a species contribution to PD’ ( Isaac et al., 2007 ), such that pre-

serving species that score highly on this measure would conserve

more PD. The advantages of species-specific measures were laid

out clearly in the papers that first used them: they are attached

to species identity, and are simple to use and to communicate. 

Both of the isolation measures considered here (fair propor-

tion and equal splits) share certain features: they (i) distribute the

entire phylogeny among the leaves such that the sum across the

leaves equals the entire PD of the tree in question; (ii) scale with
pecies richness; and (iii) are heavily weighted towards the pen-

ant e.g. ( Redding et al., 2014 ). Therefore, a formal connection be-

ween the summed loss of isolation indices and the loss of PD

ight seem reasonable. Here, we show that when extinction oc-

urs via a ‘field of bullets’ scenario, the relationship is predictable

or large phylogenies described by neutral birth–death models

 Theorem 1 ), and the prediction applies well even on medium-

ized trees ( Fig. 2 ). The key component is the fact that the species

hat are lost is random with respect to the phylogeny; the exam-

les presented by Faith (2008) where isolation does very poorly in

apturing PD are examples where species loss was highly clumped

n the phylogeny. In this context, it is interesting to note that prob-

bilities of species loss are fully consistent with a field of bullets

cenario across birds ( Jetz et al., 2014 ), and, while species loss risk

s mildly structured in mammals ( Fritz and Purvis, 2010 ) and am-

hibians ( Greenberg and Mooers, 2017 ), species at higher risk of

oss are not those with higher isolation indices ( Arregoitia et al.,

013; Greenberg and Mooers, 2017 ), suggesting that summed iso-

ation index loss will be conservative with reference to PD loss.

ow robust our results are to other patterns of species loss, and

hether a field of bullets is the correct model for extinction for

ther groups, or in other contexts (e.g. when projecting long-term

osses of evolutionary history from landscapes due to land conver-

ion ( Chaudhary et al., 2017 ) are empirical questions for the future.
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