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Abstract: The problem of intermediates in the fossil record has been frequently discussed ever since Darwin. The extent of 
‘gaps’ (missing transitional stages) has been used to argue against gradual evolution from a common ancestor. Traditionally, 
gaps have often been explained by the improbability of fossilization and the discontinuous selection of found fossils. Here 
we take an analytical approach and demonstrate why, under certain sampling conditions, we may not expect intermediates to 
be found. Using a simple null model, we show mathematically that the question of whether a taxon sampled from some time 
in the past is likely to be morphologically intermediate to other samples (dated earlier and later) depends on the shape and 
dimensions of the underlying phylogenetic tree that connects the taxa, and the times from which the fossils are sampled.
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Introduction
Since Darwin’s book On the Origin of Species by Means of Natural Selection, or the Preservation of 
Favoured Races in the Struggle for Life [2], there has been much debate about the evidence for con-
tinuous evolution from a universal common ancestor. Initially, Darwin only assumed the relatedness of 
the majority of species, not of all of them; later, however, he came to the view that because of the 
similarities of all existing species, there could only be one ‘root’ and one ‘tree of life’ (cf. [11]). All 
species are descended from this common ancestor and indications for their gradual evolution have been 
sought in the fossil record ever since. Usually, the improbability of fossilization or of fi nding existing 
fossils was put forward as the standard answer to the question of why there are so many ‘gaps’ in the 
fossil record. Such gaps have become popularly referred to as ‘missing links’, i.e. missing intermediates 
between taxa existing either today or as fossils.

Of course, the existence of gaps is in some sense inevitable: every new link gives rise to two new 
gaps, since evolution is generally a continuous process whereas fossil discovery will always remain 
discontinuous. Moreover, a patchy  fossil record is not necessarily evidence against evolution from a 
common ancestor through a continuous series of intermediates—indeed, in a recent approach, Elliott 
Sober (cf. [11]) applied simple probabilistic arguments to conclude that the existence of some interme-
diates provides a stronger support for evolution than the non-existence of any (or some) intermediates 
could ever provide for a hypothesis of separate ancestry. Moreover, some lineages appear to be densely 
sampled, whereas of others only few fossiliferous horizons are known (cf. [10]). This problem has been 
well investigated and statistical models have been developed to master it (see e.g. [6], [7]), [12]).

In this paper, we suggest a further argument that may help explain missing links in the fossil record. 
Suppose that three fossils can be dated back to three different times. Can we really expect that a fossil 
from the intermediate time will appear (morphologically) to be an ‘intermediate’ of the other two fos-
sils? We will explore this question via a simple stochastic model.

In order to develop this model, we fi rst state some assumptions we will make throughout this paper: 
fi rstly, we will consider that we are sampling fossil taxa of closely related organisms and which differ in a 
number of morphological characteristics. We assume this group of taxa has evolved in a ‘tree-like’ fashion 
from some common ancestor; that is, there is an underlying phylogenetic tree, and the taxa are sampled 
from points on the branches of this tree.

It is also necessary to say how morphological divergence might be related to time, as this is impor-
tant for deciding whether a taxon is an intermediate or not. In this paper, we make the simplifying 
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assumption that, within the limited group of taxa 
under consideration (and over the limited time 
period being considered), the expected degree of 
morphological divergence between two taxa is 
proportional to the total amount of evolutionary 
history separating those two taxa. This evolution-
ary history is simply the time obtained by adding 
together the two time periods from the most recent 
common ancestor of the two taxa until the times 
from which each was sampled (in the case where 
one taxon is ancestral to the other, this is simply 
the time between the two samples). This assump-
tion on morphological diversity would be valid (in 
expectation) if we view morphological distance as 
being proportional to the number of discrete char-
acters that two species differ on, provided that two 
conditions hold: (i) each character has a constant 
rate of character state change (substitution) over 
the time frame T that the fossils are sampled from, 
and (ii) T is short enough that the probability of a 
reverse or convergent change at any given charac-
ter is low. We require these conditions to hold in 
the proofs of the following results. We will discuss 
other possible relations of morphological diversi-
fication and distance towards the end of this 
paper.

The simplest scenario is the case where the three 
samples all lie on the same lineage, so that the 
evolutionary tree can be regarded as a path 
(cf. Fig. 1). In this case, the path distance (and 
hence expected morphological distance) between 
the outer two fossils is always larger than the 
distance that either of them has from the fossil 
sampled from an intermediate time. But for 
samples that straddle bifurcations in a tree, it is 
quite easy to imagine how this intermediacy could 
fail; for example, if the two outer taxa lie on one 
branch of the tree and the fossil from the interme-
diate time lies on another branch far away 
(cf. Fig. 2). But this example might be unlikely to 
occur, and indeed we will see that if sampling is 
uniform across the tree at any given time, in expec-
tation the morphological distances remain inter-
mediate even for this case (cf. Fig. 2). Yet for more 
complex trees, this expected outcome can fail, and 
perhaps most surprisingly, the distance between 
the earliest and latest sample can, in expectation, 
be the smallest of the three distances in certain 
extreme cases.

Thus, in order to make general statements, we 
will consider the expected degree of relatedness of 
fossils sampled randomly from given times. Our 

results will depend solely on the tree shape (includ-
ing branch lengths) of the underlying tree and the 
chosen times.

Results
We begin with some notation. Throughout this 
paper, we assume a rooted binary phylogenetic tree 
to be given with an associated time scale 0 � T1 � 
T2 � T3. The number of Ti-lineages (of lineages 
extant at time Ti) is denoted by ni. For instance, in 
Figure 3, the number n1 of T1-lineages is 3, whereas 
the numbers n2 and n3 of T2- and T3-lineages are 
both 5. If not stated otherwise, extinction may 

Figure 2. For samples taken from different lineages of a tree, the 
distance d1,3 of one particular sample from time T1 to the one of T3 
can be smaller than the distance of either of them to the sample taken 
at time T2. Yet in expectation we always have E1,3 � max{E1,2, E2,3} 
for two-branch trees. For more complex trees this can fail as we show 
in Example 2.7.

tim
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Figure 1. When the tree consists of only one lineage from which 
samples are taken at times T1, T2 and T3, then clearly the distance d1,3 
is always larger than d1,2 and d2,3. Consequently, E1,3 � max{E1,2, E2,3}.
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occur in the tree. Every bifurcation in the tree is 
denoted by bi, where b0 is the root. Note that in a 
tree without extinction, the total number of bifur-
cations up to time T3 (including the root) is n3 − 1. 
For every bi let ti denote the time of the occurrence 
of bifurcation bi. We may assume that the root is 
at time t0 = 0.

Now, for every bi, we make the following defi -
nitions:

 P n n n ni
j k

j i
l

k i
r

j i
r

k i
l,

, , , ,:= ⋅ + ⋅  

for all

 j k j k, , , ,∈{ } ≠1 2 3  

where nj i
l

,  denotes the number of descendants the 
subtree with root bi has at time Tj to the left of its 
root bi, and nj i

r
,  is defi ned analogously for the 

descendants on the right hand side of bi.
It can be seen that bifurcations for which at least 

one branch of offspring dies out in the same inter-
val where the bifurcation lies always have Pi

j k, -
value 0. Consequently, if either t0 � ti � T1 or 
T1 � ti � T2 or T2 � ti � T3 and one of bi’s branches 
becomes extinct in the same interval, respectively, 

then Pi
j k,  is 0 for all j, k. Note that the number Pi

j k,  
denotes the number of different paths in the tree 
from time Tj to time Tk in the subtree with root bi 
and in which no edge is taken twice.
Example 2.1. Consider the tree given in Figure 3. 
Here, the values Pi

j k,  for bifurcation b1 corre-
sponding to time t1 are P n n n nl r r l

1
1 2

1 1 2 1 1 1 2 1
,

, , , ,= ⋅ + ⋅  = 
1 · 2 + 1 · 1 = 3, P1

1 3,  = 1 · 3 + 1 · 1 = 4 and P1
2 3,  = 

1 · 3 + 2 · 1 = 5.

In the sampling, select uniformly at random one 
of the Ti-lineages as well as one of the Tj-lineages 
to get the expected length Ei,j of the path connect-
ing a lineage at time Ti with one at time Tj in the 
underlying phylogenetic tree. Then, the expectation 
that a fossil from the intermediate time T2 also will 
be an intermediate taxon of two taxa taken from 
T1 and T3, respectively, refers to the assumption 
that E1,3 � max{E1,2, E2,3}. We will show in the 
following lemma that this last inequality can fail 
and describe the precise condition for this to occur. 
Moreover, we later show that E1,3 can be strictly 
smaller (!) than both E1,2 and E2,3—that is the 
temporally most distant samples can, on average, 
be more similar than the temporally intermediate 
sample is to either of the two.

Note that if Pi
j k,  is 0, the corresponding branch 

does not contribute to the expected distance from 

Figure 3. A rooted binary phylogenetic tree with three times T1, T2, T3 at which taxa have been sampled. The dotted branches refer to taxa 
that do not contribute to the expected distances from one of these times to another and thus are not taken into account. On the other hand, 
bifurcation b2 at time t2 shows that extinction may have an impact on the expected values. Such branches have to be considered.
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one time to another. We can therefore assume 
without loss of generality that all bifurcations bi 
have at least one descendant on their left-hand side 
and at least one on their right-hand side, each in at 
least one of the times T1, T2, T3. In Figure 3, 
branches that therefore need not be considered are 
represented with dotted lines.

In order to simplify the statement of our results, 
for all bifurcations bi set

 Q P
n ni

j k i
j k

j k

,
,

:= ⋅2
  

for all

 j k j k, , , ,∈{ } ≠1 2 3  

Lemma 2.2. Given a rooted binary phylogenetic 
tree with times 0 � T1 � T2 � T3 and the root at 
time t0 = 0. Then, E1,3 � E1,2 if and only if

 T T Q Q ti i i
i t Ti
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0 1
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: < <
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In the above bracket, the three summands refer 
to different paths from time T1 to time T3. The fi rst 
summand belongs to those paths that go directly 
from T1 to T3 and thus have length T3–T1. There 
are n3 such ways as every T3-lineage has an ances-
tor in T1. The second summand sums up all paths 
going along one of the bifurcations bi for i ≠ 0. For 
every i, there are by defi nition exactly Pi

1 3,  such 
paths. Similarly, the third summand refers to all 
paths along the root b0, whose length is determined 

by taking the distance from T1 to the root plus the 
distance from there to T3.

As there are altogether n1n3 different paths from 
T1 to T3 in the tree, we have:
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Then, by (1) and (2), we get

 
E

n n
n n T n n n T

P ti i
i t Ti

1 3
1 3

1 3 3 1 3 3 1

1 3

0

1 1 2

2
1

,

,

:

( )= ⋅ ⋅ + −
⎛

⎝
⎜

− ⋅
⎞

⎠
⎟∑

< <

,,

 

and thus

(3) E T n
n

T Q ti i
i t Ti

1 3 3
1

1
1

1 3

0

2

1

,
,

:
.= + − − ∑

< <
 

Analogously,
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Thus, with (3) and (4), we can conclude:
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Corollary 2.3. For a given tree there exist times 
0 � T1 � T2 � T3 such that E1,3 � E1,2 if and only 
if Σ

i t T i i
i

iQ Q t
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− ≤ , then by Lemma 
2.2 we need T2 � T3 in order to get E1,3 � E1,2. 
Hence, there are no values 0 � T1 � T2 � T3 such 
that T3 – T2 fulfi lls the required condition, and so 
E1,3 � E1,2 for all choices of Ti. Conversely, suppose 

Σ
i t T i i

i
iQ Q t

:

, ,( )
0

1 3 1 2

1

0
< <

− > . Then, select T1, T2 with 0
 

� T1 � T2 and set

 T Q Q t Ti i i
i t Ti

3
1 3 1 2

2
0

1
2

1

: , ,

:
= ⋅ −( ) +∑

< <
 



65

Expected anomalies in the fossil record

Evolutionary Bioinformatics 2008:4 

Then, T3 � T2 and
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By Lemma 2.2, this choice of 0 � T1 � T2 � T3 
leads to E1,3 � E1,2.

Corollary 2.4. If either (i) n1 = 2 or (ii) no extinc-
tion occurs in the tree and n2 = n3, then E1,3 � 
E1,2.

Proof. (i) Note that if n1 = 2, obviously only one 
bifurcation, say îb (for some î  such that 0 � ît  
� T1), contributes to the number n1 of lineages 
at time T1, all the branches added by additional 
bifurcations become extinct before T1. Thus: 

1,3
îP , 1,2

îP  ≠ 0 and Pi
1 3, , Pi

1 2,  = 0 for all i ≠ î .
Analogously to the proof of Lemma 2.2 we have 
for n1 = 2: n1n3 = 2n3 = n3 + 1,3

îP  and n1n2 = 2n2 
= n2 + 1,2

îP . Thus, 1,2
ˆ2 in P=  and 1,3

ˆ3 in P= .

Therefore, 1,2 1,3
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it follows with Corollary 2.3 that E1,3 � E1,2.

(ii) In this case, obviously Q Qi i
1 2 1 3, ,=  for all i : 
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i
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Thus, by Corollary 2.3, E1,3 � E1,2.

Lemma 2.2 essentially states that the expected 
degree of relatedness from taxa of time T1 to taxa 
of time T3 can be larger than the one to taxa of 
time T2, but it requires the distance from T2 to T3 
to be “small enough”. Whether such a solution 
is feasible can be checked via Corollary 2.3. 
Lemma 2.2 shows already how the role of inter-
mediates depends on the times the fossils are 
taken from. Corollary 2.4(i) on the other hand 
shows how the tree itself has an impact on the 
expected values: if the tree shape (including 
branch lengths) is such that at time T1 only two 
taxa exist, then the just mentioned scenario can-
not happen as the condition of Corollary 2.3 is 
not fulfi lled.

However, we can prove an even stronger result, 
namely that not only E1,3 � E1,2 is possible, but 
E1,3 � min{E1,2, E2,3} can be obtained for a suitable 
choice of times T1, T2, T3. For this, we need the 
following lemma.

Lemma 2.5. Given a rooted binary phylogenetic 
tree with times 0 � T1 � T2 � T3 and the root at 
time t0 = 0. Then E1,3 � E2,3 if and only if
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Proof. As in the proof of Lemma 2.2, we have 
(cf. (3))
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Thus, E1,3 � E2,3 if and only if
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which holds precisely if
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With the help of the two lemmas we can now 
state the following theorem.

Theorem 2.6. Given a rooted binary phylogenetic 
tree with times 0 � T1 � T2 � T3 and the root at 
time 0. Then, E1,3 � min{E1,2, E2,3} if and only if 
the following two conditions hold:
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Proof. The Theorem follows directly from Lemmas 
2.2 and 2.5.

The following example demonstrates the infl u-
ence of times 0 � T1 � T2 � T3 according to the 
above theorem.

Example 2.7. Consider again Figure 3.
(1) Assume t1 = 15, T1 = 100, t2 = 107, t3 = 109, 

T2 = 110, T3 = 130. Then, E1,2 = 137.33, E2,3 = 
155.28 and E1,3 = 155.33. Hence, for this choice 
of times, we have E1,3 � max{E1,2, E2,3}.

(2) Consider the same times as in the previous case, 
but choose T2 = 129 instead of T2 = 110. This 
means to move T2 further away from T1 and 
closer to T3. This change is enough to give 
completely dif ferent expected values: 
E1,2 = 156.33, E2,3 = 166.68 and E1,3 = 155.33. 
Hence, for this choice of times, we have 
E1,3 � min{E1,2, E2,3}.

Discussion
The analysis of the fossil record provides an 
insight into the history of species and thus into 
evolutionary processes. Stochastic models can 
provide a useful way to infer patterns of diversi-
fi cation, and they form a useful link between 
molecular phylogenetics and paleontology [8]. 
Such models would greatly benefi t from incorpo-
ration of potential fossil ancestors and other 
extinct data points to infer patterns of evolution. 
In this paper we have applied a simple model-
based phylogenetic approach to study the expected 
degree of similarity between fossil taxa sampled 
at intermediate times.

‘Gaps’ in the fossil record are problematic [10] 
as they can be interpreted as ‘missing links’. 
Therefore, numerous studies concerning the 
adequacy of the fossil record have been conducted 
(see, for example, [3], [9], [13]), and it is frequently 
found that even the available fossil record is still 
incompletely understood. This is particularly true for 
ancestor-descendant relationships (see, for instance, 
[4], [5]). For example Foote [5] reported the 
probability that a preserved and recorded species has 
at least one descendant species that is also preserved 
and recorded is on the order of 1%–10%. This 
number is much higher than the number of identifi ed 
ancestor-descendant pairs. Thus, it remains an 
important challenge to recognize such pairs [1]. This 
is also essential with regard to ancestor-intermediate-
descendant triplets, as it is possible that there are in 

fact fewer ‘gaps’ than currently assumed, i.e. that 
intermediates are present but not yet recognized. 
Such issues have an important bearing on any 
conclusions our results might imply concerning the 
testing of hypotheses of continuous morphological 
evolution, or concerning the shape of the underlying 
evolutionary tree based on the non-existence of 
certain intermediates.

Another challenge is to investigate different 
phylogenetic models for describing the expected 
degree of morphological separation between differ-
ent fossil taxa sampled at different times. Our fi nd-
ings strongly depend on the assumption that 
morphological diversifi cation is proportional to the 
distance in the underlying phylogenetic tree. This 
is justifi ed if morphological difference is propor-
tional to the number of differing discrete characters, 
that each of these characters changes at a constant 
rate over the time period of sampling, and that 
homoplasy is rare. This last assumption requires the 
rate of character change to be suffi ciently small in 
relation to the time period of the sampling—the 
appearance of reverse or convergent character states 
will lead to a more concave (rather than linear) 
relationship between morphological divergence and 
path distance. A similar concave relationship might 
be expected for continuous morphological evolution 
as described by neutral Brownian-motion.

Thus, the impact of different assumptions on 
the role of intermediates could be further investi-
gated. But even if we assume that diversifi cation 
is proportional to time, there may be other ways 
to measure ‘distance’ that could be usefully 
explored—for instance, one could defi ne the dis-
tance between two taxa to be the maximum (rather 
than the sum) of the two divergence times of the 
taxa back to their most recent common ancestor. 
This defi nition of distance allows the degree of 
relatedness to be higher for taxa on the same clade 
than for other taxa. In this case, there exist analo-
gous results to Lemmas 2.2 and 2.5 (results not 
shown), but the formulae are somewhat different, 
particularly for Lemma 2.5.

Acknowledgement
We would like to thank Elliott Sober for bringing 
the mathematical aspects of intermediates in the 
fossil record to our attention, and for helpful com-
ments. We also thank Matt Philips, David Penny 
and two anonymous reviewers for some helpful 
suggestions.



67

Expected anomalies in the fossil record

Evolutionary Bioinformatics 2008:4 

References
[1] Alroy, J. 1995. Continuous track analysis: A new phylogenetic and 

biogeographic method. Syst. Biol., 44:152–78.
[2] Darwin, C.R. 1859. On the Origin of Species by Means of Natural 

Selection, or the Preservation of Favoured Races in the Struggle for 
Life. Published again in 2001 by Adamant Media Corporation, ISBN. 
1402171935.

[3] Durham, J.W. 1967. The incompleteness of our knowledge of the 
fossil record. J.Paleont., 41:pp. 559–65.

[4] Engelmann, G.F. and Wiley, E.O. 1977. The place of ancestor-descen-
dant relationships in phylogeny reconstruction. Syst. Zool., 26:1–11.

[5] Foote, M. 1996. On the probability of ancestors in the fossil record. 
Paleobiol., 22(2):141–51.

[6] Marshall, C.R. 1990. The fossil record and estimating divergence 
times between lineages: maximum divergence times and the impor-
tance of reliable phylogenies. J. Mol. Evol., 30:400–8.

[7] Marshall, C.R. 1990. Confi dence intervals on stratigraphic ranges. 
Paleobiology., 16(1):1–10.

[8] Nee, S. 2004. Extinct meets extant: simple models in paleontology 
and molecular phyloge-netics. Paleobiology., 30(2):172–8.

[9] Newell, N.D. 1959. Adequacy of the fossil record. J. Paleont., 
33:488–99.

[10] Schoch, R.M. 1982. Gaps in the fossil record. Nature., 299:490.
[11] Sober, E. 2008. Evidence and Evolution: the logic behind the science. 

Cambridge Unversity Press (in prep.).
[12] Strauss, D. and Sadler, P.M. 1989. Classical Confi dence Intervals and 

Bayesian Probability Estimates for Ends of Local Taxon Ranges. 
Math. Geol., 21(4):411–27.

[13] Valentine, J.W. 1989. How good was the fossil record? Clues from 
the Californian Pleis-tocene. Paleobiol., 15:83–94.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


