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We study the mathematical properties of probabilistic pro-
cesses in which the independent actions of n players (‘causes’) 
can influence the outcome of each player (‘effects’). In such 
a setting, each pair of outcomes will generally be statistically 
correlated, even if the actions of all the players provide a com-
plete causal description of the players’ outcomes, and even if 
we condition on the outcome of any one player’s action. This 
correlation always holds when n = 2, but when n = 3 there 
exists a highly symmetric process, recently studied, in which 
each cause can influence each effect, and yet each pair of ef-
fects is probabilistically independent (even upon conditioning 
on any one cause). We study such symmetric processes in more 
detail, obtaining a complete classification for all n ≥ 3. Using 
a variety of mathematical techniques, we describe the geom-
etry and topology of the underlying probability space that 
allows independence and influence to coexist.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of causality is a long-standing topic at the interface of statistics and the 
philosophy of science. It is also an area where the mathematical analysis of graphical 
models has led to some important recent advances (see e.g. [2,5]). In this paper, we 
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investigate a particular class of symmetric causal processes which achieves two apparently 
conflicting requirements: ‘independence’ and ‘influence’ which we define shortly.

In Section 2, we provide formal definitions, but give the main ideas here to facilitate the 
discussion. Let E1, . . . , En be n dichotomous (two states) random variables with the same 
state spaces, which we call ‘effects’ and let C1, . . . , Cn be n independent dichotomous 
random variables, also with the same state spaces, which we call ‘causes’.

We say that an effect Ei is ‘influenced by’ Ci if there exists at least one assignment 
of states for the remaining causes such that a change in the state of Cj changes the 
(conditional) probability of at least one state of Ei [8]. ‘Independence’ refers to pairwise 
probabilistic independence of the effects either absolutely, or conditional on knowing the 
state of any one cause.

We explore a symmetric system because it is applicable to any scenario in which the 
probability of Ei depends only on how many causes take the same value as Ci. We can 
view this process as a game where we identify Ci with the action of some player i and 
the outcome, Ei, for each player i then depends solely on how many of the other players 
chose the same action.

For example, suppose there are n flowering plants in an area of study. For plant i, 
the cause Ci might describe whether the plant flowers early or late. The corresponding 
effect Ei could denote whether or not a plant is pollinated. For example, flowering early 
with many other flowers might be advantageous because such a mass flowering attracts 
more bees and increases the probability the plant is pollinated. On the other hand, there 
may be a limit in the number of bees, so flowering early with many other flowers may 
instead be a disadvantage. Either way, the probability of an effect (pollination of plant i) 
depends on the number of causes which match the cause of that particular effect (i.e. how 
many other plants flower at the same time as plant i).

Recently, such processes have been studied in the philosophy of science literature 
as they provide insights into the extent to which subsets of causes can render effects 
independent (Theorem 5b of [8]). The authors of [8] illustrated such a process with an 
entertaining application involving n people playing a tequila drinking game. In [8] they 
consider just the case n = 3. In the game, the n people simultaneously and independently 
reveal a clenched fist or an open hand (with equal probability), and the states of the 
n hands are regarded as the n causes. The event that person i drinks tequila is Ei, for 
1 ≤ i ≤ n. The rules for determining if person Ei drinks when n = 3 are that if a player’s 
hand position is unique then they drink with probability p1 = 1. For the ties (e.g. a tie 
of two or three), those in the tie drink independently with probability p2 = 1

2 when there 
are two people in the tie and probability p3 = 1

3 when there are three people in the tie 
(see Fig. 1). The probabilities used here are quite special when we consider influence and 
independence in relation to each other and the effect on the system. We study what is 
special and how it can generalize. We call this extension of this game to n players the 
‘extended symmetric tequila’ (EST) problem but, as noted in the previous paragraph, 
the relevance of such processes extends well beyond bar drinking games.
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Fig. 1. A simple three-player game exhibiting independence and influence, for various values of (p1, p2, p3); 
including (1, 12 , 13 ) from [8], and (3−1, 3−2, 3−3) from Section 4.1.

Our main results assume the system has some symmetry, as explained at the beginning 
of Section 3 and we define three spaces in this context: Infn, Indn and ESTn = Infn∩Indn. 
These spaces are formally defined in Section 3 but, in short, are the set of probabilities for 
the fully symmetric system which lead to influence, independence and both, respectively.

We fully analyze the case n = 3 (Section 3), we establish a useful equivalence rela-
tion on Indn (Section 6), we show that Indn is contractible (Section 7) but not convex 
(Section 6), and that ESTn is neither.

We establish a characterization (Proposition 3.1) for the system to be in Infn. We 
show, via a quadratic form and its Hessian matrix, that ESTn contains infinitely many 
points for any n ≥ 3. We use this structure to investigate the topology and geometry 
of the space ESTn, with a main objective being to determine whether or not it is con-
nected. We show that ESTn is disconnected for n = 3, 4 and connected when n ≥ 5 in 
Theorem 7.2.

Our results involve an interplay of linear algebra, analysis, combinatorics and topol-
ogy, including some classical results in these fields, such as Sylvester’s Inertia Theorem, 
Alexander Duality and Smith’s theorem on periodic maps.

2. Formal setup

We begin by giving the formal set-up of the system of causes and effects, and proceed 
to provide formal definitions of influence, and conditional independence.

Let E1, . . . , En and C1, . . . , Cn be random variables with two possible states (also 
called ‘dichotomous’), labeled throughout this paper as 0 and 1. We assume that the Ci

are (mutually) independent, and each event Ej depends on the outcome of the events Ci; 
accordingly we call the Ci causes and the Ej effects. To simplify notation, we write 
conditional probabilities of the form P(Ei = 1|∗) more simply as P(Ei|∗) (i.e. Ei = 1 is 
the event that Ei ‘occurs’). The model we study makes the following assumptions:

(A1) The causes are (mutually) independent, with P(Ci = 1) = r for some 0 < r < 1.
(A2) The effects are conditionally independent, given the joint outcome of the causes.
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P

(
Ei

∣∣∣ n∧
j=1

Cj = xj

)
=
{
pk, xi = 0, and k total causes are in state 0;
qk, xi = 1, and k total causes are in state 1.

Property (A2) states that the probability of Ei depends on the state of Ci and the 
number of causes in that same state. If we assume pk = qk, then P(Ei) depends only 
on the number of causes in the same state as Ci. In our examples, flowers often seem to 
flower with some dependence on the number of other flowers which have also flowered 
and in the tequila example, p1 = q1 = 1, p2 = q2 = 1

2 and p3 = q3 = 1
3 .

In this paper we will mostly deal with the case where pk = qk for all k, and r =
1
2 (the fully-symmetric (or EST) model), but it is helpful to pose the problem more 
generally.

2.1. Influence and independence

While the set-up we explore has the same number of causes as effects, we give the 
definitions here for arbitrary numbers of causes and effects.

Definition 2.1 (Influence).

• Given a set of s causes C1, . . . , Cs of an effect E we say that E is influenced by cause 
Cj if there exists at least one assignment of states for the remaining s − 1 causes, so 
that some change in the state of Cj alters the probability of at least one state of E.

• A set of s causes of t effects satisfies the influence property if each effect is influenced 
by each cause.

The influence property (called ‘weak influence’ in [8]) is equivalent to the requirement 
that none of the causes can be eliminated for any effect – that is, for each i, there is no 
proper subset J of {1, . . . , s} for which P(Ei| 

∧s
j=1 Cj = xj) can be written as a function 

of (xj : j ∈ J), for all (x1, . . . , xs).
We also study probabilistic independence. Recall that two events X and Y are inde-

pendent with respect to a third event Z if and only if P(X ∧ Y |Z) = P(X|Z)P(Y |Z). 
In the language of causality and graphical models we would say that Z screens off X

from Y . We use the standard probabilistic language of independence throughout the 
paper. The independence condition is that any two events are independent with respect 
to any cause.

For example, in the tequila drinking game, any pair of effects are independent with 
respect to any cause Ck as P(Ei ∧ Ej | Ck = xk) = P(Ei | Ck = xk)P(Ej | Ck = xk)
for xk = 0 and xk = 1 (so the game has the independence condition). However, the 
reason this example is of interest in [8] is because any pair of effects Ei and Ej are not 
independent with respect to any pair of causes (Ck1 , Ck2) and yet they are independent 
with respect to the set of all three causes. This provides a contrast to what happens 
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when n = 2. In that case, Theorem 2 of [8] shows the independence condition fails 
whenever

(a) the causes have non-zero joint probability for any combination of states,
(b) both E1 and E2 are independent with respect to the pair of causes.
(c) the causes each influence E1 and E2.

3. The fully symmetric (EST) model: structure of the probabilities

We call the model where pk = qk and rk = 1
2 the extended symmetric tequila (EST) 

setting, as it generalizes the tequila example in [8], where n = 3.1 The EST setting is 
of particular interest, as it is tractable and leads to interesting results when we couple 
influence with independence.

We explore the case n = 3 further to characterize all the solutions satisfying influence 
and independence, before turning to general values of n as it serves to further understand 
the example in [8]; it also serves as a ‘boundary’ example for larger n, and we return to 
this example throughout the text.

Firstly, notice that in the EST setting, P(Ei|Cj = x) takes the same value for each 
choice of i, j and x (this probability is given formally in the proof of Proposition 3.2). 
In particular, Ei and Cj are (pairwise) independent, for any pair i, j (including i = j). 
If influence applies then Ei ‘depends on’ Cj (and the other causes) but this does not 
translate through to probabilistic independence.

In the EST setting, the conditions (A1) and (A2), coupled with influence and inde-
pendence, can be stated more succinctly as:

(i) The causes represent independent tosses of a fair coin;
(ii) The effects are mutually (probabilistically) independent once we specify the states 

of all the causes;
(iii) The probability of Ei depends (exactly) on the number of causes that take the same 

value as Ci;
(iv) Each pair of effects is (probabilistically) independent;
(v) Each cause can influence each effect.

3.1. The cases n = 2 and n = 3

In the case where n = 2, it is easy to verify that any process that satisfies properties 
(i)–(iv) must have p1 = p2 and so must fail to satisfy the influence condition (v).

1 We note that taking rk = 1
2 is the natural choice for symmetric games where it is beneficial to each 

player to play a minority action (for example, if pk = qk is decreasing with k), as this provides a Nash 
equilibrium strategy.
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The case where n = 3 is more interesting. We study independence by studying the 
following equation, which follows from direct computation.

0 = P(Ei | Cj = 0)2 − P(Ei, Ej | Cj = 0)

=
(

1
16

)
(p3 + 2p2 + p1)2 −

(
1
4

)(
p2
3 + p2

2 + 2p2p1
)

= 1
16(p1 − p3)(p1 − 4p2 + 3p3) (1)

Notice that p1 = 1, p2 = 1
2 , p3 = 1

3 is a solution to the equation which corresponds to 
the solution presented for the original tequila game in [8].

Observe that the space of probabilities leading to independence consists of two planes. 
Further, any solution with p1 = p3 corresponding to the vanishing of the first term 
(p1 − p3) in Eq. (1) fails to satisfy the influence property. The intersection of the two 
planes is p1 = p2 = p3, where influence clearly fails. For the remaining points on the 
plane p1 − 4p2 + 3p3 = 0, p1 �= p2 �= p3 which implies influence. Therefore the space 
of probabilities satisfying both influence and independence for n = 3 consists of two 
connected pieces formed by removing the line p1 = p2 = p3 from the plane p1 − 4p2 +
3p3 = 0.

3.2. Characterizing influence

For the fully symmetric model we can characterize when the system satisfies the 
influence property.

Proposition 3.1. Assume the EST setting, so r = 1
2 and pi = qi. Then the following are 

equivalent:

(i) The system satisfies the influence property.
(ii) There exists s ∈ [n] such that ps �= pn−s+1.

Proof. ((i) ⇒ (ii)) We prove the contrapositive. Assume that ps = pn−s+1 for all 1 ≤
s ≤ n. Then

P

(
Ei

∣∣∣ Ci = 0
∧
j �=i

Cj = xj

)
= pk+1 = pn−k = P

(
Ei

∣∣∣ Ci = 1
∧
j �=i

Cj = xj

)
,

where k is the number of zeros occurring in the sequence (xj : j �= i). Therefore Ei is 
not influenced by Ci, and so the system fails to satisfy the influence property.

((ii) ⇒ (i)) Suppose that ps �= pn−(s+1) for some s ∈ [n]. As above, since

P

(
Ei

∣∣∣ Ci = 0
∧

Cj = xj

)
= pk+1 �= pn−k = P

(
Ei

∣∣∣ Ci = 1
∧

Cj = xj

)
,

j �=i j �=i
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where k is the number of zeros occurring in the sequence (xj : j �= i), Ei is influenced 
by Ci. We must also show that Ei is influenced by Cj for each j �= i. To this end, observe 
that if ps �= pn−(s+1) for some s ∈ [n], there must exist some t ∈ [n] such that pt �= pt+1. 
Let j �= i ∈ [n]. Set xk = 0 for any t − 1 values of k �= i, j, and xk = 1 for the remaining 
values of k �= i, j. Then

P

(
Ei

∣∣∣ Ci = 0, Cj = 0,
∧

k �=i,j

Ck = xk

)

= pt+1 �= pt = P

(
Ei

∣∣∣ Ci = 0, Cj = 1,
∧

k �=i,j

Ck = xk

)
.

Therefore each Ei is influenced by Cj for all i, j ∈ [n] and so the system satisfies the 
influence property. �

To aid in further discussions, set Infn to be the set of points p ∈ [0, 1]n such that the 
system has influence.

3.3. Characterizing independence

We continue to assume the EST setting, that is r = 1
2 and pi = qi. For the vector 

p = (p1, p2, . . . , pn), let

ψ(p) =
(

1
2n−1

n−1∑
k=0

(
n− 1
k

)
pk+1

)2

− 1
2n−1

n−2∑
k=0

(
n− 2
k

)(
p2
k+2 + pk+1pn−(k+1)

)
. (2)

The function ψ allows us to characterize independence as follows.

Proposition 3.2. The effects are pairwise independent if and only if ψ(p) = 0.

Proof. The symmetry in the EST model implies that for all i, j ∈ {1, . . . , n}

P(Ei) = P(Ei | Cj = x) = P(E1 | C1 = 0) = 1
2n−1

n−1∑
k=0

(
n− 1
k

)
pk+1.

This last expression comes from summing the binomial probability (
(
n−1
k

)
2−(n−1)) that 

k of the causes C2, . . . , Cn are also in state 0, times the probability (pk+1) of E1 given 
that k causes are also in state 0 and that C1 = 0. This gives the first term in ψ(p).

Similarly, for any i �= j

P(Ei ∧ Ej) = P(E1 ∧ E2 | C1 = 0) = 1
2n−1

n−2∑(
n− 2
k

)(
p2
k+2 + pk+1pn−(k+1)

)

k=0



22 D. Molitor et al. / Advances in Applied Mathematics 62 (2015) 15–40
The last equality follows from considering the two cases C2 = 0 or C2 = 1, each of which 
has probability 1

2 . The binomial probabilities arise as above and in the case C2 = 0 we 
use that the probability of E1 and E2 given that k of the causes are also in state zero 
and given that C1 = 0 and C2 = 0 is p2

k+2. Similarly when C2 = 1 the probability of E1
and E2 in this context is pk+1pn−(k+1). �

As with influence, to aid our discussion set

Indn :=
{
p ∈ [0, 1]n

∣∣ ψ(p) = 0
}
;

that is Indn is the set of all points so that the system has independence. Finally, we set

ESTn := Indn ∩ Infn.

While our discussion is entirely in the “EST setting,” meaning that we assume r = 1
2

and pk = qk, we will only use the notation ESTn when talking about subsets of the 
probability space [0, 1]n consisting of points which give a system exhibiting both influence 
and independence.

4. Some special points in ESTn

Before we dig deep into the geometric and topological structure of ESTn, we show the 
space is non-empty by explicitly establishing a few useful points in the space. We start 
with Indn and move on to points that are in ESTn.

The quadratic form discussed in the next section gives us an easy way, from details 
in the proof of Theorem 7.2, to show that there are infinitely many points in ESTn. 
However, we found the following explicit points useful for proving that both ESTn and 
Indn are not convex. These examples also illustrate the challenge of trying to write down 
explicit points and are interesting because “natural” points like pi = p for all 1 ≤ i ≤ n

are in Indn but not Infn and pi = 1
i for 1 ≤ i ≤ n (which naturally generalizes the 

tequila example) are in Infn but not Indn.

4.1. Explicit points in ESTn with all coordinates non-zero

For the first set of points set pk = θk for some 0 < θ < 1. Then pi �= pj for all i �= j, 
which implies influence. We claim there exists at least one θ that implies independence 
of effects. Since we are in the EST setting we use Eq. (2) and substitute θk for pk to 
obtain:

ψ(p) =
(

1
2n−1

n−1∑
k=0

(
n− 1
k

)
θk+1

)2

− 1
2n−1

n−2∑(
n− 2
k

)((
θk+2)2 + θk+1θn−(k+1))
k=0



D. Molitor et al. / Advances in Applied Mathematics 62 (2015) 15–40 23
Fig. 2. Graphs of f(θ).

=
(

1
2n−1 θ(1 + θ)n−1

)2

− 1
2n−1

(
θ4(1 + θ2)n−2 + 2n−2θn

)

= 1
22n−2 θ

2((1 + θ)2n−2 − 2n−1θ2(1 + θ2)n−2 − 22n−3θn−2). (3)

To determine θ such that two events are independent, given a cause, we need to determine 
when Eq. (3) is equal to zero. Of course, θ = 0 is a solution but it fails to satisfy influence, 
by Proposition 3.1. So we study the equation

(1 + θ)2n−2 − 2n−1θ2(1 + θ2)n−2 − 22n−3θn−2 = 0. (4)

When n = 3 Eq. (4) factors as

(
1 − θ2)(1 − 4θ + 3θ2) = 0,

The solution θ = 1 corresponds to no influence by Proposition 3.1, and θ = −1 is not 
stochastic. That leaves 1 − 4θ + 3θ2 = (1 − 3θ)(1 − θ) = 0, showing two solutions: θ = 1
and θ = 1

3 . Therefore, for n = 3, there is one value of θ which is stochastic and all 
the probabilities involved are distinct, so the causes influence the effects (i.e. the system 
satisfies influence). Note that θ = 1

3 provides a different point in ESTn than that used 
in [8].

Set f(θ) = (1 + θ)2n−2 − 2n−1θ2(1 + θ2)n−2 − 22n−3θn−2. Notice that

f(0) = 1,

f(1) = 22n−2 − 22n−3 − 22n−3 = 0.

Further, straightforward computation of f ′ and f ′′ shows that f ′(1) = 0 and f ′′(1) < 0
for all n ≥ 3. Therefore, since f is 0 at x = 1, is positive at x = 0 and has a local 
maximum at x = 1, it must be 0 for some x in (0, 1).

The few graphs of f(θ), given in Fig. 2, are instructive. We observe that for n = 4, 9
there is only the root guaranteed by the argument above, but starting with n = 11, f has 
three roots strictly between zero and one.
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4.2. Explicit points in ESTn with many zero coordinates

A second way to construct explicit elements of ESTn is to look at ‘boundary points’.

Proposition 4.1. For any n ≥ 4, there is exactly one value of pn such that the point 
p = (1, 0, 0, 0, 0, . . . , 0, pn) lies in ESTn.

Proof. To simplify initial computations, we let N = 2n−1 to obtain:

ψ(p) = 1
N2

(
n−1∑
k=0

(
n− 1
k

)
pk+1

)2

− 1
N

n−2∑
k=0

(
n− 2
k

)
p2
k+2

− 1
N

n−2∑
k=0

(
n− 2
k

)
pk+1pn−(k+1)

= 1
N2 (1 + pn)2 − 1

N

(
p2
n

)
.

Thus the quadratic formula gives

pn =
−2 ±

√
4 − 4(1 −N)

2(1 −N) = −1 ±
√
N

1 −N
.

Then for any N > 1, one root lies between 0 and 1, namely −1−
√
N

1−N = 1√
N−1 . The point 

p = (1, 0, 0, 0, 0, . . . , 0, 1√
N−1 ) also satisfies influence as 1 �= 1√

2n−1−1
for any n ≥ 4 and 

so is in ESTn. �
The computations in the proof above work for n = 3, but when n = 3, 1√

23−1−1
= 1. 

Therefore, the point we get, using this approach is (1, 0, 1), which satisfies independence, 
but not influence. Similar computations (or Remark 6.1 below) show that 1 − p =
(0, 1, . . . , 1, 

√
N−2√
N−1 ) is an element of ESTn as well.

5. The quadratic form ψ

To understand ESTn, we use the structure of ψ given in Eq. (2). Since ψ is a quadratic 
form, the Hessian matrix, denoted Hn, seems to be most helpful in our study of the geom-
etry and topology of ESTn and we explore the structure of Hn in this section. However, 
there are other helpful facts about ψ, like the fact that the first partial derivatives of 
ψ are zero at p = (1

2 , 
1
2 , . . . , 

1
2 ), that we will pick up over the course of the next three 

sections. This turns out to be one piece of evidence that this point is special; another is 
that there are lots of lines, which are mostly in ESTn, passing through this point, as we 
show and use in Section 7.

To compute the Hessian matrix we begin with the first derivative. Throughout this 
section we use N = 2n−1 to simplify expressions. For all i �= 1, n,
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∂ψ

∂pi
= 2

N2

(
n− 1
i− 1

)(n−1∑
k=0

(
n− 1
k

)
pk+1

)
− 2

N

[(
n− 2
i− 2

)
pi +

(
n− 2
i− 1

)
pn−i

]
. (5)

When i = 1 simply remove the term 2
N [
(
n−2
i−2
)
pi] and when i = n remove the term 

2
N [
(
n−2
i−1
)
pn−i]. From this the second partial derivatives are easy to compute.

∂2ψ

∂pi∂pj
= 2

N2

(
n− 1
i− 1

)(
n− 1
j − 1

)
−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
N

(
n−2
i−2
)

i = j �= 1, n
2 ;

2
N

(
n−2
i−1
)

j = n− i, j �= n
2 ;

2
N

(
n−2
i−2
)

+ 2
N

(
n−2
i−1
)

i = j = n
2 ;

0 otherwise.

(6)

Since ψ is a quadratic polynomial, the Hessian matrix is constant, as expected. Further-
more, since ψ is a quadratic form corresponding to a symmetric matrix we label Qn, 
Hn = Qn + QT

n = 2Qn. Therefore, knowing Hn gives us Qn as well.
To determine for which values of n the space ESTn is connected – our main goal – we 

need several results regarding the eigenvalues and eigenspaces of the Hessian matrix Hn, 
which we collect here.

Proposition 5.1. For all n ≥ 3, the Hessian matrix Hn has 0 as an eigenvalue with 
associated eigenvector 1.

Proof. The vector 1 is an eigenvector for the eigenvalue 0 if and only if the row sums 
are 0. The sum of the entries in the ith row of Hn, for i �= 1, n, using Eq. (6), is

n∑
j=1

2
N2

(
n− 1
i− 1

)(
n− 1
j − 1

)
− 2

N

(
n− 2
i− 2

)
− 2

N

(
n− 2
i− 1

)
= 2

N

(
n− 1
i− 1

)
− 2

N

(
n− 1
i− 1

)
= 0.

This uses 
∑n

j=1
(
n−1
j−1
)

= 2n−1 = N and 
(
n−2
i−2
)

+
(
n−2
i−1
)

=
(
n−1
i−1
)
. The arguments for 

i = 1, n are similar, with simpler computations. �

Remark 5.2. Observe from Eq. (6) that the Hessian matrix Hn = vvT −X, where v is 
the vector with ith entry equal to 

√
2

N

(
n−1
i−1
)
. The matrix X has non-zero entries on the 

diagonal, except for the (1, 1) location, which is 0, and there are non-zero entries on the 
opposite diagonal given by i + j = n. For example, below are the matrices X for n = 4
and n = 5, in both cases scaled by multiplying by N/2 = 2n−2. These two cases also 
illustrate the differences in X for odd vs. even values of n. Finally, it is helpful to keep 
the shape of the matrix X in mind for many of the following arguments.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
(2
0
)

0
. . . ...

0
(2
0
)

0 0
... . . .(2

2
)

0
(2
1
)

0
. . .

0 0 0
(2
2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
(3
0
)

0
. . . ...

0
(3
0
) (3

1
)

0 0
.... . .

0
(3
1
) (3

1
)

0 0
... . . .(3

3
)

0 0
(3
2
)

0
. . .

0 0 0 0
(3
3
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lemma 5.3. The matrix X has rank n.

Proof. Observing that rows 1, n, and, when n is even, row n2 each has only one non-zero 
entry, and that rows i and n − i for all other i �= n − 1 have two entries in the same 
columns, which are i and n − i we see that it is easy to use elementary row operations to 
convert X into an upper triangular matrix with all non-zero entries on the diagonal. �
Proposition 5.4. For all n ≥ 4, the eigenspace of Hn corresponding to the eigenvalue 0
has dimension 1.

Proof. It is enough to prove that rk(Hn) = n −1. Since Hn = vvT −X, the subadditivity
of matrix rank applied to −X = Hn − vvT gives rk(X) ≤ rk(Hn) + rk(vvT ). Since 
rk(X) = n by Lemma 5.3 and rk(vvT ) = 1, n − 1 ≤ rk(Hn). Since 0 is an eigenvector, 
n − 1 = rk(Hn). �
Remark 5.5. Since ψ(x) = xTQnx is a quadratic form, we can diagonalize Qn using 
an orthogonal matrix P , that is PTQnP = D, where D is a diagonal matrix of real 
eigenvalues of Qn. Since Hn = 2Qn, we could equivalently write ψ(x) = 1

2x
THnx and 

diagonalize Hn instead. Furthermore, all the results in this section apply equally to Qn, 
but are easier to prove and think about in terms of Hn. However, in later arguments, we 
use Qn instead of Hn to avoid having to keep track of the factor 1

2 .

We prove in Theorem 7.2 that the connectedness of ESTn depends on the number of 
strictly positive and strictly negative eigenvalues of Hn. We establish here that Hn has 
“enough” of each type of eigenvalue for n ≥ 6. For ease of notation, we use H = Hn in 
the following discussion.

Theorem 5.6. For all n ≥ 6, H (equivalently, Qn) has at least two strictly positive and 
at least two strictly negative eigenvalues.

Proof. Let A = H + εB where ε > 0 and
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Bij =
{

1, if i + j = n + 1;
0, otherwise.

Let Ak denote the submatrix of A consisting of the first k rows and columns of A so 
that det(Ak) is the kth leading principal minor of A. Then Ak = Hk for all 1 ≤ k ≤ �n

2 �. 
Therefore, for all 1 ≤ k ≤ �n

2 �, Ak = (vvT )k −Xk for a vector v and a matrix X, where 
Xk is diagonal and its first entry is 0 (see Remark 5.2). Hence elementary row operations 
on Ak transform it into an upper triangular matrix T such that T11 = A11 = 2

N2 and 
Tii = Xii = 2

N

(
n−2
i−2
)
�= 0 for all 2 ≤ i ≤ k. Thus det(Ak) �= 0 for all 1 ≤ k ≤ �n

2 �.
If k ≥ �n

2 � +1, then det(Ak) is a polynomial in ε (for example, when k = �n
2 � +1, and n

is odd, ε appears in the (�n
2 � +1, �n

2 � +1) entry). Set pk(ε) = det(Ak) for �n
2 � +1 ≤ k ≤ n. 

This is a finite set of polynomials, each with a finite number of zeros. Call that set of 
zeros Z, and let

εZ = min
({

|z| : z ∈ Z} − {0
})

, (7)

which is strictly positive (since Z is finite). Then for any ε ∈ (0, εZ) we have that 
det(Ak) �= 0 for all �n

2 � + 1 ≤ k ≤ n. Therefore all the leading principal minors of A are 
non-zero (including det(A) = det(An)).

Since all of the leading principal minors of A are non-zero, A has a unique 
LU -decomposition [6, Theorem 2.13]. Since A is symmetric, the LU -decomposition can 
be transformed into an LDLT -decomposition where L is lower triangular and D is diag-
onal [6, Theorem 2.14 and discussion]. Furthermore, simply writing this expression out 
gives the following recursive formulae for the entries of D and L, assuming i > j:

Dj = Ajj −
j−1∑
k=1

L2
jkDk (8)

Lij = 1
Dj

(
Aij −

j−1∑
k=1

LikLjkDk

)
. (9)

We show that D1 > 0, Di < 0 for 2 ≤ i ≤ �n
2 � and D�n

2 �+1 > 0. Therefore D has at 
least two strictly negative eigenvalues and two strictly positive eigenvalues for n ≥ 6. By 
Sylvester’s Theorem [10], A and D have the same index (or inertia) and hence A also has 
at least two strictly negative eigenvalues and two strictly positive eigenvalues for n ≥ 6. 
Before digging into computing Di we argue that H must also have at least two strictly 
negative eigenvalues and two strictly positive eigenvalues for n ≥ 6.

Over the complex numbers, roots of a polynomial are continuous functions of the 
coefficients of the polynomial [3, Theorem (1,4)] which implies that each eigenvalue of 
A corresponds to an eigenvalue of H. More formally, let pA(x) = xn + c1x

n−1 + · · ·+ cn
denote the characteristic polynomial of A and pH(x) = xn + d1x

n−1 + · · · + dn be the 
characteristic polynomial of H. By construction, di = ci + εi for 1 ≤ i ≤ n and each εi
approaches 0 as ε (in the definition of A) goes to 0. Suppose that:
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pA(x) =
q∏

k=1

(x− ai)mi

with the distinct ai ∈ R, since A is symmetric. Then for any

0 < rk < min{|ak − ai|, i = 1, 2, · · · , k − 1, k + 1, · · · q},

there exists a δ such that if |cj − dj | < δ for all 1 ≤ j ≤ n, then pH(x) has mk roots in a 
circle of radius rk centered at ak. Since H is also symmetric, its roots are also real and 
if ak is positive (resp. negative), then for small enough values of rk, the corresponding 
roots of pH(x) are also positive (resp. negative). Let ε (in the definition of A) be less 
than εZ from (7), and also small enough so that if A has at least two strictly positive 
eigenvalues and at least two strictly negative eigenvalues for n ≥ 6, then H does also.

We finish by showing that D1 > 0, Di < 0 for 2 ≤ i ≤ �n
2 � and D�n

2 �+1 > 0 for A. 
Throughout this discussion, we assume i > j and use Eqs. (8) and (9). For all i �= n −j+1, 
Aij = Hij . Thus D1 = H11 = 2

N2 > 0. Furthermore,

Li1 = 1
D1

(
D1

(
n− 1
i− 1

)(
n− 1

0

))
=
(
n− 1
i− 1

)
, for 1 ≤ i ≤ n− 1.

Therefore

Aij = Hij = D1Li1Lj1, for all i �= n− j, n− j + 1.

We use this fact repeatedly throughout the remaining discussion. Also note that i �=
n − j, n − j + 1 for all 1 ≤ i, j ≤ �n

2 �. Hence,

Lij = − 1
Dj

(
j−1∑
k=2

LikLjkDk

)
for all i �= n− j, n− j + 1.

By induction on j, Lij = 0 for all 1 < i, j ≤ �n
2 � since Li2 is trivially zero. Therefore 

the sum for Lij only includes expressions where the second index is strictly less than j. 
Hence

Di = Hii −
j−1∑
k=1

L2
jkDk = − 2

N

(
n− 2
i− 2

)
< 0, for all 1 < i ≤

⌊
n

2

⌋
.

Thus we have D1 > 0 and, for n ≥ 6, at least two strictly negative eigenvalues for D.
Finally, we need to argue that D�n

2 �+1 > 0. While the arguments are similar, they 
differ slightly for even and odd values of n and are somewhat technical so we placed 
them in Appendix A. When n ≥ 6 is odd, we get

D�n
2 �+1 = 2

(
n− 2

n

)(
2

n

)
+ ε > 0,
N � 2 � � 2 � − 1
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and when n ≥ 6 is even, �n
2 � =

n
2 , so that

Dn
2 +1 = 2

N

(
n− 2
t− 1

)(
n− 1

n
2 (n2 − 2)

)
+ ε2N(

n−2
t−2
) > 0. �

6. The Geometry of ESTn

The space ESTn is a bounded (but not closed) subspace of Rn. Recall that com-
putations from Section 3 show that when n = 3, this space consists of a pair of 
two-dimensional components, each of which is convex. Many of the ideas we develop 
in this section are useful in our discussion of connectivity in Section 7.

Remark 6.1. For any n, the symmetry of the states 0 and 1 in the EST problem implies 
if p ∈ ESTn then 1 − p = (1 − p1, 1 − p2, . . . , 1 − pn) ∈ ESTn. Therefore the map 
p → 1 −p is an involution from the solution space to itself; in the case n = 3, this maps 
each connected component onto the other. This involution also moves every point, since 
the unique fixed point has pi = 1

2 for all i and this point fails influence.
Furthermore, if p ∈ ESTn lies in the EST solution space then for any constant 0 <

c ≤ 1, the scaled vector c · p ∈ ESTn, since ψ is a homogeneous quadratic in the 
coordinates of p.

These observations are part of the following more general result.

Proposition 6.2.

(i) For any real values x and y and real vector p = (p1, . . . , pn),

ψ(xp + y1) = x2ψ(p).

(ii) In particular, if p ∈ [0, 1]n satisfies independence then xp + y1 does also, provided 
this vector also lies in [0, 1]n.

Proof. Part (i) holds for y = 0, since ψ is a homogeneous quadric polynomial, so it 
suffices to establish part (i) when x = 1. In that case, if we replace pi by pi + y in ψ, 
we see that the coefficient of y2 is ψ(y1) = 0, and the coefficient of y0 is ψ(p). The 
remaining terms correspond to the coefficient of y1. Checking that this coefficient is equal 
to 0 requires more careful algebraic analysis (and the use of the combinatorial identity: (
n−2
k−1
)
+
(
n−2
k

)
=
(
n−1
k

)
), but the computation is straightforward. This establishes part (i). 

Part (ii) now follows from Proposition 3.2. �
This proposition has a few consequences of note. First, it provides an alternative 

argument for the point made in Remark 6.1. However, it proves further that if p ∈ Indn
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then the entire line between p and 1 − p also lies in Indn. Note that any such line must 
pass through the ‘middle point’ of [0, 1]n, namely

m =
(

1
2 ,

1
2 , . . . ,

1
2

)
,

and this point will play an important role in forthcoming arguments.
Furthermore, if we want to explore points near m ∈ Indn (which is helpful for the proof 

of Theorem 7.2) – say, points of the form p = (1
2 + x1, . . . , 12 + xn) where −1

2 < xi <
1
2

– then p ∈ Indn if and only if ψ(x1, . . . , xn) = 0. Note that (x1, . . . , xn) may or may not 
be in Indn since the coordinates may or may not all be non-negative. The question of 
which of these points are in ESTn is a bit more subtle but, generally, they will be so if 
p ∈ ESTn to start with.

Remark 6.3. Let p, q ∈ Indn. We note that Proposition 6.2 gives an equivalence relation 
on Indn. We say p ∼ q if and only if p = aq + b1 for some a, b ∈ R with a �= 0. For 
example, the two points given in Section 4.2 are equivalent, as are the two solutions to 
EST3 shown in Fig. 1 (use a = 9

4 and b = 1
4 ). Also note that if p, q ∈ [0, 1]n and p ∼ q

then p ∈ ESTn if and only if q ∈ ESTn.

The more general expression ψ(xp + yq) for two points p and q in Rn is helpful for 
investigating the convexity of Indn and ESTn, and is useful for our next result regarding 
the equivalence relation ∼ which we use in our discussion of convexity in the next section.

ψ(xp + yq) = (xp + yq)TQn(xp + yq)

= x2ψ(p) + y2ψ(q) + xyCT (p,q)

where the ‘cross term’ CT is given by

CT (p,q) = 2pTQnq. (10)

Proposition 6.4. For any n ≥ 3, a point x ∈ Indn has the property that for all p ∈ Indn

the line segment from p to x lies in Indn if and only if x ∼ 1.

Proof. The ‘if’ direction is readily established. If x ∼ 1 and p ∈ Indn then Eq. (10)
and the identity Qn1 = 0 imply that CT (p, x) = 0. Thus, ψ(tp + (1 − t)x) = 0 for all 
t ∈ [0, 1], and thus each point on this line lies in Indn.

For the ‘only if’ part, suppose that x ∈ [0, 1]n satisfies the property described (we will 
say that x is permissible). For all q ∈ [−1

3 , 
1
3 ]n for which ψ(q) = 0 we have m+q ∈ Indn

by Proposition 6.2(ii). Thus, since x ∈ Indn and by the special assumption concerning 
this point, we have:

0 = CT (x,m + q) = CT (x,m) + CT (x,q) = 0 + CT (x,q),
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which gives

CT (x,q) = 0 (11)

for all q ∈ [−1
3 , 

1
3 ]n for which ψ(q) = 0. Let P and D be as given in Remark 5.5. If we 

let (fixed) y = PTx and (variable) z = PTq, then for all z ∈ B = PT [−1
3 , 

1
3 ]n for which 

zTDz = 0 (i.e. ψ(q) = 0) we have (from (11)):

2yTDz = 0. (12)

By Proposition 5.4, we can order the diagonal entries D as d1, . . . , dn so that d1 = 0, 
and dj �= 0 for j > 1. Set ci = diyi for each i. Then for all z in B for which

n∑
i=2

diz
2
i = 0, (13)

we must also have (from Eq. (12)):

n∑
i=2

cizi = 0.

Now, D not only has n − 1 non-zero eigenvalues, but at least one is strictly positive 
and at least one is strictly negative. This is readily verified for 3 ≤ n ≤ 5, and for 
n ≥ 6 it is an immediate consequence of the stronger result stated in Proposition 5.6. 
Consequently, for any j > 1, the equation 

∑n
i=2 diz

2
i = 0 has a solution for z ∈ B with 

zj �= 0.
Now, suppose that cj �= 0 for some value of j. Let z be a vector in B that satisfies 

Eq. (13) and has zj �= 0, and let z′ be the vector obtained from z by flipping the sign of 
zj while leaving the zi values unchanged for all i �= j. Then z′ still lies in B and satisfies 
Eq. (13) but 

∑n
i=2 cizi and 

∑n
i=2 ciz

′
i cannot both be zero, since they differ by a term 

of magnitude 2|cizi| �= 0. Thus if x is permissible then ci must be zero for all i > 1 and 
since di �= 0 for all i > 1, we must have:

y2 = y3 = . . . yn = 0.

Thus, the set of possible values of y for which x is permissible is precisely the set

{
y = (y, 0, 0, . . . , 0) : Py ∈ [0, 1]n

}
,

and this is simply {p · 1 : p ∈ [0, 1]}, since (1, 1, . . . , 1) is the eigenvector of Hn corre-
sponding to 0. �



32 D. Molitor et al. / Advances in Applied Mathematics 62 (2015) 15–40
6.1. Convexity

As previously noted, Proposition 6.2 shows that if p ∈ ESTn then 1 − p and the 
line segment (1 − t)p + t(1 − p), for 0 ≤ t ≤ 1, between them are all in Indn. Easy 
computations show that the point m = (1

2 , . . . , 
1
2 ) lies on the line (1 − t)p + t(1 − p)

for any point p but m fails influence and hence is not in ESTn. Therefore ESTn is not 
convex. However, in this example, all the points still lie in independence space and so it 
might still seem possible that Indn is convex. Using the cross term given in Eq. (10) and 
the points from Section 4, we see that there are points in ESTn where the line between 
them does not lie in Indn and hence independence space is not convex either.

If we take the point (1, 0, . . . , 0, 1√
N−1 ) and a point (θ, θ2, . . . , θn) where θ is a solution 

to f(θ) = 0, then a bit of computation and proceeding by contradiction shows that 
CT (p, q) �= 0 and every point on the line tp + (1 − t)q, except for p and q, is outside 
independence space and hence outside ESTn. For example, if n = 11 and we use θ =
.340336, then CT (p, q) = 14.3457.

7. The topology of ESTn

As noted previously, the space ESTn is a bounded (but not closed) subspace of Rn. 
The discussion in Section 3 shows that when n = 3, this space consists of a pair of 
two-dimensional components, each of which is contractible.

7.1. Contractible

Recall that a space is contractible if it can be continuously shrunk to a point (i.e. if 
the identity map is homotopic to the constant map).

Proposition 7.1. For each n ≥ 3, Indn is contractible, but ESTn is not.

Proof. For Indn, select any point x ∈ Indn for which x ∼ 1 (e.g. x = 0 or m =
(1
2 , . . . , 

1
2 )). Then we have the homotopy:

F : Indn × [0, 1] → Indn

(p, t) → (1 − t)p + tx,

for which F (·, 0) is the identity map, F (·, 1) maps Indn to x, and F (p, t) ∈ Indn for all 
t ∈ [0, 1] by Proposition 6.2.

An early classical topological result of Smith [7] implies that any subset S of Euclidean 
space is not contractible if there is a continuous function f : S → S that has period two 
(i.e. f ◦f is the identity map) and which has no fixed point. For ESTn, the map p → 1 −p
is such a function, and since ESTn is a subset of Euclidean space it follows that ESTn

is not contractible. �
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7.2. Connectedness of ESTn

Since Indn is contractible, it is connected. The connectedness of ESTn is much more 
subtle and depends on the eigenvalues of the Hessian matrix Hn of ψ. Consider any 
two points p, q ∈ ESTn. By Proposition 6.4, there are straight-line-paths from p to 
m = (1

2 , . . . , 
1
2 ), and from m to q and the concatenation of these two paths lies entirely 

in Indn. However, exactly one point on this concatenated path, namely m, fails to lie in 
Infn. It is not enough to show there is a ‘perturbed’ path within Indn from p to q that 
avoids m; we must also avoid all points not in Infn.

Theorem 7.2. If n = 3, 4, then ESTn is disconnected and consists of exactly two connected 
components. If n ≥ 5 then ESTn is connected.

The case n = 3 was covered in Section 3. We give rather different proofs for the 
cases n = 4, 5, 6, 7 as opposed to the case n ≥ 8. We use some computation for the 
small dimensions that does not generalize easily to the larger dimensions and we use 
cohomology theory for the larger dimensions that requires n ≥ 8. However, some of the 
argument applies to all dimensions, so we begin with that.

All dimensions. Let Infcn denote the complement of influence space, which is the linear 
subspace of Rn of dimension �n/2� defined by:

xi − xn−i+1 = 0 for all i ∈ [n].

Since Qn is a matrix corresponding to a quadratic form there exist matrices P , a real 
orthogonal matrix, and D, the diagonal matrix of real eigenvalues of Qn (Remark 5.5). 
Let y = PTx (so x = Py).

By Proposition 5.4, D has zero as an eigenvalue with geometric multiplicity one. 
Suppose that D has k strictly positive eigenvalues, and l strictly negative eigenvalues, 
so that k + l + 1 = n. By Theorem 5.6, and direct computation for n = 4, 5, we have 
that k > 0 and l > 0. We may assume that the first eigenvalue is 0 and that the next 
k eigenvalues λ1, . . . , λk are all strictly positive, while the final l eigenvalues, μ1, . . . , μl

are all strictly negative. Then for any s > 0 and t ≥ 0, the set

Ss,t :=
{

y ∈ R
n : −s < y1 < s,

k∑
i=1

λiy
2
i+1 = t and

l∑
j=1

(−μj)y2
k+j+1 = t

}
(14)

is a set of solutions to the equation

yTDy = 0.

Observe that Ss,t
∼= Is × Sk × Sl, where Is is an open interval of length s.
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Let L be the image of Infcn under the transformation PT , that is

L =
{
PTx : x ∈ Infcn

}
.

Since P has full rank, it follows that L is a linear subspace of Rn of dimension �n/2�. 
We recall that PT is a homeomorphism since it is orthogonal and transforms ESTn =
Indn ∩ Infn into (

⋃
s,t≥0 Ss,t) − L where studying the connectivity of the space is much 

easier. We use the following lemma in arguments for all dimensions.

Remark 7.3. We note that for all s, points in Ss,0 are in the vectorspace spanned by 
(1, 0, . . . , 0) which is isomorphic to the vectorspace spanned by (1, 1, . . . , 1) under the 
transformation given by P . Therefore Ss,0 ⊆ L and therefore none of the corresponding 
x satisfy influence and hence are not in ESTn. We use this fact repeatedly in what 
follows.

Lemma 7.4. If Ss,t − L is connected for all s ≥ 0 and t > 0, then for n ≥ 3, ESTn is 
connected also.

Proof. Let m = (1
2 , 

1
2 , . . . , 

1
2 ). Let s, t > 0 be sufficiently small so that m + Px ∈ [0, 1]n

for all x ∈ Ss,t. Consider any points p and q ∈ ESTn. Recall that for any point x in 
ESTn, y = PTx satisfies

k∑
i=1

λiy
2
i+1 = M and

l∑
j=1

(−μj)y2
k+j+1 = M, for some M.

Denote the value of M corresponding to p and q within this probability space as Mp

and Mq respectively. Since p, q ∈ ESTn, Remark 7.3 implies Mp, Mq > 0 and therefore 
we can choose c1 = t′

Mp
and c2 = t′

Mq
for some t′ ∈ (0, t]. Then for yp = c1P

Tp and 

yq = c2P
Tq, we have yp, yq ∈ Ss,t′ . Since Ss,t−L is connected for all s, t > 0, there exists 

a path from yp to yq in Ss,t′ − L. By the fact that PT is a homeomorphism, there also 
exists a continuous path from Pyp to Pyq satisfying Indn and Infn, but not necessarily 
within the probability space [0, 1]n. In order to ensure that there is a path within this 
probability space, we scale the path from Pyp to Pyq by adding m = (1

2 , 
1
2 , . . . , 

1
2 ) to 

the entire path. For small enough t and t′, this path from m+Pyp to m+Pyq remains 
in [0, 1]n and hence is in ESTn. Note that Pyp = P (c1PTp). Using Proposition 6.2 and 
Remark 6.3, we know that the straight-line paths from Pyp to m + Pyp and Pyq to 
m + Pyq, remain in [0, 1]n and are in ESTn as well. Therefore, if Ss,t − L is connected 
for all t > 0, then ESTn is connected also. �
Dimension n = 4. We examine the space Ind4 ∩ Infc4 by setting Ψ(x) = 0, x1 = x4 and 
x2 = x3 getting 0 = − 1

16 (x1 − x2)2. Since − 1
16 (x1 − x2)2 ≤ 0 for all real x1, x2, the only 

solution to this equation is x1 = x2. Therefore, if x ∈ Ind4∩Infc4, then x1 = x2 = x3 = x4. 
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Hence Ind4 ∩ Infc4 forms a one-dimensional linear space with basis vector (1, 1, 1, 1). The 
result of applying PT to this space gives the one-dimensional space with basis (1, 0, 0, 0). 
By Remark 7.3, PT (Ind4 ∩ Infc4) = Ss,0 ⊆ L and hence for all t > 0 and for all s ≥ 0, 
L ∩Ss,t = ∅. Furthermore, by Lemma 7.4, it is enough to prove that Ss,t−L is connected 
for all t > 0 and hence we proceed to argue Ss,t is connected for all t > 0 and all s ≥ 0.

Fix t > 0 and s ≥ 0 arbitrary. Using Mathematica we verify that H4 has exactly one 

positive eigenvalue. Then recalling Eq. (14), for any y ∈ Ss,t, y2 = ±
√

t
λ2

. Let p ∈ Ss,t, 
be any point where p2 < 0 and q ∈ Ss,t be any point where q2 > 0, then the Intermediate 
Value Theorem implies that any continuous path between these two points must contain 
a point y with y2 = 0. However, y2 = 0 implies y ∈ Ss,0 = L and hence there does not 
exist a continuous path from p to q contained in Ss,t. Therefore EST4 consists of at least 
two components. In fact each Ss,t is homeomorphic to the union of the disjoint cylinders 
A1 = Is×

√
t
λ2

×S1 and A2 = Is×−
√

t
λ2

×S1 and each cylinder is connected. Observe 

that the argument used in Lemma 7.4 implies that 
⋃

s,t A1 and 
⋃

s,t A2 are connected 
and therefore EST4 consists of two connected components.

Remark 7.5. The only role that n = 4 plays in this argument is that H4 has exactly one
positive eigenvalue and two negative eigenvalues.

Dimensions n = 5,6,7. Just as in the case of n = 4 we consider the set of equations 
consisting of setting Ψ(x) = 0 and the linear equations that specify Infcn. We get

0 = − 3
64(x1 − x3)2 for n = 5,

0 = 1
28

(
−7x2

1 − 15x2
2 − 28x2

3 − 6x1x2 + 20x1x3 + 36x2x3
)

for n = 6, and

0 = 1
210

(
−15x2

1 − 60x2
2 − 15x2

3 − 60x2
4 − 20x1x2 + 30x1x3

+ 20x1x4 + 20x2x3 + 120x2x4 − 20x3x4
)

for n = 7.

For n = 5, this implies x1 = x3 and hence x1 = x3 = x5. For n = 6 solving for x1
gives

x1 = 1
7
(
−3x2 + 10x3 ±

√
−(x2 − x3)2

)
and hence real solutions require x2 = x3. Substituting this back into the equation Ψ(x) =
0 we get that x1 = x2 and hence x1 = x2 = x3 = x4 = x5 = x6. Similarly for n = 7, 
solving for x4 gives

x4 = 1
6
(
x1 + 6x2 − x3 − 2

√
2
√
−(x1 − x3)2

)
and so real solutions require x1 = x3. Making this substitution into the equation Ψ(x) = 0
we get x4 = x2, so x1 = x3 = x5 = x7 and x2 = x4 = x6.
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In the case n = 6, we see that Indn ∩ Infc6 forms a one-dimensional linear space 
with basis vector (1, 1, 1, 1, 1, 1). The result of applying PT to this space gives the one-
dimensional space with basis (1, 0, 0, 0, 0, 0). So just as for the case n = 4, L ⊆ Ss,0. Thus 
for all t > 0, Ss,t − L = Ss,t when n = 6. Recalling Eq. (14) and using Mathematica 
to get the eigenvalues for H6, Ss,t for n = 6 is homeomorphic to Is × S1 × S2, a path 
connected space. Therefore by Lemma 7.4, 

⋃
s≥0,t>0 Ss,t is connected and hence EST6

is as well.
In the cases n = 5 and n = 7, Indn ∩ Infcn is a two-dimensional linear space that can 

be written in terms of x1 and x2. The argument for n = 5 is a simplified version of that 
for n = 7, so for ease of reading, we give only the argument for n = 7 here.

Applying the matrix PT to the two dimensional linear space Ind7 ∩ Infc7 re-
sults in a two-dimensional space with basis vectors b1 = (1, 0, 0, 0, 0, 0) and b2 =
(0, b22, b23, b24, b25, b26, b27). Recall that for t = 0, Ss,0 ⊆ L (Remark 7.3) and so fix 
an s ≥ 0 and t > 0. Now, from Mathematica, H7 has exactly three positive and three 
negative eigenvalues. Then using Eq. (14) again, Ss,t is homeomorphic to Is × S2 × S2

and further for any y ∈ Ss,t,

λ2y
2
2 + λ3y

2
3 + λ4y

2
4 = t.

Substituting cbij in for yj for j ∈ {2, 3, 4} and i = 2, and solving for c we get

c = ±
√

t

λ2b222 + λ3b223 + λ4b224
. (15)

Therefore we can characterize L ∩ Ss,t as the set of line segments of the form,

L ∩ Ss,t>0 =
{
y ∈ R

5 ∣∣ y = (y1,±c · b22,±c · b23,±c · b24,±c · b25,±c · b26,±c · b27),
− s < y1 < s

}
.

We first observe that if p is any point in Ss,t − L then for some pi with 2 ≤ i ≤ 7, 
pi �= ±cb2i, and hence pj �= ±cb2j or pk �= ±cb2k for i, j, k ∈ {2, 3, 4} or i, j, k ∈ {5, 6, 7}
and i �= j �= k. Let q be any point in Ss,t such that qi = pi, qj = pj , and qk = pk. Then 
q ∈ Ss,t − L as well. Since S2 is path-connected, there is a path in Ss,t from p to q
where every point on the path has pi as the ith coordinate. Hence this entire path is in 
Ss,t − L.

Now let p and q be any two points in Ss,t − L. As before, for some 2 ≤ i ≤ 7, 
pi �= ±cb2i. Without loss of generality suppose p2 �= ±cb22. We split the argument into 
two cases:

Case 1: Assume q5 = ±cb25, q6 = ±cb26 and q7 = ±cb27. Then q2 �= ±cb22, q3 �= ±cb23
or q4 �= ±cb24. Without loss of generality, suppose q2 �= ±cb22. Since S2 is 
continuous and Ss,t>0 ∩ L is discrete, there exist s5, s6, s7 such that λ5s

2
5 +
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λ6s
2
6 + λ7s

2
7 = t and s5 �= ±cb25, s6 �= ±cb26 or s7 �= ±cb27. Then, by the 

argument above, there is a path in Ss,t>0 −L from p to (p1, p2, p3, p4, s5, s6, s7)
and from (p1, p2, p3, p4, s5, s6, s7) to (q1, q2, q3, q4, s5, s6, s7). Since q2 �= ±cb22, 
there exists a path from (q1, q2, q3, q4, s5, s6, s7) to q. These paths combine to 
give a path from p to q in Ss,t>0 − L.

Case 2: Assume q5 �= ±cb25, q6 �= ±cb26 or q7 �= ±cb27. Using the argument 
above, there is a path from p to (p1, p2, p3, p4, q5, q6, q7) and a path from 
(p1, p2, p3, p4, q5, q6, q7) to q both of which are in Ss,t − L.

Therefore Ss,t −L is path connected for all s and all t > 0 and hence EST7 is connected 
by Lemma 7.4.

Dimensions n ≥ 8. We begin this proof with one more topological lemma.

Lemma 7.6. Let M be a compact manifold and I an open interval. Let p = (x, t) ∈ M×I

and q = (y, s) ∈ M×I. Then there exists φ : M → M×I such that M is homeomorphic 
to im(φ) and p, q ∈ im(φ).

Proof. Let f : M → I be any continuous function such that f(x) = t and f(y) = s. Set 
φ : M → M × I to be φ(v) = (v, f(v)) for any v ∈ M . By construction, φ is continuous, 
since f is continuous. It is one-to-one, since it is the identity on the first coordinate of the 
image. Since M is compact, M × I is Hausdorff and φ is continuous and one-to-one, φ−1

is also continuous [9, Corollary 5.9.2]. Hence M is homeomorphic to the image of φ. �
We use Lemma 7.4 yet again and so let p, q be any two points in Ss,t − L for some 

fixed s, t > 0. Recall that we have the homeomorphism Ss,t
∼= Is × Sk−1 × Sl−1 where 

Is is an open interval. If min{k, l} > 1, then Sk−1 × Sl−1 is a compact orientable 
m = (n − 3)-manifold which we denote by Mt.

Set A = Mt ∩L. Thus A is a closed and bounded subspace of R�n/2	. Therefore, A is 
a proper closed subset of Mt as long as m = n − 3 > �n/2�, which is true for n ≥ 8. In 
addition, A is locally contractible (it is a CW-complex).

In the following discussion, we compute all homology modules over Z. Consider the 
terminal end of the long exact sequence relating homology to relative homology:

· · · → H1(Mt,Mt −A) → H0(Mt −A) → H0(Mt) → H0(Mt,Mt −A) → 0. (16)

By Alexander Duality [1, Proposition 3.46] we have:

Hi(Mt,Mt −A) ∼= Hm−i(A).

Therefore,

H1(Mt,Mt −A) ∼= Hm−1(A) and H0(Mt,Mt −A) ∼= Hm(A).



38 D. Molitor et al. / Advances in Applied Mathematics 62 (2015) 15–40
For t > 0, 0 /∈ Mt and therefore 0 /∈ A. However, 0 ∈ R
�n/2	, so A is a proper closed 

subset of R�n/2	 and hence it is a proper closed subspace of a compact manifold (sphere) 
of dimension �n/2� as well. Since �n/2� ≤ m − 1 for n ≥ 8, by [4, Proposition 6.5], 
Hm−1(A) = Hm(A) = 0 (we are using that A is a CW-complex so C̆ech cohomology 
coincides with singular cohomology). Hence the exactness of the sequence in (16) implies

H0(Mt −A) ∼= H0(Mt) ∼= Z.

Therefore, Mt −A is connected.
The connectivity of Mt −A and the fact that φ is a homeomorphism, imply Ss,t −L

is connected and hence by Lemma 7.4, ESTn is connected.

8. Concluding comments

Our proof of Theorem 7.2 treats the dimensions n < 8 different from those for n ≥ 8. 
Our proof for n ≥ 8 requires larger dimensions to apply the cohomology theorems we 
use. We have good evidence that our argument for n < 8 extends to all n. Such a proof 
requires proving our conjecture that dim(Indn ∩ Infcn) has dimension 1 for n even or 
dimension 2 for n odd.

Further exploration of the topology of ESTn may be of interest, for example classifi-
cation up to homotopy or homeomorphism.

We gave a thorough analysis of the EST set-up where r = 1
2 and pk = qk. One 

possible approach to the study of the probabilities where influence and independence 
collide for more general values of r, pk, and qk might be to treat r, pk, qk as variables 
in a polynomial ring R = K[r, p1, . . . , pn, q1, . . . , qn] over a field K and use polynomial 
ring theory.

From a practical point of view, the flexibility to allow r to vary seems interesting. 
For independence conditioned on a single cause, we verified computationally that for 
n = 3, 4, the only value of r that allows influence and independence to collide is r = 1

2 . 
For independence without conditioning we have duplicated all of the results in Section 5
(much more technical than the arguments here), except the fact that D�n

2 �+1 > 0 – the 
last step of the proof of Theorem 5.6.
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Appendix A

We include here some details for the computations of D�n
2 �+1 from the end of Section 5. 

As in that section, we set H = Hn to clean up the notation.
We need to argue that D�n

2 �+1 > 0. We recall a few of the formulae found in the proof 
of Theorem 5.1 since we use them all:

D1 = H11 = 2
N2 , Aij = Hij = D1Li1Lj1, for all i �= n− j, n− j + 1,

Li1 =
(
n− 1
i− 1

)
, for 1 ≤ i ≤ n− 1,

Lij = − 1
Dj

(
j−1∑
k=2

LikLjkDk

)
for all i �= n− j, n− j + 1,

Lij = 0 for all 1 < i, j ≤
⌊
n

2

⌋
, Di = − 2

N

(
n− 2
i− 2

)
< 0, for all 1 < i ≤

⌊
1
2

⌋
.

We first assume that n is odd, so that �n
2 � + 1 + �n

2 � = n. For ease of notation, let 
t = �n

2 � + 1. Then:

Ltt−1 = 1
Dt−1

(
Htt−1 −

t−2∑
k=1

LtkLt−1kDk

)
.

However, Lt−1k = 0 for 2 ≤ k ≤ t − 2 < �n
2 � since t − 1 = �n

2 �. Using that Dt−1 =
− 2

N

(
n−2
t−3
)
, we have:

Ltt−1 = − 1
2
N

(
n−2
t−3
)( 2

N2

(
n− 1
t− 1

)(
n− 1
t− 2

)
− 2

N

(
n− 2
t− 1

)
−
(
n− 1
t− 1

)(
n− 1
t− 2

)
2
N2

)

=
(
n−2
t−1
)

(
n−2
t−3
) (A.1)

Therefore:

Dt = Htt −
t−1∑
k=1

L2
tkDk

= 2
N2

(
n− 1
t− 1

)2

− 2
N

(
n− 2
t− 2

)
+ ε−

(
n− 1
t− 1

)2 2
N2 − L2

tt−1Dt−1

= − 2
N

(
n− 2
t− 2

)
+ ε−

((n−2
t−1
)

(
n−2
t−3
))2(

− 2
N

(
n− 2
t− 3

))

= 2
N

(
n− 2
�n

2 �

)(
2

�n
2 � − 1

)
+ ε > 0. (A.2)

where (A.2) uses the symmetry of the binomial.
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Now assume n is even, so that �n
2 � =

n
2 . This time, let t = n

2 . Then the entries of L
we need to be concerned with are Lt+1,t−1 and Lt+1,t. In both cases, as in Eq. (A.1), 
the sum has all terms zero, except for the first one. We note that ε potentially appears 
in Lt+1k, but Ltk or Lt−1k are still zero and hence the full sum is zero. Therefore:

Lt+1,t = ε

Dt
= − εN

2
(
n−2
t−2
) , and Lt+1,t−1 =

(
n−2
t

)
(
n−2
t−3
) .

We are now ready to compute Dt+1.

Dt+1 = At+1,t+1 −
t∑

k=1

L2
t+1kDk

= − 2
N

(
n− 2
t− 1

)
− L2

t+1t−1Dt−1 − Lt+1tDt

= − 2
N

(
n− 2
t− 1

)
−
((n−2

t

)
(
n−2
t−3
))2(

− 2
N

(
n− 2
t− 3

))
−
(
− εN

2
(
n−2
t−2
))2(

− 2
N

(
n− 2
t− 2

))

= 2
N

(
n− 2
t− 1

)(
n− 1

n
2 (n2 − 2)

)
+ ε2N

2
(
n−2
t−2
) > 0.
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