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Abstract. The genomic era has opened up vast opportunities in molecular systematics, one of which
is deciphering the evolutionary history in fine detail. Under this mass of data, analysing the point mu-
tations of standard markers is too crude and slow for fine-scale phylogenetics. Nevertheless, genome
dynamics events provide far richer information. The synteny index (SI) between a pair of genomes
combines gene order and gene content information, allowing the comparison of genomes of unequal
gene content, together with order considerations of their common genes. Recently, genome dynam-
ics has been modelled as a continuous-time Markov process, and gene distance in the genome as a
birth–death–immigration process. Nevertheless, due to complexities arising in this setting such as
overlapping neighbourhoods and other confounding factors, no precise and provably consistent esti-
mators could be derived.
Here, we extend this modelling approach by using techniques from birth–death theory to derive ex-
plicit expressions of the system’s probabilistic dynamics in the form of rational functions of the model
parameters. This, in turn, allows us to infer analytically the expected distances between organisms
based on a transformation of their SI. Despite the complexity of the expressions obtained, we es-
tablish additivity of this estimated evolutionary distance (a desirable property yielding phylogenetic
consistency).
Applying the new measure in simulation studies shows that it attains very accurate results in realistic
settings and even under model extensions. In the real-data realm, we applied the new formulation to
unique data structure that we constructed - the ordered orthology DB - based on a new version of
the EggNOG database, to construct a tree with more than 4.5K taxa. The resulted tree was com-
pared it with a NCBI taxonomy for these organisms. To the best of our knowledge, this is the largest
gene-order-based tree constructed and it overcomes flaws found in previous approaches.
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1 Introduction

The genomic era has reached the point where tasks that seemed imaginary only a decade ago are
now within reach. Among these tasks is the inference of the evolutionary history for thousands
of species of very close origin. Such a history is depicted in a tree structure and is called a
phylogeny. The leaves of that tree correspond to contemporary extant species and the tree’s
edges (or branches) represent evolutionary relationships. Despite the impressive advances in the
extraction of molecular data, and of ever-increasing quality, finding the underlying phylogenetic
tree is still a major challenge that requires reliable approaches for inferring the true evolutionary
distances between the species at the tips (leaves) of the tree. The desired tree should preserve the
property that the length of the path between any two organisms at its leaves should equal the
inferred pairwise distance between these same organisms. When such a tree exists, these distances
are called additive, as is the distance matrix storing them.

Statistical modelling in which the tree is a parameter of the model are nowadays considered
the method of choice for phylogenetic inference. Under this framework, vast efforts have been
made, first to model data accurately, and then to draw inferences efficiently from the given data.
One such approach is maximum likelihood [15,16,17,10,11], where the model (tree) selected is the
one maximising the probability of observing the given data.

Standard phylogenetics analyses one or a few ubiquitous genes residing in all species under
study, and uses the differences between respective gene copies in order to infer evolution history.
Such genes are typically highly conserved by definition and hence cannot provide a strong enough
signal to distinguish the shallow branches of the prokaryotic tree. Nevertheless, among prokary-
otes, genome dynamics in the form of horizontal gene transfer (HGT) (a mechanism by which
organisms transfer genetic material to contemporaneous organisms rather than via vertical inher-
itance [7,20,24]) and gene loss seem to provide far richer information by affecting both the gene
order and gene content. Approaches relying on genome dynamics are mainly divided into gene-
order-based and gene-content-based techniques. With the gene-order-based approach [28,14,42],
two genomes are considered as permutations of the gene set, and distance is defined as the mini-
mal number of operations needed to transform one genome to the other. The gene-content-based
approach [36,40,13] entirely ignores the gene order, and similarity is defined as the size of the
set of shared genes. Although a statistical framework has been devised for part of these mod-
els [31,41,5,29], to the best of our knowledge, no such framework accounts for HGT.

A related task in this field is the reconciliation between a gene tree and the species tree. In
this setting, a sequence of events acting on the species tree and yielding the given gene tree is
sought. These events may contain events other than HGT while are commonly denoted duplication,
transfer and loss (DTL) [4,37]. These works contain both combinatorial-based approaches such
as parsimony [23,8], and model/likelihood-based approaches [38,35]. Neither approach focuses on
tree reconstruction, especially reconstructions based on gene order between multiple genes, and
therefore, even the underlying evolutionary model they assume is different.

The synteny index (SI) [33,1] was suggested as an alternative method to the combinato-
rial/statistical phylogenetics approaches mentioned above, allowing unequal gene content on one
hand while accounting for the order among the shared genes. Here, the locality of a gene in the
form of a “neighbourhood” is considered and compared with other genomes. Similarity between
genomes is attained by averaging this locality of all the shared genes.

In a recent paper [32], we defined the jump model to model genome dynamics, primarily HGT.
A genome is defined as a continuous-time Markov process [2]. Under this model, gene distance
along the genome can be described as a (critical) birth–death–immigration process. The setting
poses intrinsic hurdles such as overlapping neighbourhoods, non-stationarity, confounding factors,
and more. Consequently, precise quantities could not be obtained in this earlier work. In particular,
basic operations such as gene distance were calculated heuristically.
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In this work, we take the jump model and the SI a significant step further by first deriving
an analytical expression for the expected time since the divergence between organisms, which is
a mandatory step for phylogenetics. Moreover, one of the most important properties in phylo-
genetics is model consistency, which requires that a measure infers accurate distances under a
given model of evolution. However, the complexity of the expressions obtained for infering dis-
tances do not readily imply consistency of the SI. By using techniques from spectral theory and
orthogonal polynomials, we establish in this paper the consistency of the SI measure under the
jump model. On the experimental side, we first show that the new mapping provides accurate
reconstructions, even for real-life problem sizes and even under an extended jump model that
allows gene loss. For real data, we created a new database of ordered orthology groups, based
on the EggNOG [18] orthology database, encompassing over 4445 organisms spanning the entire
prokaryotic phylogenetic spectrum. Applying the new measure to this database, produces a tree
with very high agreement with the NCBI taxonomy [9,30]. To the best of our knowledge, this is
the largest genome-dynamics-based tree. In comparison with other SI-based trees, it is evident
that the new technique reconstructs significantly more realistic distances, attesting to its capabil-
ity as a distance measure in other various applications of genome dynamics [6,26].

Comment: As both the theoretical and the experimental parts are technically involved, we
provide in a supplementary text brief self-contained background to the theoretical material em-
ployed, as well as further details for the experimental parts.

2 Preliminaries

We start by defining a restricted model – the jump model – which can be regarded as a transfer
between genomes over the same gene set (equal content).

The Jump Model Let G(n)(0) = (g1, g2, . . . , gn) be a sequence of ‘genes’. In our analysis, we will
assume that n is large enough to allow us to ignore the tips of G(n) (or, equivalently, G(n) is cyclic
and there are no tips). Consider the following continuous-time Markovian process G(n)(t), t ≥ 0
on the state space of all n! permutations of g1, g2, . . . , gn. Each gene gi is independently subject to
a Poisson process transfer event (at a constant rate λ) in which gi is moved to a different position
in the sequence, with each of the possible n − 1 positions (between consecutive genes that are
different from gi, or at the start or end of the sequence) and with this target location for the
transfer selected uniformly at random from these n− 1 possibilities.

For example, if G(n)(t) = (g1, g2, g3, g4, g5), then g4 might transfer to be inserted between g1
and g2 to give the sequence G(n)(t+δ) = (g1, g4, g2, g3, g5). The other sequences that could arise by
a single transfer of g4 are (g4, g1, g2, g3, g5), (g1, g2, g4, g3, g5), and (g1, g2, g3, g5, g4). In particular,
note that gi need not necessarily move to a position between two genes; it can also move the the
initial or the last position in the sequence.

Since the model assumes a Poisson process, the probability that gi is transferred to a different
position between times t and t+ δ is λδ+ o(δ), where the o(δ) term accounts for the possibility of
more than one transfer occurring in the time period δ (this possibility has probability of order δ2

and so is asymptotically negligible compared with terms of order δ as δ → 0). Moreover, a single
transfer event always results in a different sequence.

The Synteny Index Let k be any constant positive integer (note that it may be possible
to allow k to grow slowly with n, but we will not explore such an extension here). For j ∈
k + 1, . . . , n − k, the 2k-neighbourhood of gene gj in a genome G(n), N2k(gj ,G(n)) is the set of
2k genes (different from gj) that have a distance of at most k from gj in G(n). We also define
SIj(t) as the relative intersection size between Nk(gj ,G(n)(0)) and Nk(gj ,G(n)(t)), or formally,
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SIj(t) =
1
2k |Nk(gj ,G(n)(0))∩Nk(gj ,G(n)(t))| (this is also called the Jaccard index between the two

neighbourhoods [19]).

Let SI(G(n)
0 ,G(n)

t ) be the average of these SIj(t) values over all j between k + 1 and n− k. That
is,

SI(G(n)
0 ,G(n)

t ) =
1

n− 2k

n−k∑
j=k+1

SIj(t). (1)

Subsequently, when time t does not matter, we simply use SI or simply SI where it is clear
from the context.

Phylogenetic Trees and Distances For a set of species (denoted taxa) X , a phylogenetic X -
tree T is a tree T = (V,E) for which there is a one-to-one correspondence between X and the
set L(T ) of leaves of T . A tree T is weighted if there is a weight (or length) function associating
non-negative weights (lengths) to the edges of T . In this paper, we will use the term length, as
it corresponds to the number of events or the time span. Edge lengths are naturally extended to
paths, where the path length is the sum of edge lengths along the path. For a tree T over n leaves,
let D(T ) (or simply D) be a symmetric n×n matrix where [D]i,j holds the path length (distance)
between leaves i and j in T . A matrix D′ is called additive if there is an edge-weighted tree T ′

such that D(T ′) = D′. A distance measure D is said to be additive on a model M if D can be
transformed (or corrected) to give the expected number of events generated under M .

2.1 Gene Neighbourhood as a Markov Chain

We now introduce a random process, which will play a key role in the analysis of the random

variable SI(G(n)
0 ,G(n)

t ). Consider the location of a gene gi, that is not transferred during time
period t, with respect to another gene gi′ . Without loss of generality assume i > i′ and let
j = i− i′. Now, there are j ‘slots’ between gi′ and gi into which a transferred gene can be inserted,
but only j − 1 genes in that interval can be transferred. Obviously, a transfer into that interval
moves gi′ one position away from gi, and a transfer from that interval, moves gi′ closer to gi. This
can be modelled as a continuous-time random walk on the state space 1, 2, 3, . . . with transitions
from j to j+1 at rate jλ (for all j ≥ 1) and from j to j−1 at rate (j−1)λ (for all j ≥ 2), with all
other transition rates being 0. This is thus a (generalised linear) birth–death process, illustrated
in Fig. 1.

More formally, we will let Xt denote the random variable that describes the number of slots
between two genes under this process described above. Then Xt is a continuous-time random walk
on state space 1, 2, 3, . . ., with an arbitrary initial condition X0 and transition probabilities of Xt

defined as follows:

P(Xt+δ = j + 1|Xt = j) = jλδ + o(δ), j ≥ 1, (2)

P(Xt+δ = j − 1|Xt = j) = (j − 1)λδ + o(δ), j ≥ 1. (3)

The process Xt is slightly different from the much-studied critical linear birth–death process,
for which the rate of birth and death from state j are both equal to j (here the rate of birth
is j but the rate of death is j − 1), and for which 0 is an absorbing state (here there are no
absorbing states). However, this stochastic process is essentially a translation of a critical linear
birth–death process with immigration rate equal to the birth–death rate λ. This connection is key
to the analysis of the divergence times that we establish below.
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Fig. 1. Transitions for the process Xt

3 Results

3.1 Explicit Expressions for the Divergence Time

We now present the main theoretical contribution of this work, which is an analytical expression of
divergence times. We first recall a result of [32] that links SI and the transition probabilities of the
birth–death process Xt. This raises the need to obtain explicit expressions for these probabilities,
which we do in Sections 3.2,3.3, making use of known results from the theory of birth–death
processes. This theory also allows us (Section 3.4) to give a proof of the monotonicity of the SI
as a function of time (in the limit of large n), a result that is crucial in order to ensure that we
can use our explicit expressions to solve the divergence time in terms of the SI.

Let pi,j(t) be the transition probability for Xt to be at state j, given that at time 0 it was at
state i:

pi,j(t) = P(Xt = j | X0 = i), i, j ≥ 1.

We denote the conditional probability that Xt ∈ [k] given that X0 = i by:

qi,k(t) =
k∑

j=1

pi,j(t). (4)

Next, let

qk(t) :=
1

k

k∑
i=1

qi,k(t) =
1

k

k∑
i=1

k∑
j=1

pi,j(t). (5)

The quantity qk(t) is the probability that for a gene at an initial state i (i.e., at distance from
a reference gene) chosen uniformly at random between 1 and k, the process X∗ is still between 1
and k after time t. In [32] we proved the following result:

Theorem 1. For any given value of t, as n→ ∞:

SI(G(n)
0 ,G(n)

t )
p−→ exp(−2λt)qk(t),

where
p−→ denotes convergence in probability.

In the following we assume, without loss of generality, that λ = 1 (this is simply rescaling time).
The functions pi,j(t) can be expresed as solutions of an infinite system of ordinary differential
equations [32] (the Kolmogorov forward equations corresponding to the birth–death process), and
these differential equations may be used to numerically approximate pi,j(t) and therefore the key
quantity qk(t). However, in the present paper we will derive explicit algebraic expressions for pi,j(t)
and thus qk(t). It thereby becomes possible to use Theorem 1 to solve for the divergence time t
in terms of the SI.
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3.2 Explicit expressions for pi,j(t)

Theorem 2.

pi,j(t) =
1

(t+ 1)i+j−1
·
min(i,j)∑
ℓ=1

(i+ j − ℓ− 1)!

(i− ℓ)!(j − ℓ)!(ℓ− 1)!

(
1− t2

)ℓ−1
ti+j−2ℓ. (6)

Proof: This result follows from some general results for birth–death processes (refer to [3] for
these). A simple change in notation will be needed, since the results of [3] involve a birth–death
process that is defined on the non-negative integers, whereas our process above is defined on the
positive integers. We therefore define Yt = Xt − 1, so that the process Yt satisfies an instance of
the general birth–death process described by:

P(Yt+δ = i+ 1|Yt = i) = λiδ + o(δ), i ≥ 0

P(Yt+δ = i− 1|Yt = i) = µiδ + o(δ), i ≥ 1

where in our case:

λi = i+ 1, µi = i. (7)

At the heart of the spectral theory of birth–death processes is the Karlin-McGregor representation
of the state transition probabilities ([3], Ch. 8, Theorem 2.1):

P(Yt = j|Y0 = i) = πj

∫ ∞

0
e−txQi(x)Qj(x)dψ(x), (8)

where dψ(x) is a measure on [0,∞), known as the spectral measure, {Qi(x)}∞i=0 is a sequence of
polynomials, orthogonal with respect to the measure dψ, and πj =

∏i−1
k=0

λk
µk+1

.

In the particular case where the birth–death process is given by (7), we have ([3], Ch.8, Eq.
4.14):

dψ(x) = e−xdx, (9)

πj = 1, j ≥ 0, (10)

and the polynomials Qi(x) are the Laguerre polynomials defined by ([3], Ch.8, Eq. 4.12)

Qi(x) = 1F1(−m; 1, x) =

i∑
k=0

(−i)k
k!2

· xk

where 1F1 is the confluent hypergeometric function, and (−i)k = (−i)(−i+1) · · · (−i+k−1). We
also have the relation ([3], Ch.8, eq. 4.15)∫ ∞

0
e−sxQi(x)Qj(x)dx =

(i+ j)!

i!j!
· (s− 1)i+j

si+j+1
· 2F1

(
−i,−j;−i− j;

s(s− 2)

(s− 1)2

)
, (11)

where 2F1 is the Gaussian hypergeometric function, defined by:

2F1

(
−i,−j;−i− j;

s(s− 2)

(s− 1)2

)
=

∞∑
k=0

(−i)k(−j)k
(−i− j)k

·
(
s(s− 2)

(s− 1)2

)k

. (12)

Using (9),(10),(11),(12) with s = t+ 1, (8) leads to ([3], Ch. 8, eq. 4.28):

P(Yt = j|Y0 = i) = πj

∫ ∞

0
e−txQi(x)Qj(x)e

−xdx =

∫ ∞

0
e−x(t+1)Qi(x)Qj(x)dx
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=
(i+ j)!

i!j!
· ti+j

(t+ 1)i+j+1
· 2F1

(
−i,−j;−i− j;

t2 − 1

t2

)

=
(i+ j)!

i!j!
· ti+j

(t+ 1)i+j+1

∞∑
k=0

(−i)k(−j)k
(−i− j)kk!

·
(
t2 − 1

t2

)k

=
(i+ j)!

i!j!
· ti+j

(t+ 1)i+j+1

min(i,j)∑
k=0

i!j!(i+ j − k)!(−1)k

(i− k)!(j − k)!(i+ j)!k!
·
(
t2 − 1

t2

)k

=
ti+j

(t+ 1)i+j+1

min(i,j)∑
k=0

(i+ j − k)!

(i− k)!(j − k)!k!
·
(
1− t2

t2

)k

.

Therefore, going back from the process Yt to the process Xt, we have

pi,j(t) = pij(t) = P(Xt = j|X0 = i) = pij(t) = P(Yt = j + 1|Y0 = i+ 1)

=
ti+j−2

(t+ 1)i+j−1

min(i,j)−1∑
k=0

(i+ j − k − 2)!

(i− 1− k)!(j − 1− k)!k!
·
(
1− t2

t2

)k

=
1

(t+ 1)i+j−1
·
min(i,j)∑
ℓ=1

(i+ j − ℓ− 1)!

(i− ℓ)!(j − ℓ)!(ℓ− 1)!

(
1− t2

)ℓ−1
ti+j−2ℓ.

3.3 Explicit Expression for qk(t)

As stated above, Theorem 1 (originally from [32]) gives an expression for the SI value between
two genomes, G0 and Gt . Nevertheless, in that paper, we could not derive an expression only in
terms of the number of events that occurred during time t (or, alternatively, in a path along the
tree of length λt “separating” genomes Gi and Gj) as we could not derive at an explicit expression
for qk. Now that we have obtained explicit expression for pi,j(t) in Theorem 2 we can explicitly
describe qk as follows.

Theorem 3.

qk(t) =
1

k

k−1∑
ℓ=0

k−ℓ−1∑
i=0

k−ℓ−1∑
j=0

(i+ j + ℓ)!

i!j!ℓ!
ti+j(t+ 1)−i−j−2ℓ−1

(
1− t2

)ℓ
. (13)

Here are a few instances of the above formula:

q2(t) =
2t2 + 2t+ 1

(t+ 1)3

q3(t) =
3t4 + 6t3 + 8t2 + 4t+ 1

(t+ 1)5

q4(t) =
4t6 + 12t5 + 26t4 + 26t3 + 18t2 + 6t+ 1

(t+ 1)7

q5(t) =
5t8 + 20t7 + 60t6 + 90t5 + 102t4 + 68t3 + 32t2 + 8t+ 1

(t+ 1)9
.
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Proof: Summing the expressions for pij(t) we get

qk(t) =
1

k

k∑
i=1

k∑
j=1

pij(t) =

k∑
i=1

k∑
j=1

1

(t+ 1)i+j−1
·
min(i,j)∑
ℓ=1

(i+ j − ℓ− 1)!

(i− ℓ)!(j − ℓ)!(ℓ− 1)!

(
1− t2

)ℓ−1
ti+j−2ℓ

=
1

k
(t+ 1)

k∑
ℓ=1

1

(ℓ− 1)!
t−2ℓ

(
1− t2

)ℓ−1
k∑

i=ℓ

ti

(t+ 1)i
1

(i− ℓ)!

k∑
j=ℓ

tj

(t+ 1)j
(i+ j − ℓ− 1)!

(j − ℓ)!

=
1

k
(t+ 1)

k∑
ℓ=1

1

(ℓ− 1)!
t−2ℓ

(
1− t2

)ℓ−1
k∑

i=ℓ

ti

(t+ 1)i
1

(i− ℓ)!

k−ℓ∑
j=0

tj+ℓ

(t+ 1)j+ℓ

(i+ j − 1)!

j!

=
1

k

1

(t+ 1)2k−1

k−1∑
ℓ=0

1

ℓ!

(
1− t2

)ℓ k−ℓ−1∑
i=0

k−ℓ−1∑
j=0

(i+ j + ℓ)!

i!j!
ti+j(t+ 1)2k−i−j−2ℓ−2

=
1

k

k−1∑
ℓ=0

k−ℓ−1∑
i=0

k−ℓ−1∑
j=0

(i+ j + ℓ)!

i!j!ℓ!
ti+j(t+ 1)−i−j−2ℓ−1

(
1− t2

)ℓ
.

3.4 Monotonicity of the SI Measure

Recall that we assumed, without loss of generality, that λ = 1, and so our goal now is to prove the
monotonicity of the function, hk(t) = e−2tqk(t) and thus (by Theorem 1) the SI measure itself, in
the limit of large n. In fact we will prove that qk(t) itself is monotone decreasing, which obviously
implies that hk(t) is also monotone decreasing.

Theorem 4. The function qk(t) is monotone decreasing on [0,∞).

Using the representation given by Eq. (8) we have:

pij(t) =

∫ ∞

0
e−txQi−1(x)Qj−1(x)dψ(x).

This implies that

qk(t) =
1

k

k∑
i=1

k∑
j=1

pij(t) =
1

k

k∑
i=1

k∑
j=1

∫ ∞

0
e−txQi−1(x)Qj−1(x)dψ(x)

=
1

k

∫ ∞

0
e−tx

k∑
i=1

k∑
j=1

Qi−1(x)Qj−1(x)dψ(x)

=
1

k

∫ ∞

0
e−tx

(
k∑

i=1

Qi−1(x)

)2

dψ(x)

Therefore, by differentiating the above with respect to t we obtain:

q′k(t) = −1

k

∫ ∞

0
e−txx

(
k∑

i=1

Qi−1(x)

)2

dψ(x) < 0,

since the integrand is positive. This establishes that qk(t) is monotone decreasing.
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The fact that hk(t) = exp(−2t)qk(t) is strictly monotone decreasing with t implies that the
inverse function h−1

k is well-defined. This allows us to use Theorem 1 to reconstruct the time t
given the SI value and, therefore, estimate the time separating two sequences of genes involving n
genes (where n is large) can be estimated by applying h−1

k to the SI for the two gene sequences.
By Theorem 3, we have an explicit value for hk(t), so the value h−1

k (SI) can be calculated by
numerically solving a simple equation.

Since the expected number of transfer events is additive on the tree (and proportional to t),
we can conclude the following:

Corollary 1. The topology of the underlying unrooted tree T can be reconstructed in a statistically
consistent way from the SI values by applying the transformation h−1

k , followed by a consistent
distance-based tree reconstruction method such as Neighbour-Joining (NJ).

4 Experimental Results

In this section, we describe the experiments we conducted to demonstrate the applicability of the
theoretical results described above. We begin with simulation results based on the jump model
and then move to an analysis of real genomic data.

4.1 Simulation results

We simulated the jump model for various values of the number n of genes. We set k = 3 (i.e. a
neighbourhood of 2k = 6), the rate was fixed at λ = 1 and time t varied over the interval [0, 1].
This has yielded a jump probability that was applied to every gene in the initial (t = 0) genome.
For each value of t, the SI between the initial and the final genome was computed. The top part
of Fig. 2 displays the value e−2tSI(t) (recall that λ = 1 and hence vanishes at the exponent) for
each of 10 simulations, and the function q3(t) which is the limit to which e−2tSI(t) converges as
n → ∞. As can be seen, although there is some variability due to randomness, this variability
decreases as n increases, and the agreement with the limiting curve q3(t) is clear.

In a related experiment, we checked how well the value SI(t), computed using the simulated
data, can be used to estimate the time t. For each value of t, we compute SI(t) from the simulated
data, and use this to estimate t by numerically solving the following equation:

e−2t̂q3(t̂) = SI(t), (14)

In the lower part of Fig. 2 the true value of t is compared with the estimated values t̂ for 10
simulations.

We note that the relevant values of λt as found in [32] are around 0.4 for distances within the
phylogenetic rank of genus. We see that the error is almost insignificant even for realistic genome
sizes, as we have here.

Next, we extended the pure jump model to include gain/loss events, both occurring with a
probability p, so the expected genome length is fixed. We again used Eq. (13) to infer the distances.
The results for the gain/loss probabilities 0.1 and 0.2 are shown in Fig. 3. As can be seen, although
the estimation is less accurate than in the pure jump model, the lag in estimated t̂ is linear with
t and maintains additivity (as noted in [32] under the gain/loss model).
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Fig. 2. Simulation Results, the pure jump model:. Genome sizes n = 1000, 2000, 4000. Top: Comparison of
the curves eλtSI(t) computed using simulation with the limiting curve q3(t), Bottom: Estimated vs effective t.
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Fig. 3. Simulation Results, Jump plus gain/loss:. genome size n = 2000 Top: Estimated vs effective q̂k for
gain/loss p = 0.1, 0.2. Bottom: Estimated vs effective t̂ for gain/loss p = 0.1, 0.2 .
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4.2 Real Data Results

Here we report the real data results obtained using the new technique. Because of space limitations,
and for the sake of reconstructability, fuller details and data are provided in the supplementary
text and material respectively. We applied our method to real genomic data consisting of 4445
prokaryotes taken from the orthology data base EggNOG [18] with 4.4M clusters of orthologous
groups (COGs) [39]. For each COG, EggNOG provides a flat ‘members’ file indicating the organ-
isms that harbour this gene, along with its location in the genome. This allowed us to sort the
genes by location along the genome. Within this representation, a genome is simply a list of COGs
sorted by genome location, where the COG names are universal across all organisms. Hence, we
can infer neighbourhood similarities across genomes and therefore the pairwise SI values between
any two genomes which we then store in an n× n SI matrix. We set k = 10 which was found to
be informative for these data [33,32] and computed SI for all pairs of taxa. The crude SI values
are strongly concentrated around 0.02, as shown in Fig. 4(R). In order to convert the SI values to
a dissimilarity measure, we set dSI = 1− SI. Once a (pairwise) dissimilarity D matrix has been
computed, we can then apply a distance-based phylogenetic method to estimate a tree T in which
the leaves are labelled by the organisms under study.

Path distances between the leaves of T , should approximate the distances in D. The most
accurate algorithm for this task is the neighbour joining (NJ) algorithm [27]. Therefore, we used
the program Neighbour from Phylip [12] to construct a tree that we call the 1 − SI tree. Recall
now that Eq. (14) was devised to “correct” the crude dSI and provide a (provably) more reliable
distance. Hence, we “corrected” the SI matrix accounting to Eq. (14) (specifically, finding t̂ by
solving Eq. (14) for the appropriate SI value in the matrix) and then applied Neighbour to this
matrix, yielding the exact tree. Finally, as in [32], we did not have an explicit expression for distance
and were forced to develop a simulation-based heuristic, we also constructed the heuristic tree by
using Formula (9) from [32].

EggNOG labels its organisms with the same taxon ID used by the NCBI taxonomy database [9].
This database is also furnished with taxonomic ranks in a child-to-parent relationship that we can
use for our task. We therefore constructed a tree from this child–parent relationship. This NCBI
tree spans about 1.2M organisms with maximum depth (i.e. ranks) of 39. We extracted the tree
induced by EggNOG 4445 taxa1 and used this tree as a reference tree, dubbed the NCBI tree.
The four trees appear in Fig. 5 in two formats - rectangular (L) and polar(R). As can be seen,
the 1 − SI and the heuristic trees exhibit serious flaws we will elaborate on later.We wanted to
measure the distance from each of the three reconstructed trees to the reference NCBI tree. A
common tree distance measure is the Robinson–Foulds (RF) symmetric difference [25], which can
be used to derive the false positive and false negative (FP, FN) rates. The relevant distances are
presented in Table 4(L). As can be seen, the exact tree from Eq. (14) is the most similar to the
NCBI tree and the heuristic tree is the least similar.

The RF distance is very sensitive and uninformative for large trees [34]. Hence, we adopted
a compatibility measure to allow a more intuitive assessment. We divided the tree into disjoint
subtrees with sizes of between 80 and 800 taxa, resulting in 14 subtrees in total. This tree par-
titioning served as a reference colouring where each such subtree was mapped to a colour and
all taxa (leaves) in a subtree had the same colour. For a colour c, the c-subtree is defined as the
minimal connected graph containing all c-coloured nodes. Given a coloured tree (i.e. with some of
the nodes coloured), such a colouring is said to be convex on that tree, if for every two colours c
and c′, the c- and c′-coloured subtrees are disjoint [22,21]. It is clear that the NCBI tree is convex,
since the colouring is defined by this tree, i.e. for disjoint subtrees. Nevertheless, we aimed to test
how far from convexity the NCBI colouring on the other trees is. There are rigorous definitions

1 This was done by removing the leaves that were not in the selection, and the paths leading solely to them.
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for the latter (the recoloring distance [22]); however, we used this approach to provide an intuitive
and visual measure of compatibility, as demonstrated in Fig. 5.

As can be seen from the figure, all three trees maintained decent convexity under the NCBI
colouring; however, it seems the exact tree has fewer violations than the heuristic and the 1− SI
trees. Fig. 5 also reveals major flaws in the heuristic and the 1−SI approaches that are corrected
by the exact approach. The 1−SI approach takes crude values as the distances. These values are
excessively concentrated around a tiny value of 0.02, causing severely distorted branch lengths,
resulting in an artificially ultrametric tree with extremely short internal branches (third row in
Fig. 5), which may disappear under bootstrapping, yielding a poorly resolved tree. Alternatively,
the heuristic approach of [32], apart from achieving an outstandingly high RF distance, produces
few exceptionally long branches non-proportional to the rest of the branches (left tree in the
fourth row in Fig. 5). To conclude this part, our real-data experiments showed that the theoretical
conversion achieves its goal by producing a realistic distance, thereby correcting the severe flaws
caused by the two other approaches.

tree Crude number common % false %false
Robinson-Foulds of edges edges positive negative

NCBI Taxonomy 0 5516 4396 4358 1261

Heuristic 5516 0 8884 8884 4443 94 98 92

1− SI 4396 8884 0 2840 4443 654 85 48

Exact 4358 8884 2840 0 4443 673 85 47
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Fig. 4. Left: Robinson–Foulds distances. Right: SI values.
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Fig. 5. Coloured Trees: Left: rectangular shape; right: polar shape. From the top: (1) The NCBI Taxonomy, (2)
The exact SI tree, (3) the 1− SI tree, (4) the heuristic exp. decay tree (the polar shape on right has log distances
to accommodate the extremely long branches).
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5 Conclusions

In this paper, we explored the consequences of modeling genome organisation as a continuous-
time Markov process. Although the initial modelling was suggested recently, fundamental problems
were left open, making it impossible to formally answer basic questions such as the time since
divergence on a tree or the additivity of the synteny index as a phylogenetic marker. Here, we
have significantly advanced this front by applying advanced mathematical tools from analysis
and algebra to arrive at a rational function describing the transition probabilities, and the use of
spectral theory and orthogonal polynomials, to prove the measure’s consistency.

In the experimental realm, we presented accurate results for the new analytic expressions even
in real-life genome sizes and event rates. For the real data analysis, we built an ordered database
of orthologous groups across 4445 prokaryotes, to which we applied our measure. To the best of
our knowledge, there is no such database of this size in terms of orthologous groups or the number
of taxa. Such a database could have multiple uses, apart from phylogenetics.

Applying our new measure to this database produced a tree that was in high accordance with
the NCBI taxonomy for these organisms. Importantly, the new measure reconstructed realistic
distances, as opposed to the previous measures, even the heuristic measure that was developed
based on simulations. Reconstructing accurate distances has prime importance for establishing
the jump model as an underlying model of genome dynamics.
We expect that both the rigour developed here for the modelling and the data resources will be
instrumental in further analyses of other genome architectures such as operon and pseudogene
formation.
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