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1. INTRODUCTION

The purpose of the present paper is to develop in full generality the
mathematical tools that are being used in the spectral analysis /closest tree
method [H, HP1, HP2, SESP, SHSE, HPS] for the reconstruction of
evolutionary trees in Cavender’s model [C1] and in Kimura’s three-param-
eter model [K1, K2, K3]. All sections of this paper but the very last can be
read with zero knowledge from biology. The last section explains the
biological significance of the results from previous sections. An important
tool of our work is the Fourier calculus over finite Abelian groups; we
acknowledge the influence of Evans and Speed [ES]. We have already
announced part of the results of the present paper without proofs in
[SES]. The following lemma summarizes the basic facts that we need on

*Research supported by the A. v. Humboldt-Stiftung and the U.S. Office of Naval
Research under the Contract N-0014-91-J-1385.

200

0196-8858 /93 $9.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

FOURIER CALCULUS ON EVOLUTIONARY TREES 201

characters and Fourier transform. We use the additive notation in Abelian
groups. ’

Lemma 1. Let G be a finite Abelian group, then

(i) the character group G is isomorphic to G.

(i) if f: G = C is a complex-valued function and f: G > C is defined
by

flx)= X x(g)f(g),

geG

then forall g € G
1 — .
f(g) = l—axgéx(g) (x)-

(iii) The characters of a finite direct product of finite Abelian groups are
exactly the sums of characters. A

Proof. Sée, [K3]. O

Assume A = (a;;) is a p X g matrix with integer entries. Let us be
given a finite Abelian group G and the elements of G? written in a vector.
form x =(x,,...,xq)T, where x; € G. Define the vector y &€ G? by
y = (y,...,¥,)7, such that

(We want to abbreviate this fact to Ax =1y and do not abuse this
formalism.) Let us be given p;: G — C functions (j = 1,..., g). Define for
x=(xy,...,x,)" € G,

F(x) = jl:[l p;(x;).

Fory = (y;,...,¥,)" € G, let

Y F(x).
xeG9
Ax=y

f(y)
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Tueorem 2. If x = (x,..., x,) € G?, then

fx) = H ) p,(X)(Za.,X. (x).

=1xeG i=1

Proof. By definition,

fFO) =L xmWfy) = L x(y) L F(x)= L F(x)x(4x).

yeG? YEG? xeG: xeG?
Ax=y

Now we have

x(Ax) = EX:’((AX):’) = i=I_I1Xi( Zaijxj) = H HXi(aijxj)‘

j=1 j=1li=1

Hence,

fxy =X I_Ilf,(x)I_[)(,(aU j l—I ZP,(X)I—IX,(%X,)

xeG?/=1 j=1xeG
as claimed. O

Note that for 4 =[1,1}, x = (f, g)7, Theorem 2 gives back a special
instance of the classical result for the Fourier transform of the convolu-

tion,f*g=f-§.

2. Our MobpEeL AND I1s Basic IDENTITIES

First we describe the mathematical model, which we work with. Let us
be given a tree T with leaf set L and one arbitrary leaf R, called a root.
We assume that no vertex has degree two. Assume that we are given a
finite Abelian group G and for the edges e € E(T) we have independent
G-valued random variables &, with distributions p,(g) = Prob(¢, = g),
such that T, ¢ 5 p.(g) = 1. We call the set of p, distributions (¢ € E(T)) a
transition mechanism and denote it by p.

Take G"~! = the set of leaf colourations o: L\{R} — G endowed with
pointwise operation; we denote the value of ¢ at [ by o;. Produce a
random G-colouration of the leaves of the tree by evaluating &, for every
edge and giving as colour to the leaf / the sum of group elements along
the unique R/ path. Let f, denote the probability that we obtain the leaf
colouration o: L\ {R} — G in this way. In case we want to emphasize the
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dependence from the tree 7 and the transition mechanism p, we will write
f.(T, p).

Let x = (x, € G: 1 € L\{R)) be an ordered (n — 1)-tuple of charac-
ters. Then y € G"~', and y acts on G"~! according to Lemma 1(iii). For
e € E(T), set

L, = {l € L: e separates [ from R in T}.

For e € E(T) and y € G" ™}, set

Z X1 (1)

leL,

s0 x, € G. For h € G, e € E(T) define

L(h) = X h(8)p.(8) - (2)
geCG
re= 11 L(x.)- ' (3)
e E(T)
We have the following Fourier inverse pair: |

Tueorem 3. With x(o) = I, ¢ \rX();

re= Y x(o)fs (4)
o,eGn‘l
LY w@ (5)
= — ar,.
fo' lGln—lxeGn,IX X

Proof Observe that (4) and (5) are equivalent by Lemma 1(ii) for any
f: G* 1> C and r: G"~! - C. (We decided not to use the usual hat
notation for this pair since their significance and frequent occurrence in
this paper.) To prove (4) with our f, and r,, apply Theorem 2 in the
following setting: p =n — 1, g = |E(T)|, A = (a,,) with

_ 1 if edge e lies on the Ri path
e 0 otherwise.

Take = = (£,: e € E(T)) the vector of random group elements selected
independently on the edges, p,(x) = Prob(¢, = x), T = the vector of the
resulting random leaf colouration. Observe that the independence implies
F(x) = Prob(E = x), and f(y) = Prob(T =y). O
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For later use we define the polynomials R, = L, cgn-1x(0)x,, with
independent variables x,. Observe that while R, is tree independent,
r, =R, I 5, is tree dependent.

THEOREM 4. For the transition mechanisms p©, p* on the tree T and
o € G"! we have .

k
X . izl_llfg,(T, p?) = f(T., p*),

(oy,09,..., o)
g toy+ e to=0
O}EG" 1
where for g € G
k .
pi(g) = z I_Ilpi”(g,-)-
. 1=

Proof. " Define for o € G"™,
k ..
f(o) = Y [1/,(T. p®)
(01,09,..., o) =1
o toyt o o =0
o',EG"_l

and f,(0) = f,(T, p©). We are going to prove f(o) = f(T, p*). Applying
Theorem 2 to the group G" ! in the setting p=k, g=1, A=
1,1,...,1), plo) = f(o) yields

k
fx) = i=l_llf,-(x);
and by Theorem 3 and (3)

)= T1 L xA8)p¥(g).

ecE(T) geG

Therefore,

F) =TI X xAe)pi(e).

e€E(T) geG

FOURIER CALCULUS ON EVOLUTIONARY TREES 205

Finally, by Theorem 3,

Y x(o)f(e) =f(T,p*),

xeG"!

|G|n—l

and by Lemma 1(ii),

) o
f(ff)=W X x(0)f(o),

XeGn—l
vielding the wanted f(o) = f (T, p*). O

We note that a special case of Theorem 4 occurred in the Ph.D. thesis
of the second author [S). An algebra-oriented reader may be interested in
the fact that Theorem 4 boils down to the commutative law in the group
algebra C[G"!].

-~

3. MaiN IDENTITIES

For e € E(T), 0 # g € G, define p®% € G"~! in the following way:
pi¢=0forle¢ L, | +#R,and pff =g for ! €L,. Define €(T) = {p©*:
e € E(T), 0 # g € G). For the following theorem (and later on) we
assume, that for every e € E(T), p,(0) is sufficiently close to 1, and hence
r, is also sufficiently close to one; therefore “logarithm” (such that
logl =0 and log (ab) = loga + log b sufficiently many times) can be
given a satisfactory definition. Having the logarithm, complex exponentia-
tion a® will be exp(b log a), as usual.

THEOREM 5. For Ogn-1 # p € G"™ 1, p & €(T),

1"[ ,.;((p) =1;

XEG’"n—l

for p = p©% € €(T),

I ,;(p)= Hle(h);«g)icl"‘z;

xeGn ! heG

and for p = Ogn-1,

[T r» = T1 TTLm .

xeGnt ecE(T) heb

The identities remain valid with all exponents conjugated.
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Proof. By (3) we have

l—I r’\,}/(p) = n H le(h)):(X(P)i X¢=h)’

XGGA"7‘ eeE(T) hel

(D)-(2) altogether with x(p) = IT,c ;\(gyx,(p,) imply

T(p)ix.=h= ¥ { IT x(ep): Zx,=h}. (6)
x,eé: e L\(R} lel,
le L\{R}

Now it is obvious that for p = 05n-1,

> {1: ):x,=h} = |G|"2,
x€6: leL,
le L\(R}

since having fixed an arbitrary j € L,, we have |G| choices for y, for any

I € L\{R, j}, and finally a unique choice for X;- Similarly, for p = p*¢ €
€(T),

z { [T x(p): Zx,=h}=h(g)lc|"‘2,
x,eé: {eL\(R} lel,
le L\{R}

since for any xy = (x;: I € L\{R}), x(p*%¢) = h(g) and having fixed an
arbitrary j € L,, we have |G| choices for x, for any [ € L\{R, j} and,
finally, a unique choice for X;» like above.

The nontrivial part of the proof is the first identity. By the definition of
&(T), for Ogn-1 # p & €(T), either there

(a) exists [ € L,, I + R with p, # 0, or
(B) exist [, j € L,, such that p, # p;-

In (), take an 7 € G such that n(p,) # 1. Such an 7 exists, since by
Lemma 1(ii) the matrix [ x(g)] is regular, and it already has a column full
of ones, namely, for p = 0. In (6), assign to the character y =
(X15+++» Xp» -3 Xn—1) the character x = (xy,...,m + xp-.., xy_p)- Ob-
serve that, on the one hand, we just permuted the terms in the sum (6) and
therefore fixed the value of the sum; on the other hand, we multiplied the
sum by n(p,) # 1. Hence, the sum is 0.

In (B), take an 1 € G such that n(p; — p,) = n(pIn~p,) # 1. Such
an 7 exists, since like in (a), p; — p; would yield a second column full of
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ones in [x(g)], contradicting the regularity. In (6), assign to the character
X=Xty Xpso o2 Xjo - os Xo—y) the character x = (xy,..., x, —
Myeees Xj F My Xp—y)- Observe that, on the one hand, we just per-
muted the terms in the sum (6) and therefore fixed the value of the sum;
on the other hand, we multiplied the sum by n(p; — p;) # 1. Hence, the
sum is 0.

The proof of the conjugated exponent version is virtually the same and
we leave it to the reader. O

We give an alternative logarithmic formulation of Theorem 5, since this
logarithmic formulation was discovered and published for G = Z, [H] and
G = Z, X Z, [SHSE!]. Let K = [h(g)] denote the matrix, in which rows
correspond to 4 € G and columns correspond to g € G;let H= [x(a)]
denote the matrix, in which rows correspond to y € G"~! and columns
correspond to o € G"~!. Let the logarithm of a vector denote the vector
of logarithms of the components. Let f denote the vector of .f’s (o €
G"™1), and let p, denote the vector of p,(g)'s (¢ € G) for every e € E(T).

THEOREM 6.
[H™'log Hi], S

0, if0#p & €(T),
= [K“longe]h, if p=p=" e €(T), @)
‘ EeeE(T)ZhEG[K_llOnge]w if p=0.

Proof. Take the logarithm of the conjugated exponent versions of the
identities in Theorem 5 and use the identities for the adjugates

¥ — -1 ¥ — -1

Gl TG

to eliminate the powers of group orders. O

4. SERIES EXPANSION

We say that a vector x of x_’s (o € G" 1) is regular, if L, x, =1, x, is
non-negative real, x, > 1. For the expansions in this section regularity is a
convenient sufficient condition, although it is not necessary.
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THeoREM 7. For a regular x and o # 0,

P (_1)r+1 roy

r o

H 'log Hx| = .
‘[ og Hx|, I

- r
r=1 (o),...,0,):
o+ +o,=0

,
g;#0

Proof. We use regularity to establish

Y x(o)x| <xq. (8)
o:o#0
Indeed,
Z X(U)xo < Z IX(U)llqu'—_ Z xu’=1_‘x0<x0‘
og:o#0 o:0#0 o:o+0

We start with
xO’
[Hx], = Xx(o)x,=xo|1+ X x(o)=—]|.
o o:0#0 Xo

We combine (8) with the fact that radius of convergence of the Taylor
seriesof logzat z=11is 1.

® _ )r+1 x(r r
[log Hx], = log x, + Z———*( )y X(‘T)_) -
r=1 r o100 X9
Hence
1 % (_l)r+l x
[H™'log Hx], = —— x(p| L x(e)=>2
p |G| lr=1 r X oy ok 0 1 Xq

[ £ o)

o,:0,#0 X9
r+1
_ 1 i (_1) xolxa'z T x(r,
- |G|n—1 r E x
r=1 (oy,...,0,): 0
a;#0

XY x(—=p+a, + - +0).
x
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Now observe that £ x(—p + o, + - +g,) vanishes, except if —p + oy
+ +++ +0, = 0 according to the summation in the theorem; and in this
case its value is |G|"~". O

CoroLLARY 8. For a regular x and o # 0, we have the first- and
second-order approximations

[H"log Hx], = x,/xq,

X 1 x
-1 -~ % __ AN
[H log Hx]o~ 5 Z oz
0 (oy,03): 0
o to =0
oy, 0,70

respectively.

Let p** denote the k-order convolution of the transition mechanism
with itself as defined in Theorem 4; now Theorems 4 and 7 and a standard
inclusion—exclusion argument allows for the following expansioi.

\

CoroLLarY 9. For regular x and o # 0,

L = o (=DM (T, )
1 = V
[#ttog it], = X ¥ gy B

5. INVARIANTS

Let us be given a tree T and another tree T’ on the same leaf set L and
root R. Consider the indeterminates x, for o € G"~! again. A multivari-
ate function g(...,x_,...) is an invariant of the tree T, if g vanishes
after the substitution of f (T, p)’s into x_’s, for any transition mechanism
p of T. We expect that an invariant is non-zero for a typical substitution of
f,(T', p'ys into the x,’s; and hence searching for the tree T’ and its
transition mechanism p’ that resulted in the observed f_, we may reject a
wrong candidate T, using its invariant(s). Consider

Split(T) = {L(T): e € E(T))

and observe that every element of Split(7T) is represented by a unigue edge
e, since T has no vertex of degree two. Call an edge e € E(T) passive for
(T, p), if p0) =1. Consider the set of ordered pairs (tree, transition
mechanism) on the same fixed leaf set L and root R; and define a relation
~ by (T, p) ~ (T, p")iff a (T", p”) can be reached from both by contract-
ing passive edges. It is easy to see that ~ is an equivalence relation. For
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p € G"~1, define the tree independent C" — C functions

6,= Il RV -1

p A
xeGn!

in a neighborhood of x, = 1, x, = 0. For 0 # p & €(T), on the basis of
Theorem 5, we term the & p’s as the canonical invariants of the tree T.

Now we are ready to state the main results of this Section; writing p, in
vector form we put p(0) into the first coordinate.

TueoreM 10.  Assume that for the transition mechanisms p and p', for
any edge e the vectors p, and p, are sufficiently close to (1,0,..., 0T.

@) Iff,(T, p) satisfies the canonical invariants of T', then the elements
of Sphit(T)\ Split(T") are represented by passive edges in T.

(i) If f,(T, p) satisfies the canonical invariants of T' and f,(T', p)
satisfies the canonical invariants of T, then (T, p) ~ (T, p".

(i) If a leaf colouration probability distribution f, comes from both
(T, p) and (T", p"), then (T, p) ~(T", p".

(iv) The canonical invariants of the tree T are algebraically independent.

Proof. () Take an e € E(T) such that L, & Split(T"). Then p" &
&(T") for 0 + h € G; and the hypothesis of (i) implies [H ™! log Hfl,e» = 0
for all &+ 0. On the other hand, (7) implies [H™'log Hf],cr =
[K~!log Kp,], for all h # 0. Hence, [K™' log Kp,], = 0 for all & # 0.
In other words, K~ ! log Kp, = (x,0,...,0)T for some number x, and
hence log Kp, = (x, x,..., x)T, Kp, = (exp(x), exp(x), ..., exp(x)7T, and
finally p, = (exp(x),0,...,0); ie., the edge e must have been passive.

(i) is a simple application of (i). Observe that the hypothesis of (iii)
implies the hypothesis of (ii), and hence the conclusion of (i) holds.

We finish the proof by (iv). We prove more: the Ep’s are algebraically
independent for p € G"~!. By the multivariate Taylor formula the 3,’s
are algebraically independent iff the &, + 1’s are. Suppose that

A, I (5, + )" =LA [T Ry Q)

s peGT s xeG"!

is identically zero in a neighborhood of x, = 1, x, = O with a certain finite
set of complex coefficients A, and non-negative integer exponents i, .. We
may assume without loss of generality that s # s’ implies that for some p
we have i, # i, .. Since the invertible linear transformation H turns the
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x,’s into the R ’s, we may study the vanishing of (9) in the independent
variables R s, all in a neighborhood of one. Having independent vari-
ables, the only way of vanishing (9) is cancellation; i.e., for some s # s" and
all y € G*™1,

Y i, x(p)= ¥ i, x(p) ‘ (10)

The matrix H and its conjugate H are regular; hence (10) implies
i, =i, foral p € G""! a contradiction. O

The reader might ask if logarithms and all the resulting fuss about
smallness of some quantities are necessary to obtain our results. Therefore
we show a simple example to point out that Theorem 10(iii) turns false if
we drop these conditions. Take an arbitrary tree T and define the
transition mechanism by p,(g) = 1/|G| for all e € E(T), g € G. Clearly,
f,, will follow the uniform distribution independently of the topology of
the tree, contrary to Theorem 10(iii).

In the rest of this section we restrict ourselves to G = Z3". For an
arbitrary given 0 # p € (Z7')*"!, we define the polynomial g,-of all x,’s:

- I r- I A
xezyy xe@mrh
x(p)=1 x(p)=-1

Clearly, we obtained polynomial invariants, of which most of Theorem 10
can be easily told, with the annoying exception of their algebraic indepen-
dence. In fact, we conjecture that the polynomials §,, together with the
polynomial R, — 1 = L£_x, — 1, are algebraically independent.

It is worth making the following comment here. Evans and Speed [ES]
conjecture that “the number of algebraically independent invariants and
the number of free parameters among the p,(g)'s obtained by an informal
parameter count add up to the number of variables x,.” Their first
problem seems to have been to set candidates for these independent
invariants. We have the suggestion above. Assume that for g # 0, plg)is
a variable and p,(0) =1 — L, ,(p.(g); then the number of free parame-
ters is |E(T)|(2™ — 1), the number of variables x, is 2m(n=1 the number
of canonical invariants &, is 277D — [€(T)] - 1= 2min=b —
[E(T)I(2™ = 1) — 1; and actually, we have one more invariant, R, — 1 =
¥,x, — 1. The numerology works, but a positive result here would seem
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to involve algebraic geometry. Our Theorem 10(i) is some support for the
conjecture of Evans and Speed.

6. KIMURA’S MODELs oF MoLeEcULAR EvOLuUTION

One assumes that the process of evolution is described by a tree. In this
tree the labelled leaves denote some existing species represented by
corresponding segments of aligned DNA sequences; the unlabelled
branching vertices may denote unknown extinct ancestors. Let r denote
the immediate ancestor of the closest common ancestor of a given set of
existing species. We define the true tree of this set of species by taking the
subtree induced by them and r in the tree describing the process of
evolution and undoing the vertices of degree two.

The very problem of reconstruction may be put in this way: given a set
of species with corresponding segments of aligned DNA sequences, find
the true tree.

For G = Z,, the model described in Section 2 specializes to a model of
Cavender [C], for which Hendy and Penny found the special case of the
calculus above and applied it in their spectral analysis /closest tree method
for tree reconstruction from sequences over a two-letter purine—pyrimi-
dine alphabet [H, HP1, HP2]. Our part is the generalization for other
groups; the practical importance of this generalization is mostly for G =
Z, X Z,, i.e., for sequences over the four-letter alphabet A, G, C, T; see
[SHSE]. However, it is theoretically possible to apply our calculus to either
of the two Abelian groups of order 20 (if the transition mechanisms of
amino acids follow either of these groups), and also to Z,, in Kimura’s
two-parameter model and the Jukes—Cantor model (see below). We
explain the G = Z, X Z, case in detail, the explanation also applies,
mutatis mutandis, to G = Z,.

From now on we describe Kimura’s three-parameter model [K2, K3]
and some restricted versions of it, which are known as Kimura’s two-
parameter model [K1] and Jukes—Cantor model [JC] (the Jukes—Cantor
model is more explicit in Neyman [N]). We assume that every bit of the
aligned DNA sequence is one of the four nucleotides, A (adenine), G
(guanine), C (cytosine), T (thymine); i.e., we neglect insertions and dele-
tions. We follow the group-theoretical setting of the models from Evans
and Speed [ES]. Identify the elements of Z, X Z, with the four nu-
cleotides, such that A is the unity. Take the true tree with a common
ancestor r and assume that an element of Z, X Z, is assigned under a
certain (unknown) distribution to r. The random group element at r is
regarded as the original nucleotide value there. To every edge of the tree
a random element of Z, X Z, is assigned independently; the distribution
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may vary from edge to edge. The random variable at an edge describes the
nucleotide change on that edge. In terms of biology, adding A = 0 on an
edge causes no change in the nucleotide, adding G causes transition, and
adding C or T causes one of the two possible types of transversions. To
every leaf I the sum of group elements along the unique path r/ and in r
itself is assigned. We have a random four-colouration of the leaves (in fact,
of all vertices) of the tree. That is Kimura’s three-parameter model of
molecular evolution. Kimura’s three-parameter model allows for every
edge e of the tree four arbitrary probabilities which sum up to one; i.e.,
three free parameters, which may be different on different edges. Kimura’s
two-parameter model is similar, but further restricted by p,(G) = p(T) for
all edges, and finally, the Jukes—Canter model requires, in addition,
pLC) = p(T) for all edges.

After the work of Kimura, the general assumption for the mechanism of
molecular evolution is that changes in the DNA are random. It is assumed
that changes at different sites are independent and of identical distribu-
tion. In case the data violates too much the condition on identical
distribution, one may thin out the sequences by considering cne site of
each of the codons (the consecutive triplets of nucleotides encoding amino
acids), particularly the third position, which is more redundant in the
coding scheme than the other two positions, and therefore less influenced
by natural selection. It is an interesting paradox of the theory of evolution,
that evolution is random at the molecular level and follows natural
selection at a high level. It is surprising enough, that the models above
were equiped with substitution mechanisms for transitions and transver-
sions that fit perfectly the group theoretical description, although this was
not the motivation for their invention.

The model, in which we work, slightly differs from Kimura’s models,
namely, we do not have a root r for an unknown common ancestor. This is
in no way a serious loss, since biologists easily recover it by a method
called outgroup comparison. The root that we use, is, like in Section 2, one
arbitrary leaf R, which represents an existing species. At every site of the
sequence of R, we find a group element, and for standardization, in every
leaf we multiply at the same site with the inverse of that group element.
We refer to the sequences obtained as standardized sequences; note that
the standardized sequence of R contains zeros only. From the standard-
ized sequences we can read a leaf colouration at every bit; we count
relative frequencies of leaf colourations and we treat these relative fre-
quencies as if they were the f_ leaf colouration probabilities from the
model of Section 2. Observe that the propagation of group elements along
the tree is direction dependent unless p,(g) = p,(g~') for all e and g;
and without this condition the standardization would not make sense.
However, for G = Z2, the condition holds automatically. Standardization
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sets no restriction on the distribution at r, since we rather work with
nucleotide changes than use the nucleotide values. Despite the small
difference, our method will allow for reconstruction of the true tree that
evolved according to Kimura’s model, with the loss of r and with the
possible loss of the vertex adjacent to r, if it has degree three.

We had a set of species with corresponding segments of aligned DNA
sequences. We selected an arbitrary species for R and we standardized the
sequence from R and obtained an f, relative frequency of the colouration
o among the bits. Now we face the following problem: which tree 7 and
transition mechanism p yield leaf colouration probabilities f, = f. for all
o? Working with real data, we must be satisfied with the best approxima-
tion in a reasonable norm. Having the transition mechanism of the true
tree allows for estimating a time scale, i.e., how long ago the evolutionary
events in question did happen. We note here, that the model of Section 2
does not imply the existence of the logarithms; however, for real data,
there is no problem with them, due to the empirical fact that f; > 3.
Working with f arising from the model of Section 2, Theorem 6 tells the
edges of the tree, and one can obtain the transition mechanism, i.e., p, for
all edges as well. The message of Theorem 10(iii) is that we may expect a
unique tree to yield the observed relative frequencies of leaf colourations.

Working with empirical f', the closest tree method [HJ], which is a
branch-and-bound algorithm, determines then the evolutionary tree and
its transition mechanism, which yields f, such that H~! log Hf approxi-
mates H ™! log Hf best in the Euclidean norm.

The significance of the series expansion is that a second-order approxi-
mation of H~!log Hf' can be computed O(t2?) time, where ¢ is the
number of nonzero f,’s, which is subexponential by our experience for
real data. The use of the second-order approximation is expected to be
superior to computing of 4! log Hf' by fast Fourier transform on real
data; this is still to be tested.

The great advantage of using invariants is that one may discriminate
against some trees without (strong) assumptions regarding the transition
mechanism. Invariants were introduced by Cavender and Felsenstein
[CF, C2, C3] and Lake [L}; and recently Evans and Speed [ES] gave an
algebraic procedure based on Fourier analysis to decide if a polynomial is
invariant or not for G = Z7'. The literature shows that all the efforts went
for polynomial invariants. There is a good reason to look for linear
invariants, namely, they are subject to reliable statistical methods. How-
ever, there are cases when linear invariants are known not to exist,
including Kimura’s three-parameter model {ES]. In lack of linear invari-
ants, there is at most a theoretical reason to prefer polynomial invariants.

The advantage of our canonical invariants to other invariants is that
they come from a predetermined list, and if you need the canonical
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invariants of a tree you just pick the right elements from the list. If it
comes to application of our polynomial invariants, then values of the
polynomial functions must be computed instead of the polynomials, since
computer algebra in many variables is rather prohibitive.

We see the significance of the Fourier calculus on evolutionary trees in
the fact that it puts the tree reconstruction to the basis of the generally
accepted theory of molecular evolution by Kimura, while most tree recon-
struction techniques lack any such mechanism in the background.
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