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Abstract

We determine conditions under which a random biochemical system is likely to contain a subsystem that is both autocatalytic and

able to survive on some ambient ‘food’ source. Such systems have previously been investigated for their relevance to origin-of-life

models. In this paper we extend earlier work, by finding precisely the order of catalysation required for the emergence of such self-

sustaining autocatalytic networks. This answers questions raised in earlier papers, yet also allows for a more general class of models.

We also show that a recently described polynomial-time algorithm for determining whether a catalytic reaction system contains an

autocatalytic, self-sustaining subsystem is unlikely to adapt to allow inhibitory catalysation—in this case we show that the

associated decision problem is NP-complete.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The idea that the study of discrete random networks
could provide some insight into the problem of how
primitive life might have emerged from an ambient
‘soup’ of molecules goes back to mid-1980s. This was
largely motivated by the earlier investigation of random
graphs, pioneered by Erdös and Rényi in the 1950s and
1960s, which had revealed the widespread occurrence of
‘threshold phenomena’ (sometimes also called ‘phase
transitions’) in properties of these graphs (Erdös and
Rényi, 1960). In the simplest random graph model, one
has set of vertices (points) and edges are added
independently and randomly between pairs of vertices.
As the probability that any two nodes are joined by an
edge passes certain well-studied thresholds, there is
e front matter r 2004 Elsevier Ltd. All rights reserved.
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typically a fundamental change in various qualitative
properties of a large random graph, such as its
connectivity, or the size of the largest component (see
e.g. Bollobas, 2001). Extending this approach, Bollobas
and Rasmussen (1989) investigated when a directed
cycle would first emerge in a random directed graph,
and how many vertices such a cycle would contains.
They were motivated by the idea that the emergence of a
primitive metabolic cycle was an essential step in the
early history of life, writing ‘‘we want to know when the
first catalytic feedbacks appear, and how many different
RNA molecules they involve.’’ Cohen (1988) also
foresaw the relevance of random graph techniques for
modelling primitive biological processes.
The importance of cycles in early life had also been

studied—from a slightly different perspective—by Eigen
(1971) and Eigen and Schuster (1979). They proposed a
metabolic ‘hypercycle’ as a way of circumventing the so-
called ‘error catastrophe’ in the formation of longer
strings of nucleotides, first demonstrated by Maynard-
Smith (1983). The study of such processes and how they
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might further evolve into early life has been extensively
investigated, using both stochastic and dynamical
approaches (e.g. Scheuring, 2000; Wills and Henderson,
1997; Zintzaras et al., 2002).
The idea that threshold phenomena might help

explain some of the mystery surrounding the emergence
of life-like systems from a soup of inanimate molecules
was developed further by Dyson (1982, 1985) and
Kauffman (1986, 1993). Kauffman considered simple
autocatalytic protein networks where amino acid
sequences catalyse the joining (or ‘ligation’) of shorter
sequences, and the cutting (or ‘cleavage’) of longer
sequences. He calculated that under a simple model of
random catalysation, once the collection of sequences
became sufficiently extensive there would inevitably
emerge a subsystem of reactions that was both
autocatalytic and able to be sustained from an ambient
supply of short sequences (such as single or pairs of
amino acids). Kauffman realized that simple random
graphs and digraphs by themselves do not capture the
intricacy of chemical reactions and catalysis. A more
complex discrete structure—which has become known
as a catalytic reaction system is required in order to
formalize and study the concept of a system of
molecules that catalyses all the reactions required for
their generation, and which can be sustained from some
ambient ‘food’ source of molecules, F. A different
discrete model for self-reproducing systems based on
Petri nets has also been developed by Sharov (1991) for
investigating the dynamical properties of these systems,
but we do not deal with this model here.
Several investigators have developed the study of

catalytic reaction systems and random autocatalysis
(Hordijk and Fontanari, 2003; Hordijk and Steel, 2004;
Lohn et al., 1998; Wills and Henderson, 1997) though it
also has its critics (e.g. Lifson, 1997; Orgel, 1992;
Maynard Smith and Szathmáry, 1995) and these
criticisms are mainly of two types. Firstly, Kauffman
invoked overly simplistic and strong assumptions in his
analysis—for example he considered just binary se-
quences (i.e. two amino acids) and assumed that each
molecule had the same fixed probability of catalysing
any given reaction. In this paper we make much weaker,
and thereby hopefully more robust assumptions in our
probabilistic analysis. A second concern is more
general—the concept of a ‘protein-first’ start to life is
problematic, since proteins, unlike RNA are not able to
replicate (for a discussion of this point, part of the so-
called ‘chicken and egg’ problem see Lifson, 1997;
Maynard Smith and Szathmáry, 1995 or Penny, 2004).
Thus, it is quite likely that other sequences besides
proteins (such as RNA) may have been part of the first
prebiotic systems, and there has been considerable
interest from biochemists in the feasibility of an ‘RNA
world’ in the early stages of the formation of life (for a
recent survey, see Penny, 2004).
At this point there are at least two ways to formalize
the concept of a self-sustaining and autocatalytic set of
molecules—the two we study here are referred to as the
RAF (reflectively autocatalytic, and F-generated) and
CAF (constructively autocatalytic and F-generated) sets.
The former was investigated in Steel (2000) and Hordijk
and Steel (2004). A CAF, which we formalize in this
paper is a slightly stronger notion—it requires that any
molecule m that is involved in any catalysation must
already have been built up from catalysed reactions
(starting from F). This concept is perhaps overly
restrictive, since it might be expected that m would still
be present in a random biochemical system in low
concentrations initially before reactions that generate a
steady supply of m become established.
For the sequence-based models of the type studied by

Kauffman, we determine the degree of catalysation
required for a RAF or a CAF to arise. In Kauffman’s
model reactions consist of the concatenation and cutting
of sequences up to some maximal (large) length, starting
from small sequences of length at most t, and each
molecule has a certain probability of (independently)
catalysing any given reaction. Let mðxÞ denote the
average number of (concatenation) reactions that
sequence x catalyses, which may depend on jxj the
length of x. Then, roughly speaking, our results show
that if mðxÞ=jxj is small the probability that the system
contains a RAF is small; conversely if mðxÞ=jxj is large
the probability the system contains a RAF is close to 1,
and indeed in this case there is likely to be a RAF for
which all the molecules in the system are involved. This
confirms two conjectures that were posed in Steel (2000)
and confirms some trends that were suggested by
simulations in Hordijk and Steel (2004).
Our results for RAFs contrast sharply with the degree

of catalysation required for a CAF. In that case each
molecule needs to catalyse, on average, some fixed
proportion of all reactions for a CAF to be likely. That
is, the corresponding value of mðxÞ required for a likely
occurrence of a CAF is exponentially larger (with n)
than for a RAF.
We begin this paper by formalizing the concepts of

RAF and CAF, and we do so in a more general setting
than Hordijk and Steel (2004) as we consider the effect
of general catalysation regimes—for example by allow-
ing certain molecules to inhibit certain reactions. In this
case determining whether an arbitrary catalytic reaction
system contains a RAF seems to be computationally
intractable. Indeed we show that the decision problem is
NP-complete. This contrasts with the situation where
one allows only positive catalysation; in that case a
polynomial-time algorithm (in the size of the system) for
finding a RAF if one exists was described in Hordijk and
Steel (2004). Sections 4 and 5 present the main results
concerning the required growth of mðxÞ with jxj required
for RAF and CAR generation, and in Section 6 we
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make some concluding comments, and raise some
questions for further investigation.
Although the assumptions in Kauffman’s original

paper were quite strong—for example that each
molecule had the same probability of catalysing any
given reaction—in this paper we have been able to
weaken some of these assumptions. The analysis in this
paper still ignores inhibitory catalysis, side reactions
that may deplete certain reactants (Szathmáry, 2000),
and dynamical aspects of the process (Szathmáry and
Maynard Smith, 1995) however, we hope to extend this
analysis in future work.
2. Preliminaries and definitions

We mostly follow the notation of Steel (2000) and
Hordijk and Steel (2004). Let X denote a set of
molecules and R a set of reactions, where we regard a
reaction as an ordered pairs ðA;BÞ where A;B are
subsets of X called the reactants and products, respec-
tively. Let F be a distinguished subset of X, which can be
regarded as some plentiful supply (‘food’) of reactants.
For r 2 R let rðrÞ ¼ A and pðrÞ ¼ B and for a setR0 �

R let

rðR0Þ:¼
[

r2R0

rðrÞ;

pðR0Þ:¼
[

r2R0

pðrÞ

and

suppðR0Þ:¼rðR0Þ [ pðR0Þ:

Thus suppðR0Þ denotes the molecules in X that are
used or produced by at least one reaction in R0:
Given a subset R0 of R and a subset X 0 of X the

closure of X 0 relative to R0; denoted clR0 ðX 0Þ is the
(unique) minimal subset W of X that contains X 0 and
that satisfies the following condition for each reaction
ðA;BÞ 2 R0:

A � X 0 [ W ) B � W :

It is easily seen that clR0 ðX 0Þ is precisely the set of
molecules that can be generated starting from X 0 and
repeatedly applying reactions selected (only) from R0:
Let g : 2X 
R ! f0; 1g be a catalysation function. The

function g tells us whether or not each reaction r can
proceed in its environment (e.g. be ‘catalysed’) depend-
ing on what other molecules are present. Thus, let
gðA; rÞ ¼ 1 precisely when r would be catalysed if the
other molecules in the system comprise the set A. For
example, consider a simple scenario where each reaction
r 2 R is catalysed provided that at least one molecule in
some set (specific to r) is present. We can represent the
associated function g as follows—we have a set C �
X 
 R (as in Steel, 2000; Hordijk and Steel, 2004) where
ðx; rÞ indicates that molecule x catalyses reaction r. The
catalysation function g ¼ gC for this simple setting is
then defined by

gCðA; rÞ ¼
1 if 9x 2 A : ðx; rÞ 2 C;

0 otherwise.

�

More generally, suppose we have two arbitrary sets
CðþÞ � X 
 R and Cð�Þ � X 
 R; which can represent,
respectively, the molecules that catalyse and inhibit the
various reactions. Then a candidate for g is the function
g ¼ gCðþÞ;Cð�Þ defined by

gCðþÞ;Cð�ÞðA; rÞ

¼

1 if 9x 2 A : ðx; rÞ 2 CðþÞ

and there is no x0 2 A : ðx0; rÞ 2 Cð�Þ;

0 otherwise.

8>><
>>: ð1Þ

Thus gCðþÞ;Cð�Þ allows both catalysation and inhibition.
We find it useful to write A ! B to denote the reaction
ðA;BÞ: Similarly, we will write A �!

CðþÞ;Cð�Þ
B to denote the

reaction ðA;BÞ together with a catalysation function that
satisfies (1). When the sets A;B;C are singletons we will
often omit the f g symbols.
In case g is monotone in the first coordinate (i.e.

A � B ) gðA; rÞpgðB; rÞ) we will call g monotone. Note
that gC is monotone, and that monotone catalytic
functions do not allow inhibition effects.
The triple Q ¼ ðX ;R; gÞ is called a catalytic reaction

system.

2.1. Autocatalytic networks

Suppose we are given a catalytic reaction system Q ¼

ðX ;R; gÞ and a subset F of X.
A reflexive autocatalytic network over F or RAF for Q

is a non-empty subset R0 of R for which
(i)
 rðR0Þ � clR0 ðF Þ;

(ii)
 For each r 2 R0; gðsuppðR0Þ; rÞ ¼ 1:
In addition, to avoid biological triviality, we will also
require that any RAF R0 also satisfies the condition
(iii)
 pðR0ÞD/ F :
Thus for R0 to be a RAF, each molecule involved in
R0 must be able to be constructed from F by repeated
applications of reactions that lie just in R0 (condition (i))
and each reaction in R0 must be catalysed by the system
of molecules involved in R (condition (ii)). This
definition is a slight generalization of that given by
Hordijk and Steel (2004) to allow for more general
catalysation functions g in condition (ii). Condition (iii)
simply ensures that any set of reactions that produce
only molecules that are already in the food set F does
not constitute a RAF.
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the ligation reaction

a þ b ! c

and the pair r ¼ ðfcg; fa; bgÞ as representing the cleavage
reaction

c ! a þ b:

We will let RþðnÞ and R�ðnÞ denote the (partitioning)
subsets of RðnÞ consisting of the forward and backward
reactions, respectively.
Note that we have

xn:¼jX ðnÞj ¼ kþ k2 þ � � � þ kn ¼
knþ1 � k
k� 1

; (2)

which is the total number of sequences of length at most
n, and

rn:¼jRþðnÞj ¼ ðk2 þ 2k3 þ � � � þ ðn � 1ÞknÞ

¼
ðn � 1Þknþ2 � nknþ1 þ k2

ðk� 1Þ2
; ð3Þ

which is the total number of forward reactions that
construct sequences of length at most n. We will often
below use the fact that, for all nX1;

1� O
1

n

� �
p

rn

nxn

p1 (4)

(the notation f ðnÞ ¼ gðnÞ þ Oð1
n
Þ means jf ðnÞ �

gðnÞjpK=n for some constant K for all nX1).
We study a catalysation function g obtained by setting

g ¼ gC where C is some random assignment of
catalysation (i.e. pairs ðx; rÞ) that is subject to the
following requirements:
(R1)
 The events ððx; rÞ 2 C : x 2 X ðnÞ; r 2 RþðnÞÞ are
independent.
(R2)
 For each sequence x 2 X ðnÞ and reaction r 2

RþðnÞ; the probability P½ðx; rÞ 2 C� depends only
on x.
This model is more general than that described in
Kauffman (1993), Steel (2000) or Hordijk and Steel
(2004) for several reasons—it allows different catalysa-
tion probabilities for forward and backward reactions, it
allows dependencies involving the catalysation of back-
ward reactions, and the catalysation ability of a
molecule can vary according to the molecule considered
(for example, it can depend on the length of the
molecule).
Let mnðxÞ be the expected number of reactions in

RþðnÞ that molecule x catalyses. By (R2) we can write
this as

mnðxÞ ¼ P½ðx; rÞ 2 C� � jRþðnÞj

for any given r 2 RþðnÞ:
For QðnÞ ¼ ðX ðnÞ;RðnÞ; gCÞ; F ¼ X ðtÞ for some fixed

value of t and O � 2X ðnÞ�F ; let PnðOÞ be the probability
that QðnÞ has an O-complex RAF. We can now state the
first main result of this paper.

Theorem 4.1. Consider a random catalytic reaction

system QðnÞ satisfying (R1) and (R2) and with F ¼ X ðtÞ

for a fixed value of t, with ton: Let lX0 and let O �

2X ðnÞ�F :
(i)
 Suppose that mnðxÞpln for all x 2 X ðnÞ: Then

PnðOÞp1� exp �2lx2t 1þ O
1

n

� �� �� �
ð! 0 as l ! 0Þ;

where xt is defined in (2).

(ii)
 Suppose that mnðxÞXln for all x 2 X ðnÞ; or that

mnðxÞXlynjxj for all x 2 X ðnÞ; where l4logeðkÞ and

where yn ¼ 1
k ð1þ

nknþ1

rn
Þ � 1: Then,

PnðOÞX1�
kðke�lÞ

t

1� ke�l ð! 1 as l ! 1Þ:
To illustrate Theorem 4.1 consider binary sequences,
and a food set consisting of the 6 molecules of length at
most 2 (thus k ¼ t ¼ 2; which was the default setting for
the simulations in Hordijk and Steel, 2004). Then taking
l ¼ 4 in Theorem 4.1(ii) we have Pn40:99:
As an immediate corollary of Theorem 4.1 we obtain

the following result, which confirms the two conjectures
posed in Steel (2000).

Corollary 4.2. Consider random catalytic reaction sys-

tems QðnÞ (nXt) satisfying (R1) and (R2) and with F ¼

X ðtÞ for a fixed value of t. Take O ¼ ;; and let Pn ¼

Pnð;Þ; the probability that QðnÞ has a RAF.
(i)
 If

max
x2X ðnÞ

mnðxÞ

n
! 0 as n ! 1

then limn!1Pn ¼ 0:

(ii)
 If

min
x2X ðnÞ

mnðxÞ

jxj
! 1 as n ! 1

then limn!1Pn ¼ 1:
Remark.
�
 Corollary 4.2 has been worded in such a way that it
clearly remains true if we interchange the terms mnðxÞ

jxj

and mnðxÞ
n
in either (i) or (ii) or both.
�
 The condition described in Corollary 4.2(ii) suffices
to guarantee (for large n) a RAF involving all
the molecules in X ðnÞ: However, it does not guar-
antee that all of RþðnÞ is an RAF. The condition
for this latter event to hold with high probability as
n ! 1 (assuming for simplicity that mðxÞ is constant,
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say mn; over X ðnÞ) is the stronger condition that

lim inf
n!1

mn

n2
4logeðkÞ:

This follows from (a slight extension of) Theorem 1 of
Steel (2000).
�
 Note that if we were to view a sequence ðx1;x2;
. . . ; xnÞ 2 X ðnÞ and its reversal ðxn;xn�1; . . . ;x1Þ as
equivalent molecules then Corollary 4.2 still holds
since asymptotically (with n) palindromic sequences
have a negligible influence in the calculations.
�
 Similarly, if we were to modify (R2) to require
that any molecule x cannot catalyse a reaction r for
which x is a reactant, then Corollary 4.2 would still
hold (and Theorem 4.1 would only be slightly
modified) since the number of reactants in any
reaction r is asymptotically negligible (with n)
compared with the total number of molecules that
could catalyse r.
�
 Note that the lower bound on Pn in Theorem 4.1(ii)
is valid for any value of n4t (previous studies,
from Kauffman’s (1986) onwards, had drawn
conclusions by considering limits as n tended to
infinity, but the bound in Theorem 4.1(ii) is
independent of n). Thus, very large systems are not
necessarily required for self-sustaining random auto-
catalysis, a concern that had been raised by Szathmáry
(2000).
To establish Theorem 4.1 we require first two further
results—Lemma 4.3 and Proposition 4.4, and to
describe them we introduce a further definition.
We say that a reaction r 2 RðnÞ is globally catalysed

(or GC) if there exists any molecule in X ðnÞ that
catalyses r. By the assumptions (R1) and (R2) above
the probability that any forward reaction r is GC does
not depend on r. Let pn denote this probability and let
qn ¼ 1� pn:
We will show that when pn is sufficiently large then

there exists a RAF R � RþðnÞ such that X ðnÞ � F �

pðRÞ—in other words all molecules that are not
already supplied by F can be generated by catalysed
reactions.
On the other hand, we will show that when pn is small

enough then the probability that there exists any
globally catalysed reaction that generates any molecule
from X ðt þ 1Þ from molecules in X ðtÞ is small—thus
proving that the probability that a RAF exists is
small.
The first step is to estimate the probability of global

catalysation.
Lemma 4.3. Consider the system QðnÞ satisfying proper-

ties (R1) and (R2) and with F ¼ X ðtÞ for a fixed t, and let

l40 be any positive constant.
(i)
 The probability qn that a reaction r 2 RþðnÞ is not

globally catalysed is given by

qn ¼
Y

x2X ðnÞ

1�
mnðxÞ

rn

� �
:

In particular,

(ii)
 if mnðxÞpln for all x then

qnX exp �l 1þ O
1

n

� �� �� �
;

(iii)
 if mnðxÞXln for all x then

qnoe
�l;
(iv)
 if mnðxÞXlynjxj for all x (where yn is as defined in

Theorem 4.1) then

qnoe
�l:
Proof. (i) is immediate from (R1) and (R2). (ii) follows
by combining part (i) and (4) to give

qnX 1�
ln

rn

� �xn

X 1�
l

xn 1� O 1
n


 �
 �
 !xn

¼ exp �l 1þ O
1

n

� �� �� �
:

(iii) follow from (i) together with (4) which gives

qnp 1�
ln

rn

� �xn

p 1�
l
xn

� �xn

oe�l;

as required. For (iv), combine part (i), the identity
jfx 2 X ðnÞ : jxj ¼ sgj ¼ ks; and the inequality ð1� aÞbp
expð�abÞ for a; b40; to obtain

qnp
Yn

s¼1

1�
ls

rn

� �ks

p
Yn

s¼1

exp �
lsks

rn

� �

¼ exp �
c

rn

Xn

s¼1

sks

 !
:

Now,
Pn

s¼1 sks ¼ rnþ1=k from (3), and (iv) now follows
by identifying yn with

rnþ1

rnk
(again using (3)). Note that yn

converges to 1 as n ! 1: &

Proposition 4.4. Consider a random catalytic reaction

system QðnÞ satisfying properties (R1) and (R2) and with

F ¼ X ðtÞ for a fixed t, where ton: As before, denote the

probability that a forward reaction is not globally

catalysed by qn: Then
(i)
 The probability that QðnÞ has a RAF is at most

1� q
2x2t
n
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(ii)
 If kqno1 then the probability that QðnÞ has a RAF R
with X ðnÞ � F � pðRÞ is at least

1�
kðkqnÞ

t

1� kqn

:

Proof. (i) Note that there are at most 2x2t forward
reactions whose reactants (inputs) lie in X ðtÞ: With
probability at least q

2x2t
n none of these reactions is GC, in

which case there is no RAF for the system. The first part
of the proposition now follows.
(ii) Note that, for any sXt the probability that a

molecule x with jxj ¼ s þ 1 is not generated by any
forward GC reaction from X ðsÞ is given by qs

n
: There-

fore, the expected number of molecules x with jxj ¼

s þ 1 which are not generated by a forward GC reaction
is ksþ1qs

n
: In particular, the probability that there is a

molecule in X ðs þ 1Þ that is not generated by a forward
reaction from X ðsÞ is at most ksþ1qs

n
: This in turn implies

that the probability that all molecules in X ðnÞ are
generated by forward GC reactions is at least

1� k
Xn

s¼t

ðkqnÞ
s
X1� k

X1
s¼t

ðkqnÞ
s
¼ 1�

kðkqnÞ
t

1� kqn

:

Finally, note that if all molecules in X ðnÞ � F are
generated by a set R of forward GC reactions, and since
ton (so that condition (iii) in the definition of an RAF is
satisfied) we have that R is a RAF for QðnÞ: &

Proof of Theorem 4.1. (i) By Proposition 4.4 (i) the
probability that QðnÞ has a RAF is at most 1� q

2x2t
n

which by Lemma 4.3(ii) is at most

1� exp �l 1þ O
1

n

� �� �� �� �2x2t

¼ 1� exp �2lx2t 1þ O
1

n

� �� �� �
:

Clearly if QðnÞ has no RAF, then it also has no O-
complex RAF, for any O � 2X ðnÞ�F :
(ii) This follows, by combining Proposition 4.4(ii)

with Lemma 4.3 (iii) and (iv), and noting that a RAF R
of QðnÞ for which X ðnÞ � F � pðRÞ is also an O-complex
RAF for any O � 2X ðnÞ�F : &
5. An analogous result for CAFs

The degree of catalysation required for a CAF to arise
in the system QðnÞ is much greater than for a RAF. This
seems reasonable since the definition of a CAF involves
a much stronger requirement than a RAF on a set of
reactions. However the extent of the difference is
interesting, and is given by the following analogue of
Theorem 4.1.
Theorem 5.1. Consider the random catalytic reaction

system QðnÞ and suppose that F ¼ X ðtÞ: Let lX0 and let

O � 2X ðnÞ�F :
(i)
 If

mnðxÞp
l
x3t

� rn

for all x 2 X ðnÞ; then the probability that QðnÞ has a

O-complex CAF is at most

1� 1�
l
x3t

� �2x3t
p2l:
(ii)
 If

mnðxÞX
l
xt

� rn

for all x 2 X ðnÞ; then the probability that QðnÞ has a

O-complex CAF is at least

1�
kðke�lÞ

t

1� ke�l :
Before presenting the proof of this result, we note that
while the degree of catalysation required for the likely
occurrence of a RAF was that mnðxÞ should grow at least
linearly with n (Theorem 4.1) the requirements for a
CAF are quite different: by Theorem 5.1 mnðxÞ must
grow at least linearly with rn—and thereby exponentially

with n.

Proof of Theorem 5.1. (i) Let R0:¼fr 2 RþðnÞ : rðrÞ �
Fg; the set of all forward reactions that have all their
reactants in F. The probability that any given reaction
r 2 R0 is not catalysed by at least one element of F is
given by

Y
x2F

1�
mnðxÞ

rn

� �
:

Thus, the probability that none of the reactions in R0

are catalysed by at least one element of F is

Y
x2F

1�
mnðxÞ

rn

� � !jR0 j

:

In particular if mnðxÞp
lrn

x3t
; then, since jF j ¼ xt and

jR0jp2x2t ; this probability (that none of the reactions in
R0 is catalysed by at least one element of F) is at least

1�
l
x3t

� �2x3t
X1� 2l: (5)

However when none of the reactions in R0 is catalysed,
then QðnÞ does not have a CAF. Thus, the probability
that QðnÞ has a CAF is at most 1 minus the expression in
(5), as required.
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(ii) For every molecule in x 2 X ðnÞ; and each s 2

ft; . . . ; ng let EsðxÞ be the event that there is at least one
reaction rx of the form a þ b ! x; where a; b 2 X ðsÞ;
that is catalysed by at least one molecule in X ðsÞ:
Now, if mnðxÞX

lrn

xt
; then for any forward reaction r,

the probability that r is not catalysed by at least one
molecule in X ðsÞ (for sXt) is at most

1�
l
xt

� �xs

p exp �l
xs

xt

� �
pe�l

and since, for each x there are jxj � 1 choices for rx we
have

PðEsðxÞ
c
Þp expð�lðjxj � 1ÞÞ; (6)

where EsðxÞ
c is the complementary event to EsðxÞ:

Consider the event

Es:¼
\

x2X ðsþ1ÞnX ðsÞ

EsðxÞ:

By (6) and the identity jX ðs þ 1Þ � X ðsÞj ¼ ksþ1 we have
PðEc

sÞoksþ1e�ls and so

P
\n�t

s¼t

Es

 !
X1�

X1
s¼t

ksþ1e�ls ¼ 1�
kðke�lÞ

t

1� ke�l :

However the event
Tn�t

s¼t Es ensures that the nested
collection of reactions Ri:¼frx : x 2 X ðt þ iÞg; i ¼

1; . . . ; n � t forms a CAF for QðnÞ; and moreover, one
for which the maximal set Rn�t generates all elements of
X ðnÞ � F—thus it is also a O-complex CAF for any O �

2X ðnÞ�F : This completes the proof. &
6. Discussion

The question of how life first arose on earth is a
multifaceted problem that stands out as one of the
major questions in science (see for example Dyson, 1985;
Fenchel, 2002; Joyce, 1989; Szathmáry, 1999; Szathmáry
and Maynard Smith, 1997). One dilemma, frequently
dubbed the ‘chicken and egg’ problem is the question of
which (if either) came first: hereditary (molecules such as
DNA or RNA that carry information but do not easily
catalyse reactions), or metabolism (proteins that carry
out reactions but do not replicate). An alternative
possibility is than an autocatalytic system of molecules
including RNA and proteins and possibly other
molecules emerged as the first primitive prebiotic
system. The theoretical investigation of catalytic reac-
tion systems is an attempt to address just one aspect of
this theory. This concerns the issue of whether, as
Kauffman has maintained, we should expect self-
sustaining, autocatalytic networks to emerge in random
chemical systems once some threshold (in ‘complexity’,
‘connectivity’ or ‘catalysation rate’) is exceeded, or
whether there is the requirement of some fine-tuning of
the underlying biochemistry for such networks to occur.
Orgel (1992) raises this as concern about autocatalytic
network models commenting that ‘‘it is always difficult
in such theoretical models to see how to close the cycle
without making unreasonable assumptions about the
specificity of catalysis.’’
Our results here have helped delineate precisely how

much catalysation is required in order for random
sequence-based chemical reaction systems (without any
‘fine-tuning’) to likely give rise to a RAF. In contrast to
a CAF, where a high degree of catalysation is required
when the maximal sequence length n is large, the likely
occurrence of a RAF depends just on whether the
catalysation function mnðxÞ grows sublinearly or super-
linearly with n (Corollary 4.2). The techniques devel-
oped in this paper may provide some analytical
predictive tools for biochemists design in vitro prebiotic
experiments with large number of variants of RNA
sequences and other molecules.
The development of a self-sustaining autocatalytic

system would clearly be only one step towards life, in
particular a reproducing system that is capable of
undergoing Darwinian selection eventually needs to
develop. Here, the recent concept of a ‘Eigen–Darwin’
cycle (Poole et al., 1998) may hold promise.
Questions for future work would be to explore how

the results in this paper would be influenced by allowing
random inhibitory catalysations, or side reactions that
could destroy some of the crucial reactants (this problem
has been referred to by Szathmáry (2000) as the ‘‘plague
of side reactions’’). This second phenomena can be
formally regarded as a special case of the first, since if x

is a reactant for a reaction r and x is degraded in the
presence of another molecule y then we can (formally)
regard y as inhibiting the reaction r. The model studied
in this paper could also be refined to better suit the
graph-theoretic properties of real metabolic networks
which have recently been investigated (Jeong et al.,
2000; Wagner and Fell, 2001).
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Appendix A. Proof of Proposition 3.1

The decision problem is clearly in the class NP. To
show it is NP-complete we provide a reduction from 3-
SAT. Consider an expression P in conjunctive normal
form involving binary variables x1; . . . ; xn and
where each clause in P involves at most three variables.
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Thus we can write

P ¼ C1 ^ C2 ^ � � � ^ Ck;

where

Ci ¼
_

j2TðiÞ

xj

_
j2F ðiÞ

xj

and TðiÞ;F ðiÞ � f1; . . . ; ng; jTðiÞj þ jF ðiÞj ¼ 3:
Given P construct a catalytic reaction system Q ¼

ðX ;R; gCðþÞ;Cð�ÞÞ as follows: let F :¼fx1; . . . ; xng; let

X :¼fx1; . . . ;xn; f 1; . . . ; f n; t1; . . . ; tn; y1; . . . ; yk; 1g:

Informally, xi will correspond to the variable xi in the
formula; a reaction producing ti (respectively, f i) will be
catalysed if the truth assignment of xi is true (respec-
tively, false), and the reaction producing yi will be
catalysed if the ith clause is satisfied.
More formally we let R ¼ R1 [R2 [R3 where R1

consists of all reactions

xi �!
1ðþÞ;tið�Þ

f i; xi �!
1ðþÞ;f ið�Þ

ti

for 1pipn: In words xi is the sole reactant for f i and ti

but f i inhibits the catalysation of ti and vice versa.
R2 consists of all reactions

tj �!
1ðþÞ

yi if j 2 TðiÞ;

f j �!
1ðþÞ

yi if j 2 F ðiÞ

8<
:
for 1pjpn and 1pipk: Finally R3 consists of the
single reaction

fy1; . . . ; ykg�!
1ðþÞ
1:

Now, we claim that P has a satisfying truth assign-
ment if and only if Q has a RAF. To establish this, first
assume that P has a satisfying assignment. Fix such an
assignment z and let fT ;Fg be a partition of f1; . . . ; ng
corresponding to the variables that are true (respec-
tively, false) in z.
Now, consider R0

1 [R0
2 [R3 where R

0
1 � R1 consists

of the reactions xi ! ti for all i 2 T ; and the reactions
xi ! f i for all i 2 F : R0

2 will consist of the reactions
ti ! yj for all i 2 T \ Tð jÞ and f i ! yj for all i 2

F \ F ð jÞ: Since the assignment z satisfies the formula it
follows that R0

1 [R0
2 [R3 is a RAF.

Next, we have to show that if the system has a RAF
the formula has a satisfying truth assignment. Suppose
the system has a RAF R0: Clearly R3 � R0: This in turn
implies that the reactions producing y1; . . . ; yk are all
catalysed. Thus for all 1pipk; there either exists some
j 2 TðiÞ such that the reaction producing tj is catalysed
or there exists some j 2 F ðiÞ such that the reaction
producing f j is catalyzed. Moreover, for all i at most one
of the reactions producing ti and f i can be catalyzed. We
now define zi to be true if the reaction producing ti is
catalysed and false if the reaction producing f i is
catalyzed (zi is defined arbitrarily otherwise). Then z is
a satisfying assignment as required. &
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Szathmáry, E., 1999. The first replicators. In: Keller, L. (Ed.), Levels of

Selection in Evolution. Princeton University Press, Princeton, NJ,

pp. 31–52.



ARTICLE IN PRESS
E. Mossel, M. Steel / Journal of Theoretical Biology ] (]]]]) ]]]–]]]10
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