
Annals of Combinatorics 12 (2008) 123-132

0218-0006/08/010123-10

DOI 10.1007/s00026-008-0341-6

c© Birkhäuser Verlag, Basel, 2008

Annals of Combinatorics

Counting Ancestral Reconstructions in a Fixed
Phylogeny

Tobias Thierer1, David Bryant2, 3, and Mike Steel4∗

1Proteomics Algorithmen und Simulation, ZBIT, Sand 14, 72076 Tübingen, Germany
2Department of Mathematics, University of Auckland, Private Bag 92019, Auckland Mail Centre,
Auckland 1142, New Zealand

3McGill Centre for Bioinformatics, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
4Biomathematics Research Centre, University of Canterbury, Private Bag 4800, Christchurch
8140, New Zealand
M.Steel@math.canterbury.ac.nz

Received July 27, 2005

AMS Subject Classification: 92B05, 92B15, 05C05, 11T06

Abstract. We give formulas for calculating in polynomial time the number of ancestral recon-
structions for a tree with binary leaf- and root labels for each number of 0 → 1 and 1 → 0 arcs.
For trees of fixed degree, the corresponding numbers of 0 → 0 and 1 → 1 arcs can be deduced.
We calculate intervals for the relative cost of 0 → 1 and 1 → 0 transitions over which the same
labelings remain the cheapest.

Keywords: generating function, phylogenetic tree, binary character, transition

1. Introduction

The reconstruction of evolutionary trees — theories for the course of evolution and
the topology of speciation events — from character data on extant species forms an
important application of mathematics and computer science in biology (see [5] for an
overview).

Information — in our case, binary character data coded as 0 and 1 — is typically
available only on extant species, which form the leaves of an evolutionary tree. A
natural question asks in what ways this leaf-labelling can be extended onto the full
tree. The quality of a labelling depends on the number of 0 → 1 and 1 → 0 transitions
that it induces on the tree, as they correspond to mutation events, and the well-known
maximum parsimony approach aims to find a labelling that minimizes the total number
of transitions. Another approach, Dollo Parsimony, allows no more than one 0 → 1
transition and is suitable for sufficiently complex characters (e.g., SINEs, [9]) that most
∗ To whom correspondence should be addressed.

123

124 T. Thierer, D. Bryant, and M. Steel

probably arose only once during evolution. This method was first informally suggested
by [7], and formally specified by [4].

While maximum parsimony implicitly assumes that 0→ 1 and 1 → 0 transitions are
equally expensive (or implausible), Dollo Parsimony assumes that 0 → 1 transitions are
sufficiently more expensive as to be prohibited. In this paper, we provide a more general
approach that allows for arbitrary relative transition costs. Moreover, these costs need
not be known in advance, and our approach yields closed intervals of relative cost and
the associated cheapest labelings for each interval.

We also show that for trees of fixed degree, the tree’s degree, root label, binary
character and two out of the four counts of arcs (one count for each arc type) suffice
to calculate the remaining two counts — thus specifically we can infer the number of
0 → 0 and 1 → 1 arcs from the number of 0 → 1 and 1 → 0 arcs.

A similar approach that assumed a (not necessarily integer) weighting of 0 → 1 and
1 → 0 transitions to be known in advance was presented in [8]. Besides calculating
the number of labelings possible for each total cost, [8] also provides an algorithm for
calculating the average cost that a specific arc contributes, averaged over all the cheapest
labelings. See [6] for further applications.

The results from Sections 3 and 4 have already been published in [10].

2. Definitions and Notation

Throughout the paper, T = 〈V, E〉 denotes a phylogenetic tree with node set V and a set
E ⊆V ×V of directed arcs, oriented away from the root node ρ(T) ∈V . The outdegree
outdeg(v) = |({v}×V)∩E| of a node v is the number of arcs originating from v. The
leaves are the nodes L(T) = {v ∈V : outdeg(v) = 0}. A binary character is a function
c : L(T) → {0, 1}.

A labeling l is a function l : V → {0, 1}. The symbol Tc denotes T with the con-
straint that the leaves must be labeled as specified by the character c. Similarly, T r

demands root label r, and T r
c combines both constraints. Thus l labels T r

c only if
l |L(T) ≡ c and l(ρ(T)) = r. Under a labeling l, an arc u → v ∈ E is called a transition
if l(u) 6= l(v), and a constancy otherwise. Let l label T with the following number of
arcs of each type.

transition constancy
arc type 0 → 1 1 → 0 0 → 0 1 → 1

such arcs i j i ′ j ′

In this case l is said to induce (i, j) transitions and (i ′, j ′) constancies (on T). Note
that the order matters — (j, i) transitions is different from (i, j) transitions. Through-
out this paper, the symbols i, j, i ′, j ′ denote the respective numbers of transitions and
constancies in T under a specific labeling.

Let nT r
c
(i, j) denote the number of different labelings of T r

c that induce precisely
(i, j) transitions. We then call the polynomial

pT r
c
(x, y) := ∑

i, j
nT r

c
(i, j) · x i · y j

Counting Ancestral Reconstructions 125

0

0

0

0 1 0 1

1

0

0

0 1 0 1

0

0

1

0 1 0 1

1

0

1

0 1 0 1

(2, 0) transitions (2, 1) transitions (2, 1) transitions (2, 2) transitions

Figure 1: All four possible binary labelings of the two internal nodes (without the
root) for a sample tree T r

c with an associated leaf-labeling c and label r = 0 for the
root. Transitions are drawn in bold. The generating function of T 0

c is pT 0
c
(x, y) =

1 · x2y0 +2 · x2y1 +1 · x2y2.

the generating function of T r
c . Figure 1 shows an example. We regard nT r

c
(i, j) as

the coefficient table of a two-variate polynomial because this will allow us to view the
recursive formula for calculating it as a polynomial addition and multiplication, thus
simplifying formulas. Further, if we extend the polynomial to four variables (i.e., count
0 → 0 and 1 → 1 arcs as well), evaluating it at the relative probabilities of the four arc
types yields the likelihood of the tree, i.e., the probability P(c |T r) (see [10]). A similar
definition can be made for arbitrary root labels: The polynomial

pTc(x, y) := pT 0
c
(x, y)+ pT 1

c
(x, y) = ∑

i, j
nTc(i, j) · x i · y j

is called the generating function of Tc. It is easy to see that nTc(i, j) = nT 0
c
(i, j) +

nT 1
c
(i, j) and that, because any binary labeling of Tc must label the root either 0 or 1,

these coefficients nTc(i, j) are then the number of different labelings of Tc that induce
precisely (i, j) transitions, with no restriction whether the root label r is 0 or 1.

The polynomials pTc , pT 0
c

, and pT 1
c

are together called the generating functions
of Tc. They count only the number of transitions in the labelings of a tree, not the
constancies. However, as we will see in Section 4 on page 128, for a tree T with fixed
outdegree for each node, the number of constancies induced by a labeling is completely
determined by T r

c and the number of transitions.

3. Calculating the Generating Function

3.1. Mathematical Formulas

In this section, we will give a simple recursion formula that allows us to calculate the
generating functions of a tree from those of its subtrees. This leads directly to a simple
iterative bottom-up algorithm for calculating the generating function.

Theorem 3.1. Let T r
c be a tree with root v := ρ(T).

a) If outdeg(v) = 0 (i.e., T consists only of v), then pT r
c
(x, y) =

{

0, if r 6= c(v),

1, if r = c(v).

126 T. Thierer, D. Bryant, and M. Steel

b) For d := outdeg(v) > 0, let S1, . . . , Sd denote the subtrees rooted at v’s children.
S rm

m denotes the m-th subtree with ρ(S rm
m) labeled rm. Then,

pT 0
c
(x, y) =

d

∏
m=1

(

pS 0
m
(x, y)+ x · pS 1

m
(x, y)

)

(3.1)

and, similarly,

pT 1
c
(x, y) =

d

∏
m=1

(

pS 1
m
(x, y)+ y · pS 0

m
(x, y)

)

. (3.2)

Proof. Recall that the exponents (i, j) in pT r
c
(x, y) := ∑i, j nT r

c
(i, j) · x iy j correspond to

the number of transitions in a labeling.

a) T r
c consists only of v; the only labeling uses root label r = c(v) and induces no

transitions.
b) We will consider only equation (3.1), i.e., we assume that v is labeled r = 0; the

proof for (3.2) is analogous. We give only a short intuitive argument why (3.1) is
correct — see [10] for a more formal and more complete proof.

Without loss of generality, let vm := ρ(Sm) be labeled rm. Let G0
m be the subgraph

of T 0
c consisting of v, Sm and the arc v → vm (Figure 2). The arc v → vm is a 0 → 0

constancy if rm = 0, and a 0 → 1 transition otherwise. Thus compared to Sm, G0
m

has one more 0 → 1 transition if and only if rm = 1. Because the number of 0 → 1
transitions is encoded as the power of x in the generating function, this corresponds
to multiplying pS 1

m
(x, y) with x. Thus because we can label vm either 0 or 1,

pG0
m
(x, y) = pS 0

m
(x, y)+ x · pS 1

m
(x, y).

It remains to show that

pT 0
c
(x, y) =

d

∏
m=1

pG0
m
(x, y). (3.3)

According to the rules of polynomial multiplication, in equation (3.3), all d-tuples
of coefficients nG0

m
(im, jm) are multiplied and the corresponding powers im, jm of

x and y added, thus for each such tuple, the resulting coefficient nT 0
c

(i1 + · · ·+ id,
j1 + · · ·+ jd) is increased by ∏d

m=1 nG0
m
(im, jm). This yields the correct result be-

cause any labeling that has (im, jm) transitions in G0
m has a total of (i1 + · · ·+ id , j1 +

· · ·+ jd) transitions in T 0
c , and all d-tuples of labelings for different subtrees can

be combined independently.

Remark 3.2. The generating function can easily be generalised to semi-labeled trees on
which the character labels not only the leaves, but also some internal nodes. To forbid a
node from being labeled r, simply force pS r(x, y) := 0 instead of applying the recursion
formula for the subtree S rooted at that node.

Counting Ancestral Reconstructions 127

0

0

0

0 1 0 1

S1 S2

G0

2

Figure 2: A sample tree T r
c with r = 0 and the subgraph G 0

2 drawn in bold.

2
4

6
8

10
12

14

2 222

6

14

6

Figure 3: A linear (max. leaf depth 8−1 = 7) and a balanced (max. leaf depth log2(8) =
3) binary tree with 8 leaves each. Each internal node is labeled with the number of arcs
in the subtree below it.

3.2. Algorithm

The recursive formula from Theorem 3.1 directly provides a bottom-up algorithm
for calculating the generating functions of T r

c , outlined in pseudo notation in Algorithm
GENERATINGFUNCTIONS on page 127.

The runtime (Proposition 3.3) of Algorithm GENERATINGFUNCTIONS depends on
the degree of balance in the tree, which can range from a linear to a fully balanced tree
(exemplified for binary trees in Figure 3).

Algorithm GENERATINGFUNCTIONS
Input: Tree T = 〈V, E〉

1: for all v ∈V in a post-order traversal of T do
2: Sv := (the subtree rooted at v)
3: d := outdeg(v)
4: 〈S1, . . . , Sd〉 := (v’s children)
5: if d = 0 then {if v is a leaf node}
6: p

S c(v)
v

(x, y) := 1
7: p

S 1−c(v)
v

(x, y) := 0
8: else {assume pS r

m already calculated}

9: pS 0
v
(x, y) := ∏d

m=1

(

pS 0
m
(x, y)+ x · pS 1

m
(x, y)

)

10: pS 1
v
(x, y) := ∏d

m=1

(

pS 1
m
(x, y)+ y · pS 0

m
(x, y)

)

11: end if
12: pSv := pS 0

v
+ pS 1

v
13: end for

128 T. Thierer, D. Bryant, and M. Steel

0

1

11

1

1

0

11 1

0

1

11

0

0 11 1

1

(4, 0) transitions, (1, 4) constancies (4, 0) transitions, (2, 3) constancies

Figure 4: Two labelings of the same T r
c with the same number of transitions, but a

different number of constancies.

Proposition 3.3. Consider Algorithm GENERATINGFUNCTIONS on the page before.

a) The algorithm correctly calculates the generating functions of all subtrees Sv of T ,
and finally of T itself.

b) O
(

∑v∈V w(v)2 · log(w(v)) · log(outdeg(v))
)

is an upper bound for the algorithm’s
runtime, where w(v) := |E(Sv)| is the number of arcs in the subtree rooted at node
v.

c) For linear binary trees, the runtime is O
(

|V |3 · log |V |
)

.
d) For balanced binary trees, the runtime is O

(

|V |2 · log |V |
)

.
e) Regardless of the tree topology, for any fixed n the lower n×n coefficients of pT r

c
,

corresponding to the number of labelings with some fixed number of ≤ n transitions
of each type, can be calculated in O

(

|V | ·n2 · logn
)

.

Proof. Correctness holds because lines 2–12 directly implement the formulas given in
Theorem 3.1 on page 125, and a post-order traversal visits all descendants of a node
before visiting the node itself. For the runtime bounds, note that the computationally
most expensive step is the multiplication of the d factors in lines 9–10, corresponding to
equations (3.1) and (3.2). Using fast Fourier transformation and multiplication within
the Fourier domain (see [2] for the basic idea, and [1] for an advanced algorithm), this
product can be calculated in O

(

w(v)2 · log(w(v)) · log(d)
)

time because the resulting
polynomials have no more than w(v)×w(v) coefficients. The stated runtime for b)
follows from summing over all v ∈ V ; c) through e) are special cases (note the degree
of the intermediate polynomials).

4. Only Two Degrees of Freedom for Trees of Fixed Outdegree

Somewhat surprisingly, if T r
c has some fixed outdegree d (i.e., each internal node of T

has exactly d children), then two of the four arc counts i, j, i ′, j ′ of a labeling (along
with d, r, and c) suffice to calculate the other two. Thus if two labelings of T r

c are
equivalent in two of their arc counts (e.g., have the same number of transitions of both
types), they are also equivalent in the other two. If they differ in any arc counts, they
must differ in at least three of them. Theorem 4.1 and Table 1 give the closed formulas.

Note that this does not hold for trees of non-fixed degree: For such trees it is possible
for two labelings to differ in just two out of the four arc counts (Figure 4).

Counting Ancestral Reconstructions 129

Theorem 4.1. Let T r
c be a tree of fixed outdegree d leaf-labeled by a binary character

c and with root label r ∈ {0, 1}. Let A := |c−1(0)|+ r− 1 and B := |c−1(1)|− r, and,
without loss of generality, let l label T r

c with (i, j) transitions and (i ′, j ′) constancies.
Then the relations between the values i, j, i ′, j ′, d, A and B that are given in Table 1
hold.

Proof. The proof is somewhat long and tedious. It is based on showing that there are
only two degrees of freedom for the four arc counts of labelings of T r

c of fixed degrees.
The key to proving this is that besides i+ j + i ′ + j ′ = |E|, the term (d +1) · (i− j)−
(d−1) ·(i ′− j ′) is also constant over all labelings of T r

c . Its value is d ·(B−A). Further,
one can prove by induction on the tree size that i + j ′ + r = j+ j ′

d + c−1(1) = |l−1(1)|

and i ′ + j +(1− r) = i+i ′
d + c−1(0) = |l−1(0)|. See [10] for the detailed proofs.

given?
i j i ′ j ′ formula for sought value #1 formula for sought value #2

4 4 - - i ′ = A · d
d−1 + i−d· j

d−1 j ′ = B · d
d−1 + j−d·i

d−1

4 - 4 - j = A+ i+(1−d)·i ′

d j ′ = A+d·B
d−1 − (d+1)·i+i ′

d

4 - - 4 j = −d ·B+d · i+(d−1) · j ′ i ′ = d·A+d2·B
d−1 − (d +1) · i−d · j ′

- 4 4 - i = −d ·A+(d−1) · i ′+d · j j ′ = d2·A+d·B
d−1 −d · i ′− (d +1) · j

- 4 - 4 i = B+ j+(1−d)· j ′

d i ′ = B+d·A
d−1 − (d+1)· j+ j ′

d

- - 4 4 i = d·A+d2·B
d2−1 − i ′+d· j ′

1+d j = d2·A+d·B
d2−1 − j ′+d·i ′

1+d

Table 1: Formulas to calculate the remaining two values if a tree T r
c with root label

r ∈ {0, 1}, fixed outdegree d, binary character c and two out of the four arc counts
i, j, i ′, j ′ (number of transitions and constancies, respectively) in a labeling are given.
A, B are defined as A :=

∣

∣c−1(0)
∣

∣+ r−1 and B :=
∣

∣c−1(1)
∣

∣− r.

5. Identifying the Cheapest Labelings

We are interested in the cheapest labelings because they are the most likely, i.e., the bio-
logically most plausible: If the transition weights are chosen as the negative logarithms
of the transition probabilities, then the cheapest labeling l also maximises P(l|T r

c).
Of course the cheapest labelings are not necessarily those with the most likely tran-

sition counts. For example, if nT r
c
(5, 5) = 1 and nT r

c
(5, 6) = 10 000, then even though

the one labeling with (5, 5) transitions is more likely than each of the others, overall it
is still more likely that the correct labeling had (5, 6) rather than (5, 5) transitions —
because there are 10 000 times more ways the former could occur.

Nevertheless it is helpful to describe the set of the cheapest labelings, and the pur-
pose of this section is to provide such a characterization (Theorem 5.1 below). We begin
with some further notation. We will denote the cost of a 0 → 1 transition as w ∈ [0, 1]
and the cost of a 1 → 0 transition as 1−w (i.e., we scale the costs to a sum of 1, which

130 T. Thierer, D. Bryant, and M. Steel

does not influence those whose labelings are the cheapest). Then the total cost of a
labeling with (i, j) transitions is:

costw(i, j) := i ·w+ j · (1−w). (5.1)

Let P be the set of possible transition counts,

P :=
{

(i, j) : nT r
c
(i, j) > 0

}

⊆ N
2
.

(b) (c)

(i, j)

j

i

cheaper
∀w ∈ [0, 1]

cheaper
for some w

never
cheaper

cheaper
for some w

w = 0.5

w = 0

w = 1

w = 0.75

w = 0.25

j

i

(a)

−∇ cost0.5

j

i

Figure 5: (a) An example for w = 0.5 showing the vector −∇cost0.5(i, j) and a set of
directions in which cost0.5(i, j) decreases. Along the border of the half-plane (dotted
arcs), cost0.5(i, j) is constant.
(b) The vector −∇costw(i, j) = (−w, w − 1) indicating the half-plane in which
costw(i, j) decreases, for some example values of w ∈ [0, 1].
(c) An example (i, j) and the sets of numbers (i1, j1) of transitions that are cheaper for
all (shaded area), none (lower right) or some choices of w ∈ [0, 1].

Because the gradient (direction of steepest ascent) of costw,

∇costw := ∇costw(i, j) =

(

d
di

costw(i, j),
d
d j

costw(i, j)
)

= (w, 1−w) (5.2)

is independent of (i, j), costw(i, j) becomes minimal for those (i, j) ∈ P which are
the furthest in the direction of the negative gradient, −∇costw = (−w, w−1). A point
(i1, j1) is further in the direction −∇costw than (i, j) if the scalar product −∇costw
·
(i1−i

j1− j

)

is strictly positive. Figure 5 illustrates the direction of −∇costw as a function
of w, in which directions costw(i, j) decreases. Because −∇costw always points in the
direction of decreasing transition counts (to the left and up in Figure 5), then only the
(i, j) that are on the “upper left” part of P can correspond to the cheapest labelings.
More formally, (i, j) ∈ P corresponds to a cheapest labeling for some choice of w if
and only if [0, i[×[0, j[does not intersect the convex hull H of P , i.e., if and only if

(i, j) ∈ Pmin := P ∩Hmin, (5.3)

where Hmin is the “upper left” part of H :

Hmin :=
{

(i, j) ∈ H : [0, i[×[0, j[∩H = /0
}

. (5.4)

We can then calculate intervals in which the same labelings are the cheapest:

Counting Ancestral Reconstructions 131

Theorem 5.1. Let (i1, j1), (i2, j2), . . . be in clockwise order of Pmin as defined in equa-
tions (5.3), (5.4). Set w0 := 0, w|Pmin| := 1 and

wk :=
jk − jk+1

jk − jk+1 + ik+1 − ik
,

for k ∈ {1, . . . , |Pmin|−1}. Then (ik, jk) corresponds to a cheapest labeling, i.e.,

(ik, jk) ∈ arg min
(i, j)∈Pmin

costw(i, j)

if and only if w ∈ [wk−1, wk].

Proof. When increasing w from w0 = 0 to w|Pmin| = 1, the vector −∇costw rotates clock-
wise from left to up (Figure 5 (b)). A labeling with (ik, jk) transitions becomes equally
expensive as one with (ik+1, jk+1) when −∇costw is orthogonal to the line between
them, i.e., when ∇costw ·

(ik+1−ik
jk+1− jk

)

= 0. This is the case for w = wk (see equation (5.2)).

j

0 1 2 3 4 5 6 7 8
0
1 1 1

2 1 1 2 2
3 2 2 2 4 5 3

i 4 1 3 5 5 6 6 10 8
5 1 2 4 9 11 11 16 11 1
6 1 3 7 10 9 14 18 10 2
7 2 5 8 12 10 4 1
8 1 2 1

j

i

w5 = 1

w3 = 0.5

w4 = 0.75

w1 = 0

0 1 2 3 4 5 6 7 8

0

1

2

4

3

6

7

8

w2 = 0

k 1 2 3 4 5 6
(ik, jk) (6, 0) (5, 0) (4, 0) (2, 2) (1, 5) (1, 6)

[wk−1, wk] [0, 0] [0, 0] [0, 0.5] [0.5, 0.75] [0.75, 1] [1, 1]

(a) (b)

(c)

Figure 6: (a) Coefficient table nT 0
c

for a sample tree T 0
c obtained from gene order data

(see [3, 10]). The six entries in Pmin are bold.
(b) The set P of coordinates for which the coefficient table has nonzero entries, and its
convex hull H . Hmin is drawn in a solid line. The arrows indicate the normal vectors
−∇costwk for the edge

[

(ik
jk

)

,
(ik+1

jk+1

)

]

⊂ Hmin.

(c) The coordinates (ik, jk) as they appear in Hmin in clockwise order, and the interval
[wk−1, wk] for which (ik, jk) corresponds to a cheapest labeling.

If (ik, jk) is not a corner of H , then (ik−1, jk−1) = (ik, jk). Then, (i, j) corresponds
to the cheapest labelings only for exactly one choice of w (Figure 6).

132 T. Thierer, D. Bryant, and M. Steel

Remark 5.2. The labelings corresponding to coefficients in the generating function can
be reconstructed (see [10]). The approach can also be extended to multi-state characters.

Acknowledgments. T. Thierer was supported by the New Zealand Institute of Mathematics and
its Applications and by the Allan Wilson Centre for Molecular Ecology and Evolution. M. Steel
also thanks the New Zealand Marsden Fund.

References

1. V.S. Alagar and D.K. Probst, A fast, low-space algorithm for multiplying dense multivariate
polynomials, ACM Trans. Math. Software 13 (1) (1987) 35–57.

2. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, 2nd Ed.,
MIT Press, Cambridge, 2001.

3. M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.S. Wang, T. Warnow, and S.K.
Wyman, An empirical comparison of phylogenetic methods on chloroplast gene order data in
Campanulaceae, In: Comparative Genomics: Empirical and Analytical Approaches to Gene
Order Dynamics, Map Alignment, and the Evolution of Gene Families, D. Sankoff and J.
Nadeau, Eds., Kluwer Academic Publishers, Dordrecht (2000) pp. 99–121.

4. J.S. Farris, Phylogenetic analysis under Dollo’s law, Syst. Zool. 26 (1) (1977) 77–88.
5. J. Felsenstein, Inferring Phylogenies, Sinauer Associates Inc., Massachusetts, 2004.
6. D.S. Hochbaum and A. Pathria, Path costs in evolutionary tree reconstruction, J. Comput.

Biol. 4 (2) (1997) 163–176.
7. W.J. Le Quesne, The uniquely evolved character concept and its cladistic application, Syst.

Zool. 23 (1974) 513–517.
8. I. Rinsma, M. Hendy, and D. Penny, Minimally colored trees. Math. Biosci. 98 (1990) 201–

210.
9. A.M. Shedlock and N. Okada, SINE insertions: powerful tools for molecular systematics,

Bioessays 22 (2000) 148–160.
10. T. Thierer, Generalised and directed characters in phylogenetics, Master’s thesis, University

of Canterbury, 2004, http://www.tobias-thierer.de/mscthesis/.

