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Trees with a coloration of their leaves have an induced “length” which forms the basis of the
widely used maximum parsimony method for reconstructing evolutionary trees in biology. Here
we describe five unexpected properties of this length function, including refinements of earlier
results.

1. Introduction. A popular method for reconstructing phylogenetic trees from
aligned sequence data is the selection of the tree of maximum parsimony
(Felsenstein, 1988). In this method each site in the aligned sequences induces a
positive valued “length” on each tree, and the maximum parsimony tree(s) is
that which minimizes the sum of these lengths across the sites in the sequences.
In order to study the statistical properties of this method it is useful to
investigate aspects of this length function (Maddison and Slatkin, 1991;
GolobofT, 1991; Steel, 1993). Here we describe five properties of this length
function (four of which give new and exact formulae) which mays, at first, seem
counterintuitive. _

We begin with some definitions. A rooted binary tree is a tree whose vertices
are all of degree 1 or 3, and with one vertex of degree 2 called the root (for other
graph theroretic terminology see Bondy and Murty, 1976). Vertices of degree 1
are called leaves. The two descendants of a vertex v are those vertices vy which
are adjacent to v and such that v lies on the path from vy to the root.

Forany tree T with each of its vertices assigned one color chosen from a set S
of colors, the changing number of this coloration is the number of edges which
have different colors at their ends. If only the leaves of T are colored, the length
of this leaf coloration is the smallest value of the changing number across all
colorations of the vertex set of T that extend the leaf coloration (a coloration
which has minimal changing number is called a minimal coloration). This length
can be found in linear time by Fitch’s algorithm (Fitch, 1971). This procedure
also finds the set of colors which can be assigned to each vertex under at least
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one minimal coloration (for further details see Hartigan (1973) and Erdds and
Székely (1992)). To describe the algorithm for binary trees it is convenient to
recall Fitch’s original parsimony operation, *, which is a commutative non-
associated binary operation defined on the nonempty subsets of a finite set.
Specifically, ' '

AsB= ANB, 1fAmB’;é@,
AuB, otherwise.

Suppose a rooted binary tree T has its leaves assigned colors from a set X.
Fitch’s alogrithm recursively colors the vertices of T with nonempty subsets of
" X starting with the leaves and progressing towards the root as follows: each leaf
is assigned the singleton set consisting of its assigned color, while for each other
vertex v, once the descendants of v have been assigned subsets, say 4 and B,
then v is assigned the set A * B. Eventually every vertex will be assigned a set,
including the root, p, whose set we denote X,. Hartigan (1973) showed that:
(1) the length of the leaf coloration is the number of times the empty
intersection option for = is taken in assigning sets to the vertices of 7; and
(2) X, is the set of colors which can be assigned to the root in at ledst one
minimal coloration.

2. Results. For a rooted binary tree T consider the number of ways to color
the leaves of Teither 0 or 1 so that the resulting leaf coloration has length k, and
so that X,={0}, {1} or {0, 1}. Call these numbers No(k), N, (k) and N, (k),
respectively. .

1t might be expected that these numbers should depend on the shape of T,
and this is indeed the case if the leaves are r-colored (for r>2); however, for
bicolorings, the quantity depends, surprisingly, only on the number of leaves.
We derive exact expressions for this and related quantities, thereby extending
earlier results described in Steel (1993).

"THEOREM 1. For a rooted binary tree T with n leaves,

k-1 —k—1
No(k)=N1(k>=(“ . )2& I~Im<k)=(“k_1 )z*.

In particular, these quantities do not depend on the shape of T.

Proof. 1tis convenient to work, initially, with binary trees, in which the root p
has degree 1. Thus, for S={0}, {1}, {0, 1}, and a tree T with a root vertex of
degree 1, let Ng(T, k) denote the number of ways to color the non-root leaves of
T'so that the resulting leaf coloration has length k and so that X, is S, where X,
is the set of colors which the root vertex can take in at least one minimal
coloration of 7. By symmetry, this value is the same for §={0} or S={1}.
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Provided the number n of non-root leaves of T'is at least 2, there is a pair {i, j} of
non-root leaves of 7'which are adjacent to a common vertex v;;. Delete leaves i
and j and their incident edges from T, and let T be the resulting tree, in which v;;
is a leaf. If n>2, delete from T" the leaf vertex v;; and its incident edge, to obtam
a second tree T”. The root leaf of T provides a root leaf for 7" and T".

We show that, for n>2, |
N(T, k)= Ny(T', k) +2N4(T", k—1). ‘\ » 1)

We distinguish the possible leaf colorations of T of length k for which X, =§
into two types; those which color i and j the same, and those which assign
different colors to i and j. Note that each type 1 coloration corresponds to a
unique leaf coloration of 7" (we color v;; the color shared by i and j, and the
remaining vertices are colored as in T') whlch by Fitch’s algorithm, has the
same length as the original coloration, and for which X, = S. This association is
one-to-one. Also, each type 2 coloration of length k gives a leaf coloration of 7"
(by restriction) which, by Fitch’s algorithm, is both of length k—1, and has
X,=S. This association is, however, two-to-one. Combining these correspond-
ences gives equation (1).

Note that for n=2, N;(T,k)=N, o) (T, k); however No (T, k)#

(0 (T’ k). In fact Ny, 1}(T k) is 2 if k 1 and is O otherwise. For n=1,

(T k)is 1 if k=0, and 1s 0 otherwise. It is convenient to incorporate these
boundary conditions into equation (1), by formally defining Ng(7", k) and
N(T", k) to be zero whenever n=1 or 2, respectively. Then, for all n>1,

NS(T, k)=NS(T,9;k)+2NS(T”’ k— 1)+dS(T, k)3
2ifn=2,8={0,1}, and k=1;
where dy(T, ky={ 1ifn=1, S={0} or {1}, and k=0; (2)

0 otherwise.
- By induction on n, Ng(T, k) depends only on S, nand k, and not on the shape
of T. Thus we can let Py(x, y be the ordinary generating function for Ny(T, k) in

which y marks k and x marks the number of leaves of T (for background refer to
Goulden and Jackson, 1983). In this way, equation (2) can be rewritten:

Py(x, y)=xPy(x, y)+2x?yPy(x, y) +ds(x, y), €)
where dy(x, y) is x if S={0}, and is 2x?y if $={0, 1}.

Solving equation (3) gives .

d .
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and so Ny(T, k) can then be routinely found as the coefficient of x"y* in this
expression.

Finally, although we have been dealing with trees with a degree 1 root, if we
delete this root leaf and its incident edge, the resulting rooted binary tree T* has
the same length and the same value of X, so that Ny(T, k)= Ng(T*, k),
completing the proof. 4

p>

COROLLARY 1. (Steel, 1989, 1993) For a binary tree with’n leaves, the number of
leaf bicolorations of length k is

(2n—3k) (n—k—1 ok
k k—1

ifk>0,and 2 if k=0.

As a second corollary, we describe a number of related quantities which
again, surprisingly, are independent of the shape of the tree. Given a rooted
binary tree T, suppose we randomly assign characters (0 or 1) to the leaves with
equal probability. Denote the probability that X,={0}, {1} and {0, 1} by
Py(T), P,(T) and P,,(T), respectively. Slmlldrly, let Eo(T), E\(T)and E,(T)
denote the expected length of the coloration, given that X, = {0}, {1}and {0, 1},
respectively.

COROLLARY 2. If T has n leaves,

—1\" : —1\"
pm)=P0) =3 (1=(F) ), ana Pam=5(1+2(5)) ©

3n—4+(3n—2)(-0.5)""!
9(1—(—0.5")

Ey(T)=E(T)= (ii)

In+2—(6n—1)(—0.5)"

EoiM =132 05

Proof. These follow from equation (4) in the proof of Theorem 1: for (i) we
simply put y=1 and extract the coefficient of x" and divide by 2", the total
number of leaf bicolorations. For (ii) note that

N(T, k)
2"P(T)’

s(T)_zk

since the quotient term is the conditional probability that the length of a

l
|
|
|
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random leaf bicoloration is k given that X,=S. We thus apply 0/dy| y=1 tO
equation (4), extract the coefficient of x",then apply to part (1) to obtain E¢(T).

REMARK. From Corollary 2, the expected length E(T) of an random leal
bicolaration of T with n leaves can be readily recovered. The result (as in Steel
(1989, 1993)) is

(3;1~2—(—0.5)"*1)

E(T)= 5

Goloboff (1991) considered a quantity (S,) which is easily shown to be equal
to E(T) and for which he derived an extraordinarily complicated recursive
formula. Independently, both Maddison and Slatkin (1991), and Archie and
Felsenstein (1993) found a simpler expression for E(T'): however, once again
this was a recursive formula.

Next, we demonstrate a simple but surprising example which shows that
grouping the colors (something which occurs in phylogenetic analysis) can lead
to diflerent conclusions as to which is the most parsimonious color for the root
of a tree. A biologically pertinent example is provided by mapping the set of the
four DNA nucleotide {A, G, C, T} onto the set of {R, Y}, where R={A, G}
(adenosine and guanine, the purines) and Y ={C, T} (cytosine and thymine,
the pyrimidines). The mapping ¢ is then defined by:

PA=¢G=R, $C=¢T=Y.

Given a tree T whose leaves are labelled with nucleotides, Fitch’s algorithm
gives the set of possible (parsimonious) root colors X, < {A,C,G, T}.
Mapping the nucleotides at the leaves onto the purines and pyrimidines, and
using the Fitch algorithm again, gives the corresponding set of (parsimonious)

root colors (¢X), = {R, Y}. For the example in Fig. 1 we have (0X),Nno(X,)=

&. Thus, when the character states are coded as nucleotides all mlmmal
colorations of the tree assign a pyrimidine (C) to the root, while when we code
them as purine/pyrimidine, we always get a purine at the root!

Our next two examples concern the fully bifurcating tree, T, i.e. the rooted
binary tree which has height k and n=2* leaves (see Fig. 2).

Suppose each leaf is assigned a color from {0,1,...,r—1}. We ask the
question, what is the smallest proportion of leaves which must be colored 0in a
leaf coloration for which all the associated minimal colorations color the root
0?7 We determine this exactly for r=2, and show that, somewhat surprisingly,
this proportion can be made arbitrarily small for trees of sufficient height.
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Figure 1. In (a) is shown a tree, each of whose leaves are assigned one of A, C or G,

and the states of the remaining vertices are assigned according to Fitch’s algorithm.

In (b) the states A and G are replaced by R (purine), and C is replaced by Y

(pyridine), and the states of the vertices are assigned with Fitch’s algorithm once

more. Note that (a) the root is assigned C, a pyrimidine, whereas in (b) the root is
assigned purine.

Figure 2. T} is a fully bifurcating tree of height 3 and with 23 =8 leaves.

THEOREM 2. For a fully bifurcating tree of height k, the minimum number of
leaves which need to be colored 0 in a leaf bicoloration Jor which X = {0} equals
the (k+ 1)th Fibonacci number.

Proof. Let us first consider, more generally, leaf colorations of T, by elements
oftheset {0, 1,. .., r—1}. Provided r < 2*, it is well defined to letf* denote the
minimum number of leaves of 7, which must be colored 050 as to allow X =4,
where 4<{0, 1,...,r—1}. Let f, =£,{0}. Clearly,

fA=0if0¢ A. )

if 0 ANB, and [A|=|B|, then f{=fE. (ii)

Also, by the standard decomposition of rooted binary trees (Goulden and
Jackson, 1983), and Fitch’s algorithm,

f,;‘+,=min{f,?+fkc:B*C=A}, (iii)

where # is the parsimony operation, described earlier.
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For r= 2, (iii) becomes

Serr=min{f{*V 11, 2},

i =min{2(" Y, i+ =min{2f >V, £} (iv)

since f{!} =0 by (i)). We first apply (iv) to preve by induction that, forallk>1,
iU, (In

L2, (12)

These statements are true for k=1. Suppose they hold for k=j, then (iv)
becomes

Sioa=l10V4f, fi80 =S v)

by (I1) and (I2), respectively.

‘Thus, we see that /%] <f;, | so that (I1) hold for k=j+ 1. Applying (I1) to
the equations in (v) gives f;, , =f|>"+£,<2f;=2f 19!} so that (I2) holds for
k=j+1.Thus (I1) and (I2) hold for all k, and so therefore does (v). Combining
the equations in (v) gives f,=f,_,+f._,, which together with the initial
conditions, f; =2, f, =3, shows that £, is the (k+ 1)th Fibonacci number. That

()

Since lim, , , f;/2*=0, the proportion of leaves which need to be assigned
color 0 in order to force X,= {0} can be made arbitrarily small, as claimed.
We conjecture that for > 2 colors,

f= Je—ptfi—p—1» Whenr=2p,
““12f_,» whenr=2p-1.

In our final example, consider the fully bifurcating tree T with n=2* leaves,
in which color 0 is assigned to the root. Randomly bicolor the remaining
verticles of the tree, progressing from the root down towards the leaves, in the
following way: once a vertex v has been colored, assign a descendant of v the
same color with probability 1 —p> 1, and different color with probability p<1
(p fixed). In this way we generate a random leaf bicoloration (the resultmg
probability distribution on the leaf bicolorations is important in phylogenetic
studies and was investigated for general trees, and p not fixed, by Cavender
(1978)). Now, some of these generated random lead bicolorations will be such -
that (when we apply Fitch’s algorithm) they give X, = {0}. Let us denote the
probability of generating such a leaf bicoloration by S(k). That is, S(k) is the
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probability that staring with state 0, a leaf coloration is generated for which all
the resulting minimal colorations assign the root its true state, 0. Similarly let
D(k) and U(k) denote the probabilities of generating the leaf colorations for
which X, = {1} and X,={0, 1}, respectively.

We are interested in what happens to these values as k— co. Intuitively, there
are two opposing factors which make the limiting behaviour of these values
unclear: as the height of the tree becomes large the probability that a leaf is
colored 0 or 1 will tend to 0.5 (suggesting that S(k) and D(k) might approach a
common value), however the number of leaves is growing exponentially, and
each leaf is more likely to be 0 than 1 (though by a difference tending to 0)
suggesting that S(k) might tend to a value strictly larger than the limiting value
of D(k). Surprisingly, the question of which factor wins depends on whether
p=4or p<i.Lets,dand udenote the limiting values of S(k), D(k) and U(k),
respectively. A proof (and an appliction to analyse the statistical consistency of
the maximum parsimony method of tree reconstruction) appears in Steel
(1989) of the following.

THEOREM 3. If p>1, then s=d=u=}. If p<j, then

;<1—2x+ ﬁ) d=;<1—2x~£>, and u=2x,

1-2p 1-2p
where x=p/(1 —2p) and A= (1 —6x) (1 —2x).

Note that s—1 as p—0, and that the values when p=} are also given by
Corollary 2(i).

3. Conclusion. Motivated by a desire to better understand the properties of
the maximum parsimony method for tree reconstruction, we have derived a
number of exact and explicit formulae involving the length function. It turns
out that these formulae have some surprising aspects, such as being
independent of tree shape, or possessing unexpected asymptotic behaviour.
Such formulae provide a more efficient and accurate way than computer-based
simulation to estimate statistical properties of the parsimony method under the
null model of random data; the results from Theorem 1 also provide a
considerable simplification of previous published formulae for the expected
length of a random leaf bicoloration (as described in the Remark following
Corollary 2). The exact formulae apply only for leaf bicolorations. It would be
useful to find similar results for leaf r-colorations, for r>2, in particular for
r=4, however, the analogue of Theorem 1 would then have to take into
account the shape of the tree.
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