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1Biomathematics Research Centre, Mathematics and Statistics Department, University of
Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
m.steel@math.canterbury.ac.nz

2Department of Mathematics, University of South Carolina, LeConte College, 1523 Greene
Street, Columbia, SC 29208, USA
szekely@math.sc.edu

Received August 3, 2006

AMS Subject Classification: 60C05, 62B10, 92B10, 94A17

Abstract. This paper continues our earlier investigations into the inversion of random functions
in a general (abstract) setting. In Section 2, we investigate a concept of invertibility and
the invertibility of the composition of random functions defined on finite sets. In
Section 3, we resolve some questions concerning the number of samples required
to ensure the accuracy of maximum likelihood estimation (MLE) in the presence of
‘nuisance’ parameters. A direct application to phylogeny reconstruction is given.
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1. Review of Random Functions

This paper is a sequel of our earlier papers [14, 15]. We assume that the reader is
familiar with those papers, however, we repeat the most important definitions.

For two finite sets, A and U , let us be given a U-valued random variable ξa for
every a ∈ A. We call the vector of random variables (ξa : a ∈ A) a random function
Ξ : A →U . Ordinary functions are specific instances of random functions.

Given another random function, Γ, from U to V , we can speak about the compo-
sition of Γ and Ξ, Γ ◦Ξ : A → V , which is the vector variable

(
γξa : a ∈ A

)
. In this

paper we are concerned with inverting random functions. In other words, we look for
random functions Γ : U → A in order to obtain the best approximations of the identity
function ι : A → A by Γ ◦Ξ. We always assume that Ξ and Γ are independent. This
assumption holds for free if either Ξ or Γ is a deterministic function.
∗ We thank the NZIMA Maclaurin Fellowship, the Phylogeny programme at the Isaac Newton Institute of

Cambridge University, and Hungarian Bioinformatics MTKD-CT-2006-042794 for supporting this
research. The second author was also supported in part by NSF DMS contracts 007 2187, 070 1111, and
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Consider the probability of returning a from a by the composition of two random
functions, that is, ra = P

[
γξa = a

]
. The assumption of the independence of Ξ and Γ

immediately implies that

ra = ∑
u∈U

P [ξa = u] ·P [γu = a] . (1.1)

A natural criterion is to find Γ for a given Ξ in order to maximize ∑a ra. More gen-
erally, we may have a weight function w : A → R

+ and we may wish to maximize
∑a raw(a). This can happen if we give preference to returning certain values of a,
or if we have a prior probability distribution on A and we want to maximize the ex-
pected return probability for a random element of A selected according to the prior
distribution. The following random function Γ∗ : U → A, defined below, will perform
this task. For any fixed u ∈U ,

γ∗u = a∗ for sure, if for all a ∈ A, P [ξa∗ = u]w(a∗) ≥ P [ξa = u]w(a). (1.2)

(If more than one element a∗ satisfies (1.2), we may select uniformly at random from
the set of such elements.) This function Γ∗ is called the maximum a posteriori esti-
mator (MAP) in the literature [6]. The special case when the weight function w is
constant is known as the maximum likelihood estimation (MLE) [2, 6].

For a, b ∈ A, Ξ : A →U , let

d(a, b) := d (ξa, ξb) = ∑
u∈U

∣∣P [ξa = u]−P [ξb = u]
∣∣, (1.3)

which is called the variational distance between the random variables ξa and ξb.
Any given Ξ : A →U will have an |A|× |U | associated matrix X , such that xau =

P [ξa = u]. Given Γ : U → V with an associated matrix G, the composition of Γ and
Ξ, Γ◦Ξ : A →V , will have the associated matrix XG.

Our motivation for the study of random functions came from phylogeny recon-
struction [8,12]. Stochastic models define how biomolecular sequences are generated
at the leaves of a binary tree. If all possible binary trees on n leaves come equipped
with a model for generating biomolecular sequences of length k, then we have a
random function from the set of binary trees with n leaves to the ordered n-tuples
of biomolecular sequences of length k. Phylogeny reconstruction can be viewed as
a random function from the set of ordered n-tuples of biomolecular sequences of
length k to the set of binary trees with n leaves. It is a natural assumption that random
mutations in the past are independent from any random choices in the phylogeny re-
construction algorithm. Criteria for phylogeny reconstruction may differ according
to what one wishes to optimize. However, there is an important extra complication in
phylogeny reconstruction, namely, the random sequences that a tree generates (under
some Markov model) typically depends on other (generally continuous) parameters
associated with the tree, about which little, if anything, is known. With this mo-
tivation our paper [14] considered an abstract model for phylogeny reconstruction:
Inverting random functions between finite sets, with associated additional ‘nuisance’
parameters. Most of the work done on the mathematics of phylogeny reconstruction
can be discussed in this context. This model is more structured than when nuisance
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parameters are absent, and hence is better suited to describe details of phylogenetic
models and the evolution of biomolecular sequences. We now describe this general
setting (note that in [14, 15] we referred to the distinction between the presence and
absence of nuisance parameters as the ‘parametric setting’ and the ‘non-parametric
setting’, respectively; but here we adopt the more standard statistical terminology).

Assume that for a finite set A, for every a ∈ A, an (arbitrary, finite, or infinite) set
Θ(a) �= /0 is assigned, and moreover, Θ(a)∩Θ(b) = /0 for a �= b. Set B = {(a, θ) : a ∈
A, θ ∈ Θ(a)} and let π1 denote the natural projection from B to A. A random function
with nuisance parameters is the collection Ξ of random variables such that for a ∈ A
and θ ∈ Θ(a), there is a (unique) U-valued random variable ξ(a,θ) in Ξ.

(b)(a)

ξ
Ξ

γu

a
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u

Γ

BU U

a

A

Γ

γu

Ξ

π1

(a,θ) u
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Figure 1: Inversion of random functions without (a), and with (b) nuisance parame-
ters.

We are interested in random functions Γ : U → A that are independent from Ξ so
that γξ(a,θ)

best approximates π1 under certain criteria. Let R(a,θ) denote the prob-

ability P

[
γξ(a,θ)

= a
]
. Maximum Likelihood Estimation, as it is used in situations

where there is a discrete parameter of interest to estimate but where additional nui-
sance parameters are also present (such as phylogeny reconstruction), corresponds to
the random function Γ ′ for which, for every fixed u, γ ′

u = a′ with probability 1 if,

for all (a, θ) ∈ B, there exists θ ′ ∈ Θ(a′) with P
[
ξ(a′,θ ′) = u

]≥ P
[
ξ(a,θ) = u

]
.

(1.4)
In case there is more than one element a′ that satisfies (1.4), we may select uniformly
at random from the set of such elements. (We avoided using the more natural looking
quantification for (1.4) of requiring the existence of θ ′ in Θ(a′) for all (a, θ)∈B, since
P
[
ξ(a′,θ ′) = u

]
may not take a maximum value.) We denote by R ′

(a,θ) the probability

that from the pair (a, θ) the Maximum Likelihood Estimation Γ ′ returns a, i.e.,

R ′
(a,θ) = P

[
γ ′

ξ(a,θ)
= a

]
. (1.5)

If a random function Ξ : A →U (or Ξ : B →U , as appropriate) is to have k inde-
pendent evaluations, then we denote the resulting random function by Ξ(k) : A → Uk
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(
or Ξ(k) : B → Uk, respectively

)
, and the random variable associated with a will be

ξ(k)
a . We will study the invertibility of Ξ(k) both with and without nuisance parame-

ters. For a random function Γ : U k →A, we use the notation r(k)
a = P

[
γ

ξ(k)
a

= a
]

in the

absence of nuisance parameters, R(k)
(a,θ)

= P

[
γ

ξ(k)
(a,θ)

= a
]

in the presence of nuisance

parameters, and
[
R (k)

]′
(a,θ)

if Γ ′ is the Maximum Likelihood Estimation.

In Section 2, we will show that in the absence of nuisance parameters, several
natural definitions of invertibility of a random function are, in fact, equivalent. The
main result of Section 2 is an explicit bound on how invertibility “improves” as the
variational distances between elements of A become increasingly separated from zero.
Furthermore, we determine when the composition of invertible random functions is
invertible.

In Section 3, we revisit our study of the worst-case behaviour of MLE in [15].
(This is a very natural question in situations where a prior distribution is not given
on A, or the inverting of the random function is to be carried out only once. This
situation arises in phylogeny reconstruction where, arguably, we do not have a prior
distribution on alternative evolutionary scenarios, and the reconstruction is not going
to be repeated — there is only one ‘Tree of Life’ that we want to explore.) A certain
amount of controversy and debate has surrounded the statistical consistency of MLE
in phylogeny, as described in [8, pp. 270–272]. Felsenstein’s claim (from the early
1970s) of the consistency of MLE in phylogeny for simple (‘identifiable’) models is
correct, but it was only formally established in 1996 by [3]. This result, like Wald’s
earlier result [17], relies on a compactness argument, continuity and limit theory, that
does not give an explicit bound on k (the sequence length of i.i.d. observations). Other
proofs in the biological literature have generally been less rigorous, and led to criti-
cism and debate (see, e.g., [1,7,9,10,13,18,19]). One oversight has been to treat the
MLE-estimated continuous parameters (branch lengths) of alternative trees as fixed
rather than as random variables dependent on the data; such arguments are satisfying
for practical purposes but call for more rigor. The significance of [15, Theorem 5.1]
is that it gives the first explicit bounds for MLE, both in the phylogenetic setting and
beyond. However, this result depended on an unnatural parameter, namely, the small-
est positive probability that an image of the object to be reconstructed can have. Here
in Theorem 3.3, we get rid of this dependence, and provide a simple and immediate
application of this new result to phylogeny reconstruction.

We study two examples that reveal the subtleties of using MLE for inverting ran-
dom functions in the presence of nuisance parameters. The first example shows that
Theorem 3.3 is “near optimal” in one of its parameters. The second example shows
that in contrast to the setting where there are no nuisance parameters, the vanishing
of variational distance does not by itself preclude MLE (or any other estimation) for
certain random functions.

Our approach is information-theoretic: We focus on the possibility or impossibil-
ity of inverting random functions, and not on the computational complexity issues.
Our results can also be re-stated in the language of decision theory, by talking about
the ‘loss function’ and ‘risk function’ associated with the decision rule.
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2. Invertibility in the Absence of Nuisance Parameters

Let us say that a random function Ξ : A → U is invertible if there exists a random
function Γ : U → A such that for all a ∈ A, P

[
γξa = x

]
is strictly maximized when

x = a, or equivalently:

P
[
γξa = a

]−max
x�=a

{
P
[
γξa = x

]}
> 0, for all a ∈ A. (2.1)

Informally, Ξ is invertible if there is some reconstruction method that is always more
likely to pick the generating object in A than any other element of A.

A sufficient condition for Ξ to be invertible is that there exists a Γ so that for all
a ∈ A, the following two conditions apply:

(I1) P
[
γξa = a

]
> 1

|A| ,

(I2) P
[
γξa = b

]
< 1

|A| , for all b �= a.

Note that invertibility implies (I1), and is equivalent to this condition when |A| =
2, but not equivalent for |A| ≥ 3.

We say Ξ separates A, if, for each distinct pair a, b ∈ A, the variational distance
d(a, b) of the probability distributions of ξa and ξb is strictly positive (that is, the
parameter in A is identifiable from its probability distribution).

Proposition 2.1. The following properties are equivalent for an Ξ : A → U random
function:

(i) Ξ separates A.
(ii) For all ε > 0 there is a value of kε so that for all k ≥ kε there is a random function

Γ§ : Uk → A such that for all a ∈ A, P

[
γ§

ξ(k)
a

= a
]

> 1− ε.

(iii) Ξ is invertible.
(iv) For some k ≥ 1, Ξ(k) is invertible.
(v) For some k ≥ 1, Ξ(k) satisfies (I1) and (I2).

Proof. We will show that (i) ⇔ (ii), (iv) ⇒ (ii), (i) ⇒ (iii), and (ii) ⇒ (v). Since
(iii) ⇒ (iv) is trivial, and (v) ⇒ (iv) clearly holds, this will establish the five-way
equivalence of (i) through (v).

(i) ⇔ (ii) The implication (i) ⇒ (ii) follows from the statistical consistency of max-
imum likelihood estimation under the separation condition (an explicit bounds on kε
is provided by [14, Theorem 3.2]). For the implication (ii) ⇒ (i), let Eb be the event
that γ§

ξ(k)
b

= a. Then P(Ea) > 1− ε, while for any b �= a, P(Eb) < ε. Consequently, if

we select any ε ∈ (0, 1/2), we have

d(k)(a, b) ≥ 2(1−2ε) > 0,

where d(k) denotes the variational distance between the random variables ξ(k)
a and ξ(k)

b .
However, d(k)(a, b) > 0 implies that d(a, b)> 0 (for example, by [15, Equations (2.3)
and (2.4)]) and since this holds for all distinct pairs a, b, then Ξ separates A.
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(iv) ⇒ (ii) Suppose that Ξ(k) is invertible. Select Γ to satisfy (2.1) for Ξ(k). For a
positive integer m, generate km independent samples in U according to Ξ. Define
Γ§ : Ukm → A as follows: Select the elements of A that are reconstructed most often
according to Γ and choose one of them uniformly at random. By standard probability
arguments, the probability that the correct element a will be selected by this process
converges to 1 as m tends to infinity.

(i) ⇒ (iii) Suppose that Ξ : A → U separates A. Let X denote the associated matrix
of Ξ, and let ai, i ∈ A denote the rows of X . Recall that ai gives the distribution of ξi.
We will describe the inverse random function Γ : U → A with its associated matrix,
i.e., in the form of a |U |× |A| matrix G, whose rows represent the distribution of the
element of U corresponding to the row.

For µ > 0 we write Gµ = µV + 1
|A|J, where J is the |U | × |A| matrix that every

entry equals to 1, and where V will be explicitly described shortly
(
if we were to take

V as being equal to the zero matrix, then (2.1) yields zero uniformly instead of the
desired strictly positive value by XGµ = X · 1

|A|J = 1
|A|J

)
. We denote the columns of

V by vi, i ∈ A. We define each vector vi as follows:

vi =
ai

|ai| −
1
|A|

|A|
∑
j=1

a j

|a j| ,

where | · | is the usual euclidean vector norm (note that |ai| > 0). It is easy to check
now that ai ·vi−ai ·v j = |ai|−ai · aj

|a j| > 0.
(
The Cauchy-Schwartz inequality, (i), and

the fact that ai is a probability distribution imply that |ai|−ai · aj
|a j| > 0 for i �= j.

)
It is

easy to see that ∑l∈A vl = 0, and therefore the row sums of Gµ are equal to 1. Hence
Gµ is the matrix of a random function, if all of its entries are non-negative. This can be
achieved by selecting a sufficiently small positive µ. Let Γ denote the random function
whose matrix is Gµ. Now for i, j ∈ A, we have P

[
γξi = j

]
= i [XGµ] j = 1

|A| + µai ·v j,
and this together with the inequality ai · vi − ai · v j > 0 imply (2.1), which is the
definition of invertibility.

(ii) ⇒ (v) Suppose that Ξ satisfies (ii). Let ε = 1/|A| and select any value k ≥ kε, for
which the inequality in part (ii) holds. Then Ξ(k) satisfies (I1) and (I2).

2.1. Explicit Bounds

From Proposition 2.1, if Ξ separates A then there is a random function Γ : U → A
for which

P
[
γξa = a

]− 1
|A| > 0.

We now consider putting an explicit lower bound on the right hand side of this in-
equality. That is, we show that for a specific continuous positive function h : R → R

(dependent only on |A|), the following holds: Suppose that d(a, b) > δ for all a, b ∈
A, a �= b, then there is a random function Γ : U → A for which

P
[
γξa = a

]− 1
|A| > h(δ),
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for all a ∈ A.
Note that we cannot insist that Γ is MLE (maximum likelihood estimation), even

when |A| = 2. To see this, let A = {1, 2}, U = {u1, u2}, ξ1 take the value u1 with
probability 1, and let ξ2 take the values u1, u2 with probabilities 2

3 and 1
3 , respectively;

then if Γ = Γ∗ is MLE, we have P
[
γξ2 = 2

]
= 1

3 .

Theorem 2.2. For every random function Ξ : A → U, with |A| > 1, there exists a
Γ : U → A, such that

min
a∈A

ra ≥ 1
|A| +

1
2|A|(|A|−1)

min
a∈A

∑
b∈A

d(a, b). (2.2)

In particular, if for all a �= b ∈ A, d(a, b) ≥ δ, then mina∈A ra ≥ 1
|A| +

δ
2|A| .

Proof. Recall the characterization of the random inverse function maximizing mina∈A
ra from [14, Theorem 5]

min
a∈A

ra = min
µ ∑

u∈U
max
a∈A

µ(a)P [ξa = u] , (2.3)

where µ is a probability distribution on A. In the rest of the proof, µ refers to this min-
imizing distribution. (Note that [14, Theorem 5] contains an annoying typo, it shows
maximization for µ instead of minimization.) We will use the following lemma:

Lemma 2.3. Suppose that we have real numbers b1, b2, . . . , bn for which

∑
1≤i< j≤n

∣∣bi −b j
∣∣≥ (n−1)ε.

Then max j
[
b j − 1

n ∑n
i=1 bi

]≥ ε
n .

Proof. Without loss of generality, we may assume b1 ≥ b2 ≥ ·· · ≥ bn. The condi-
tions of the Lemma can be rewritten as the conditions of the following primal linear
program:

maximize
1
n ∑

i
(bi −b1),

subject to

b2 −b1 ≤ 0,

b3 −b2 ≤ 0,

...

bn −bn−1 ≤ 0,

∑
i< j

bi −b j ≤ (n−1)ε.
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Recall the Duality Theorem of linear programming [11]: max
{

cT b : Mb ≤ d
}

= min{
xT d : x ≥ 0, xT M = c

}
, if both optimization problems have feasible solutions. The

dual linear program is as follows:

minimize (n−1)εxn

subject to

(n−1)xn− x1 = −n−1
n

,

xi − xi+1 +(n−2i−1)xn =
1
n
, for i = 1, 2, . . . , n−2;

xn−1 +(1−n)xn =
1
n
,

x1, x2, . . . , xn ≥ 0.

It is easy to see that for the dual problem, a feasible solution is the following setting:
xi = 1− i(i−1)

n(n−1) for i = 1, 2, . . . , n− 1, and xn = 1
n(n−1) ; with the value ε

n . Observe

that max 1
n ∑(bi − b1) = −min 1

n ∑(bi − b1) = min(n− 1)εxn ≤ ε
n . This implies that

ε
n ≤ max j b j − 1

n ∑n
i=1 bi for any feasible solution of the primal problem.

We are going to apply Lemma 2.3 in the following setting. Fix an arbitrary u ∈
U and for i ∈ A, let bi = µ(i)P [ξi = u]. Then Lemma 2.3

(
with n = |A| and ε =

∑1≤i< j≤n |bi −b j|
)

yields

max
a∈A

(
µ(a)P [ξa = u]− 1

|A| ∑i∈A
µ(i)P [ξi = u]

)
(2.4)

≥ 1
|A|(|A|−1) ∑

1≤i< j≤|A|

∣∣µ(i)P [ξi = u]−µ( j)P [ξ j = u]
∣∣ . (2.5)

Observe the identity

∑
u∈U

1
|A| ∑i∈A

µ(i)P [ξi = u] =
1
|A| ∑i∈A

µ(i) ∑
u∈U

P [ξi = u] =
1
|A| . (2.6)

Now (2.3) and identity (2.6) imply that

min
a∈A

ra =
1
|A| + ∑

u∈U
max
a∈A

{
µ(a)P [ξa = u]− 1

|A| ∑i∈A
µ(i)P [ξi = u]

}
,

and so inequality (2.5) implies

min
a∈A

ra ≥ 1
|A| +

1
|A|(|A|−1) ∑

u∈U
∑

1≤i< j≤|A|

∣∣µ(i)P [ξi = u]−µ( j)P [ξ j = u]
∣∣ . (2.7)

Fix arbitrary a, b ∈ A, and set Q = ∑u∈U |µ(a)P [ξa = u]−µ(b)P [ξb = u]|.
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Define

U> = {u ∈U : P [ξa = u] > P [ξb = u]} ,

U= = {u ∈U : P [ξa = u] = P [ξb = u]} ,

U< = {u ∈U : P [ξa = u] < P [ξb = u]} .

Define further A+ = ∑u∈U> P [ξa = u], A− = ∑u∈U< P [ξa = u], B+ = ∑u∈U> P[ξb =
u], B− = ∑u∈U< P[ξb = u]. Observe that

d(a, b) = ∑
u∈U

∣∣P [ξa = u]−P [ξb = u]
∣∣ = A+−B+ + B−−A−.

On the other hand,

A+ + A− = 1− ∑
u∈U=

P [ξa = u] = 1− ∑
u∈U=

P [ξb = u] = B+ + B−.

From the last two equations, we conclude that d(a, b) = 2(A+−B+) = 2(B−−A−).
We finish the proof by setting a lower bound on Q with a case analysis.

• If µ(b) = µ(a), Q = µ(a)d(a, b).
• If µ(b) > µ(a),

Q ≥ µ(a) ∑
u∈U<

P [ξb = u]−P [ξa = u] =
1
2

µ(a)d(a, b).

• If µ(b) < µ(a),

Q ≥ µ(a) ∑
u∈U>

P [ξa = u]−P [ξb = u] =
1
2

µ(a)d(a, b).

In all cases, we have Q ≥ 1
2 µ(a)d(a, b). Returning to (2.7), we find

∑
1≤i< j≤|A|

∑
u∈U

∣∣µ(i)P [ξi = u]−µ( j)P [ξ j = u]
∣∣≥ 1

2 ∑
a∈A

µ(a) ∑
b∈A

d(a, b), (2.8)

and from (2.7) and (2.8), we have

min
a∈A

ra ≥ 1
|A| +

1
2|A|(|A|−1) ∑

a∈A
µ(a) ∑

b∈A
d(a, b)

≥ 1
|A| +

1
2|A|(|A|−1)

min
a∈A

∑
b∈A

d(a, b).

2.2. Composition of Invertible Functions

A natural question is whether the composition of invertible functions is also in-
vertible. The next result shows that in general the answer is ‘no’, though we can
provide a precise characterization based on the rank of an associated matrix.
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Theorem 2.4. Let ϒ : U → Z be a random function, let Y denote the associated
matrix

(
with Yuz = P [υu = z]

)
, and let Y + denote the extension of Y by an all-1 row. If

rank (Y+) = |U |, then for any invertible random function Ξ : A →U, the composition
ϒ◦Ξ : A → Z is invertible, and if the rank is less than |U |, then there exist invertible
random functions Ξ : A →U such that ϒ◦Ξ : A → Z is not invertible.

Proof. First assume that ϒ ◦Ξ is not invertible, i.e., there exist a, b ∈ A, a �= b such
that the distributions υξa and υξb

are identical. Then we consider the following homo-
geneous system of linear equations, where the coefficients are the numbers P [υu = z]
and 1’s, and the variables are the xu’s

∑
u∈U

P [υu = z]xu = 0, for all z ∈ Z, (2.9)

∑
u∈U

xu = 0. (2.10)

The matrix Y + is the matrix of the system of homogeneous linear Equations (2.9)–
(2.10). Observe that xu = P [ξa = u]−P [ξb = u] solves the system (2.9)–(2.10). If
the rank of Y + is |U |, then it has only the trivial solution, i.e., for all u ∈ U , xu = 0.
This amounts to ξa and ξb having the same distribution, contrary to the assumption
of Ξ being invertible.

Assume now that Y + has rank less than |U |. Then the system (2.9)–(2.10) has a
non-trivial solution xu. Set P = ∑u : xu>0 xu and N = ∑u : xu<0 xu. Clearly, P =−N > 0.
Take A = {a, b}, P [ξa = u] = xu

P if xu ≥ 0, and 0 otherwise; and P [ξb = u] = xu
N if

xu ≤ 0, and 0 otherwise. It is clear that this Ξ is invertible, as it separates a and b.
However, the distributions υξa and υξb

are identical, as

P
[
υξa = z

]
= ∑

u∈U
P [υu = z] ·P [ξa = u]

= ∑
u∈U : xu>0

P [υu = z]
xu

P

= ∑
u∈U : xu<0

P [υu = z]
xu

N

= ∑
u∈U

P [υu = z] ·P [ξb = u]

= P
[
υξb

= z
]
.

3. Maximum Likelihood Estimation (MLE) in the Finite Parameter Setting with
Nuisance Parameters

In this section, we reconsider the question of how many i.i.d. samples are required
in order for maximum likelihood to recover elements of a finite set accurately, when
additional nuisance parameters are present. Assume B = {(a, θ) : a ∈ A, θ ∈ Θ(a)}



Inverting Random Functions III: Discrete MLE Revisited 375

and that Ξ : B →U is a random function, where A and U are finite sets. Define

U+ :=
{

u : P
[
ξ(a,θ) = u

]
> 0

}
, (3.1)

α := α(a,θ) = min
u∈U+

{
P
[
ξ(a,θ) = u

]}
, (3.2)

and assume

d := d(a,θ) = inf
b �=a,θ ′∈Θ(b)

∑
u∈U

∣∣P[
ξ(a,θ) = u

]−P
[
ξ(b,θ ′) = u

]∣∣ > 0. (3.3)

In our earlier work, in [15, Theorem 5], we showed that for

k ≥ f (α, d) log

(
2 |U+|

ε

)
, (3.4)

k samples suffice to reconstruct a ∈ A, from (a, θ) with probability at least 1− ε
using MLE. More formally, for Ξ(k) : B → Uk,

[
R(k)

]′
(a,θ)

≥ 1− ε. Our function f

in (3.4) tends to infinity when either (or both) α → 0 or d → 0. This dependence
on d is reasonable (though not always necessary; see Subsection 3.2); however, the
dependence on α is not clear and raises two questions:

Q1. Is there an bound on k (as in (3.4)) which depends only on |U +| , ε, and d but
not on α?

Q2. Moreover, can the function f in (3.4) be replaced by a function of just d and ε(
and not α and U+

)
so that the resulting function is still a valid bound for k?

In this section we show that the answer to the first question is ‘yes’ (Theorem 3.3)
while the answer to the second is ‘no’ (in Subsection 3.1).

We begin by introducing some further notation. For any two probability distribu-

tions p, p′ on a set U , let dKL (p, p′) = ∑u∈U : pu>0 pu log
(

pu
p′u

)
∈ [0, ∞)∪{∞} denote

the Kullback-Leibler distance of p and p′, and recall the standard inequality (see, for
example, [4])

dKL
(

p, p′
)≥ 1

2
d
(

p, p′
)2

, (3.5)

where d (p, p′) denotes, as usual, the variational distance, ∑u∈U |pu − p′u|. We will

also use d2 (p, p′) =
(

∑u∈U |pu − p′u|2
)1/2

.

Lemma 3.1. Let X1, X2, . . . , Xk be a sequence of i.i.d. random variables taking val-
ues in a finite set U. For each u ∈ U, let p̂u := 1

k ∑k
i=1 I(Xi = u) (the normalized

multinomial counts) and let pu = P [X1 = u]. Let U+ := {u : pu > 0}. Then,

(i) P [dKL(p̂, p) ≥ δ] ≤ |U+|
kδ ,

(ii) P [d(p̂, p) ≥ δ] ≤ |U+|
kδ2 .
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Proof. Part (i). Let ∆̂u = p̂u − pu. For u ∈ U+, set Q̂u = 0 if p̂u = 0, while if p̂u > 0
set

Q̂u := p̂u log

(
p̂u

pu

)
=

(
pu + ∆̂u

)
log

(
1 +

∆̂u

pu

)

≤ (
pu + ∆̂u

) · ∆̂u

pu
= ∆̂u +

∆̂2
u

pu
. (3.6)

Recall Markov’s inequality, which states that if X is a non-negative random variable,
and a > 0, then

P [X ≥ a] ≤ E[X ]

a
. (3.7)

Note that E

[
(p̂u − pu)

2
]

= Var [p̂u] = pu(1−pu)
k , and applying (3.7) to

X = ∑
u∈U+

∆̂2
u

pu
≥ 0

and noting that E[X ] =
|U+|−1

k gives P [X ≥ δ] ≤ |U+|
kδ . By definition, dKL (p̂, p) =

∑u : p̂u �=0 Q̂u = ∑u∈U+ Q̂u and this is less or equal to X
(
by (3.6), and the identity

∑u∈U+ ∆̂u = 0
)
, which leads to the required inequality.

Part (ii). Applying the Cauchy-Schwartz inequality, d2 (p̂, p) ≤ d2
2 (p̂, p) · |U+|,

therefore,

P [d(p̂, p) ≥ δ] ≤ P

[
d2

2(p̂, p) ≥ δ2

|U+|
]
≤ |U+|

δ2 E
[
d2

2(p̂, p)
]
,

by Markov’s inequality (3.7). Now,

E
[
d2

2(p̂, p)
]
= E

[
∑

u∈U
( p̂u − pu)

2

]
= ∑

u∈U
Var [p̂u] = ∑

u∈U

1
k

pu (1− pu) ≤ 1
k
.

Corollary 3.2. Under the assumptions of Lemma 3.1, suppose that δ < 1, ε > 0, and

k ≥ 2|U+|
εδ2 . Then, with probability at least 1− ε, the inequalities dKL (p̂, p) < δ and

d (p̂, p) < δ simultaneously hold.

Theorem 3.3. Assume B = {(a, θ) : a ∈ A, θ ∈ Θ(a)} and that Ξ : B → U is a ran-
dom function, where A and U are finite sets. Recall definition (3.1) and condition

(3.3). Provided that k ≥ c1|U+|
εd4

(a,θ)

with c1 = 2

(2−√
3)

2 , the probability that MLE correctly

returns a from Ξ(k) is at least 1− ε, i.e.,
[
R(k)

]′
(a,θ)

≥ 1− ε.

Proof. Let p be the probability distribution on U induced by ξ(a,θ), let c = 2−√
3, and

let E be the event that d (p̂, p) ≤ c ·d(a,θ). For the probability distribution q induced
by ξ(b,θ ′) where b �= a, by the triangle inequality, we have

d (p̂, q) ≥ |d(p, q)−d (p̂, p)| .
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Now, by assumption d(p, q) ≥ d(a,θ), and so, conditional on E , d (p̂, q) ≥ (1 −
c)d(a,θ). Invoking the inequality (3.5) gives

dKL (p̂, q) ≥ 1
2

d (p̂, q)2 ≥ 1
2
(1− c)2d2

(a,θ).

Thus, conditional on E , we have

∑
u∈U+

p̂u logqu ≤ ∑
u∈U+

p̂u log p̂u − 1
2
(1− c)2d2

(a,θ). (3.8)

For x ∈ A, ω ∈ Θ(x), consider

L(x, ω) = ∑
u∈U+

p̂(u) logP [ξx,ω = u] . (3.9)

L(x, ω) is 1
k times the natural logarithm of the probability of generating the observed

sequence of U-elements under (x, ω). Therefore, L(x, ω) ≤ 0 is proportional to the
log-likelihood of (x, ω). Now consider the log likelihood ratio

∆L := L(a, θ)−L(b, θ ′) = ∑
u∈U+

p̂u log(pu/qu) .

Conditional on E , we have, by (3.8),

∆L ≥− ∑
u∈U+

p̂u log

(
p̂u

pu

)
+

1
2
(1− c)2d2

(a,θ) =
1
2
(1− c)2d2

(a,θ)−dKL(p̂, p). (3.10)

So if we select δ = c · d2
(a,θ) in Corollary 3.2, we can ensure that with probability at

least 1− ε that event E occurs and also
(
since 1

2 (1− c)2 = c
)

that

dKL (p̂, p) < δ = c ·d2
(a,θ) =

1
2
(1− c)2d2

(a,θ).

Therefore, by (3.10), we have ∆L > 0. The value of k that Corollary 3.2 requires is
precisely that given in the statement of this theorem. This completes the proof.

Remark 3.4. • Theorem 3.3 also implies that for MLE in the setting where nui-
sance parameters are absent, the number k of i.i.d. samples required to recon-
struct an element a∈ A correctly with probability at least 1−ε is bounded above
by a function that depends only on |U+| , ε and da := minb �=a d(a, b). In [14],
an upper bound on k was also derived; however, it depended solely on |A|,ε and
da. Comparing these results suggests an interesting question: Is there an upper
bound for k (in absence of nuisance parameters) which depends just on da and
ε?

• We show below that the linear dependence of k on |U+| in Theorem 3.3 is best
possible in the sense that no sublinear dependence is possible. However, the
exponent of 4 for d in Theorem 3.3 could possibly be reduced.
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3.1. Construction Showing That k Must Grow Linearly with |U+|
We now show that Theorem 3.3 cannot be improved by replacing the dependence

of k on |U+| with a sublinear function (such as the logarithmic dependence on |U |+
in [15, Theorem 5.1]), even when d(a,θ) and ε are held constant.

Let A = {a, b}, with Θ(a) = {∗}, and

Θ(b) =

{
θ = (λ1, . . . , λn) :

n

∑
i=1

λi = 1, ∀ i, λi ≥ 0

}
.

Let U = {0, 1, . . . , n}. Fix δ > 0 and consider the random function Ξ defined as
follows.

P
[
ξ(a,∗) = u

]
=

{
δ, if u = 0;

1−δ
n , if u ∈ {1, . . . , n};

P
[
ξ(b,(λ1,...,λn)) = u

]
=

{
2δ, if u = 0;

λu(1−2δ), if u ∈ {1, . . . , n}.
We assume that k ≤ n; otherwise, we have nothing to prove. For u = (u1, . . . , uk) ∈
Uk, let x(u) = |{i ∈ {1, . . . , k} : ui = 0}|. We have

L1 := sup
θ∈Θ(a)

P

[
ξ(k)

(a,θ) = u
]

= δx(u)

(
1− δ

n

)k−x(u)

and

L2 := sup
θ ′∈Θ(b)

P

[
ξ(k)

(b,θ ′) = u
]
≥ (2δ)x(u)

(
1−2δ

k− x(u)

)k−x(u)

, (3.11)

since we are free to select θ ∈ Θ(b) to be the uniform distribution on {i : ui �= 0}. We
will select a sufficiently small value of δ so that

2(1−2δ)δ/2 > 1. (3.12)

Now, suppose we generate u randomly from (a, ∗). Note that the value of d(a,∗) is at
least δ, since

d((a, ∗), (b, θ ′)) ≥ ∣∣P[
ξ(a,∗) = 0

]−P
[
ξ(b,θ ′) = 0

]∣∣ = δ.

Then MLE will (incorrectly) reconstruct b whenever R := L2/L1 > 1. We will
show that this occurs with probability at least 1− ε, if k is less than 1

2 |U+|, for any δ
satisfying (3.12) and any sufficiently large |U+|.

Note that by replacing L2 by its lower bound (3.11), we can write R ≥ Y k where

Y = 2ρ
[

n
k
· (1−2δ)

(1− δ)(1−ρ)

]1−ρ
,

where ρ := x(u)/k. Now, if k ≤ 1
2 n, then since ((1− δ)(1−ρ))−(1−ρ) ≥ 1,

Y ≥ 2(1−2δ)1−ρ.
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Now, for δ, ε fixed, a value of k exists for which we have ρ > 1
2 δ with probability at

least 1− ε. Thus for this value of k, and any n > 2k, inequality (3.12) gives

Y ≥ 2(1−2δ)δ/2 > 1.

Consequently R > 1, and so MLE will make an incorrect decision. Thus, we must
have k ≥ 1

2 n = 1
2 (|U+|−1) in order to avoid this.

3.2. Example to Show That MLE with Nuisance Parameters Can Still Succeed When
Variational Distance Vanishes on Each Element of A

In the absence of nuisance parameters and given a random function Ξ : A → U ,
suppose that d (a1, a2) = 0 for two elements a1, a2 ∈A. Then for any random function
Γ : U → A, it is easily shown (for example, by [15, Theorem 3.1]) that

min
{

P

[
γξa1

= a1

]
, P

[
γξa2

= a2

]}
≤ 1

2
. (3.13)

That is, if the probability distribution induced by a1 and a2 is the same, no method
can recover both a1 and a2 more accurately than by a toss of a fair coin. We can
ask if a similar result holds for MLE when nuisance parameters are present. That is,
suppose that A = {a1, a2} and that for a value θ1 ∈ Θ(a1), and θ2 ∈ Θ(a2), we have

d(a1,θ1) = d(a2,θ2) = 0, (3.14)

where d(a,θ) is defined as in (3.3). Note that Theorem 3.3 does not give a finite bound
on k for MLE to accurately reconstruct a1 or a2. However it turns out that for certain
random functions satisfying (3.14), if nuisance parameters are present and MLE is
used to estimate a1 and a2 from k independent trials, then for any parameter (ai, θi)
chosen, and for even values of k, the probability that the selection is correct is always
strictly greater than 1

2 .
Let A = {a1, a2}, U = {(1, 0), (1, 1), (2, 0), (2, 1)}, Θ(a1) = [π/4, 3π/4), and

Θ(a2) = (π/4, 3π/4]. For t ∈ Θ(a1), let

P
[
ξ(a1,t) = (1, �2t/π�)]= sin2 t; P

[
ξ(a1,t) = (2, �2t/π�)]= cos2 t;

and for t ∈ Θ(a2), let

P
[
ξ(a2,t) = (1, �2t/π�)]= cos2 t; P

[
ξ(a2,t) = (2, �2t/π�)]= sin2 t.

The key observation for the argument that follows is that sin2 t > cos2 t in (π/4,
3π/4), while in the endpoints sin2 t = 1/2 = cos2 t. It is easy to see that limt→ π

4
+ d

(
(

a1, π/4), (a2, t)
)

= 0, and hence d(a1,π/4) = 0. A similar argument shows that
d(a2,3π/4) = 0. It is also easy to see that the distributions of all ξ(ai,t) random variables
are different. The only possible problem would be the distributions of ξ(a1,π/4) and
ξ(a2,3π/4). However, in this case, the second coordinates in the elements of U separate
these distributions. There is a pedestrian way to guess where an element of U came
from. Count the one’s and two’s in the first coordinates after k independent trials.
If there are more one’s, then select a1; if there are more two’s then select a2 and in
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the case of a tie, if the second coordinate (which has to be constant over the trials!)
�2t/π�= 0 select a1, otherwise select a2. MLE pretty much does the same; the only
thing that requires more careful analysis is whether MLE correctly returns (a1, π/4)
and (a2, 3π/4). Let us focus on (a1, π/4), as the other problem is analogous. Let

#1 and #2 denote the number of one’s and two’s in the first coordinates in ξ(k)
(a1,π/4),

respectively. Let p be the probability of the event X1 = “# 1 > # 2”; by symmetry, it
is also the probability of the event X2 = “# 1 < # 2”, and let q be the probability of
the event X3 = “# 1 = # 2”. Note that MLE correctly returns a1 for events X1 and X3

(but not for X2), and hence
[
R(k)

]′
(a1,π/4)

≥ p+q = 1+q
2 > 1

2 . The claim holds for X3

for the following reason. For any k-sequence that satisfies event X3, the probability

that ξ(k)
(a1,π/4) generates this sequence is 2−k, while the probability that (a2, θ2) gener-

ates this sequence is λk/2(1−λ)k/2 for some λ �= 1/2, and the second probability is
strictly smaller than 2−k.

Informally, the reason for this phenomenon is that the parameter space associated
to ai is tuned for ‘fitting’ data that are produced by the pair (ai, θi).

Notice that in all but one choice of the nuisance parameter settings (associated
to a1), the probability that the selection is correct tends to 1 as k → ∞ (in the other
setting it tends to 1

2 from above). For the pedestrian approach for estimating a1 or a2
from the k independent trials (described above) the probability of making the correct
reconstruction tends to 1 as k tends to infinity for all parameter settings (in contrast to
MLE which has problems at one particular parameter setting — this illustrates again
the care required in consistency arguments for MLE).

Notice also that, in this example, with any parameters θ1, θ2, we have the strict
inequality d ((a1, θ1) , (a2, θ2)) > 0.

Despite this somewhat surprising result, one can easily derive an analogue of
(3.13) for any random function Ξ : B → U (where B = {(a, θ) : θ ∈ Θ(a)} as usual)
under the stronger condition that there exists (a1, θ1) , (a2, θ2) such that d ((a1, θ1) ,
(a2, θ2)) = 0. In this case, for any random function (not just MLE) Γ → U that is
independent of Ξ it is easily shown that

min
{

P

[
γξ(a1,θ1)

= a1

]
, P

[
γξ(a2,θ2)

= a2

]}
≤ 1

2
.

Of course this bound applies also for k i.i.d. trial experiments.

3.3. Application of Theorem 3.3

As a simple illustration of the use of Theorem 3.3, we describe an application to
the reconstruction of phylogenetic trees from binary sequences according to a simple
Markov process (the CFN model). Such processes are central to much of molec-
ular biology (see, e.g., [8]). Let A denote the three binary phylogenetic trees that
have a leaf set X = {1, 2, 3, 4}. For a tree T = (VT , ET ) ∈ A, Θ(a) is a function
p = pT : ET → [0, 0.5] which assigns to each edge e of T an associated substitution
probability. Under the CFN model a state is assigned uniformly at random to a leaf
(e.g., leaf 1) and states are assigned recursively to the remaining vertices of the tree
by (independently) changing the state (0 to 1 or 1 to 0) across each edge e of T with
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probability p(e). This gives a (marginal) probability distribution on each of the 16
site patterns c : X →{0, 1} (further details concerning this model can be found in [15]
or [12]). Thus if we generate k site patterns i.i.d. from the pair (T, p), we can ask
how large k must be in order for MLE to reconstruct T accurately. To ensure that
d(T, p) > 0, one must impose the following condition on p:

(P) For each of the four edges e of T incident with a leaf we have p(e) ≤ g < 1
2 ; and

for the central edge e of T , p(e) ≥ f > 0.

From [16, Lemma 6.3], we have d(T, p) ≥H( f , g)> 0 for a continuous function H.
Note that condition (P) can allow arbitrarily small values for α(T, p) : = minu∈U+ {P[

ξ(T, p) = u
]}

even when f and g take fixed values (since condition (P) allows two
adjacent edges incident with leaves of T to both have arbitrarily small p(e) values,
and the probability of any site pattern that assigns these two leaves different states
can therefore be made as close to zero as we wish). Consequently, the main result
from [15] does not provide any (finite) estimate for the site patterns required for
MLE to reconstruct a tree correctly. However, we may apply Theorem 3.3 in this
setting. Since |U+| ≤ 16, we obtain an explicit upper bound on the number of site
patterns required to reconstruct each phylogenetic tree on four leaves correctly with
probability at least 1− ε.

Of course, the number k of site patterns required for MLE to accurately recon-
struct each binary tree T on four leaves under condition (P) also depends on f and g.
These quantities enter into the upper bound on k in Theorem 3.3 via the term d(a,θ).
As f tends to 0 or g tends to 1

2 , d(a,θ) converges to 0, and so the resulting upper bound
on k goes to infinity. Indeed Theorem 3.3 requires k to grow at the rate 1/ f 4 as f → 0.
However, we suspect that for MLE in the phylogenetic setting this can be improved
to 1/ f 2, as this rate can be achieved by other tree reconstruction methods [5], and
this rate is best possible ([15, Theorem 4.1]).
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proof of the implication (i) ⇒ (iii) of Proposition 2.1. We would also like to thank the two
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