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! We study the random loss of phylogenetic diversity due to extinction at the present.
! We provide exact formulae for this loss under a range of extinction and speciation models.
! We obtain exact convergence results as the number of taxa or the depth of the tree grows.
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a b s t r a c t

For many species, the current high rates of extinction are likely to result in a significant loss of
biodiversity. The evolutionary heritage of biodiversity is frequently quantified by a measure called
phylogenetic diversity (PD). We predict the loss of PD under a wide class of phylogenetic tree models,
where speciation rates and extinction rates may be time-dependent, and assuming independent random
species extinctions at the present. We study the loss of PD when K contemporary species are selected
uniformly at random from the N extant species as the surviving species, while the remaining N"K
become extinct (N and K being random variables). We consider two models of species sampling, the
so-called field of bullets model, where each species independently survives the extinction event at the
present with probability p, and a model for which the number of surviving species is fixed.

We provide explicit formulae for the expected remaining PD in both models, conditional on N¼n,
conditional on K¼k, or conditional on both events. When N¼n is fixed, we show the convergence to an
explicit deterministic limit of the ratio of new to initial PD, as n-1, both under the field of bullets
model, and when K¼kn is fixed and depends on n in such a way that kn/n converges to p. We also prove
the convergence of this ratio as T-1 in the supercritical, time-homogeneous case, where N
simultaneously goes to 1, thereby strengthening previous results of Mooers et al. (2012).

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Phylogenetic diversity

A typical question arising in biodiversity conservation is the
following:

If a random 10% of species from some clade were to disappear
in the next 100 years due to current high rates of extinction,
how much evolutionary heritage would be lost?

The answer depends on many factors, the first of which is how
one measures evolutionary heritage. Here, we adopt phylogenetic
diversity (PD) for this purpose – it assigns to any (surviving) subset
of species the sum of the branch lengths of the evolutionary tree
that span those species and the root of the tree (Faith, 1992). Thus,
one can consider the ratio of the PD after a rapid mass extinction
event (the ‘surviving PD’ score) to the initial PD score as a measure
of the relative PD loss.

A second important factor in answering this question is the
interplay of the tree shape and the process of extinction at the tips.
For example, the extinction of a species at the end of a long pendant
edge of the tree will lead to greater PD loss than the extinction of a
species on a short pendant edge. However, this is just a part of the
story, as interaction effects also occur – for instance, the extinction of
two closely related species on short pendant edges that form a cherry
in the tree at the end of a very long interior edge will lead to far more
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PD loss than the extinction of two species with short to moderate
pendant edge lengths that do not form a cherry.

This interplay of tree shape and possible species extinction
scenarios will vary from data-set to data-set, and will generally
depend on a large number of parameters (related to the tree, its
branch lengths, the extinction risks of different species and how
they are correlated), some of which are often not known with any
precision.

In this paper, we establish general results and properties
concerning relative PD loss, by showing how it can be estimated
by closed-form formulae based on stochastic diversification mod-
els that describe how phylogenetic trees arise under speciation
and extinction models (Aldous and Popovic, 2005; Aldous et al.,
2011; Morlon et al., 2010; Purvis et al., 2000; Rabosky and Lovette,
2008), together with a simple ‘field of bullets’ model of random,
instantaneous extinctions at the present. Thus, our approach is in a
similar spirit to Nee and May (1997) and the more recent paper by
Mooers et al. (2012), but our results generalize and strengthen
these earlier results in some important ways:

! Most of our results allow the speciation rate b(t) for a lineage to
depend on time t, and the extinction rate dðt; xÞ for a lineage to
depend on time t and/or on a non-heritable trait x (i.e. a
discrete or continuous trait changing in the same way in all
species, for example the age of the species); this generalizes the
classical (constant rate) birth–death model where bðtÞ ¼ b and
dðt; xÞ ¼ d for constants b; dZ0, thereby allowing a greater
biological realism.

! Rather than studying the limiting ratio of expected surviving PD
to expected initial PD (as in Mooers et al., 2012), we analyze the
actual ratio of new to initial PD and establish its convergence to
explicitly computable functions under each of two limiting
processes (increasing number of species and increasing time).
This provides for statements with a greater statistical precision.

! We also present explicit exact formulae for the expected
surviving PD (and the expected loss of PD), given a fixed initial
number of species and the depth of the tree under sudden
random mass extinctions at the present. We also provide a
formula for when we explicitly condition on the number of
species that survive this sudden extinction event.

Before proceeding to describe our results, we summarize some
standard terms in probability theory that will be used throughout
this paper.

1.2. Terminology from probability theory

Recall first that a Bernoulli random variable has just two
outcomes (0,1), with 1 referred to as a ‘success’. Given a sequence

of independent and identically distributed (i.i.d.) Bernoulli random
variables X1;X2;…, where Xi has success probability p, the random
variable J that specifies the first value jZ1 for which Xj¼1 is a
(shifted) geometric random variable with success probability p; its
distribution is easily seen to be PðJ ¼ jÞ ¼ ð1"pÞj"1p, for j¼ 1;2;….
For example, the number of rolls of a fair die until the number 4
first appears is a geometric random variable with success prob-
ability p¼1/6.

A sequence of random variables Xn converges in probability to
some constant value c if the probability that Xn differs from c by
every given positive value ϵ tends to zero as n-1. For example
the proportion of tosses of a fair coin that result in a head
converges in probability to c¼1/2 (by the weak law of large
numbers, or by the central limit theorem). A stronger notion is
to say that Xn converges almost surely to some constant c, which
means that any realization (e.g. numerical simulation) of the
sequence ðXnÞ converges to c with probability 1. This actually
holds also for the coin-tossing example (by the strong law of large
numbers). Almost sure convergence implies convergence in prob-
ability but the converse need not hold.

1.3. Summary of results

We use a ‘coalescent point process’ characterization of the
reconstructed tree (described below) in which the total number of
extant leaves N at a given time T has a geometric distribution (with
a parameter denoted a¼aT) and we study the loss of phylogenetic
diversity when contemporary species are randomly removed from
the standing species set. For any time-calibrated phylogeny, the
phylogenetic diversity (PD) is the total sum of branch lengths, also
called the total length of the tree. We consider two models of
random species removal.

The first model, called the ‘field of bullets’ (Raup, 1992; Nee and
May, 1997; Purvis et al., 2000), makes the assumption that every
contemporary species (i.e. every tip of the phylogeny) is indepen-
dently removed with probability 1"p, where p will be called the
sampling probability. We will denote by K the total number of
sampled and so retained species, by SN(p) the remaining PD after
the passage of the field of bullets, and by Kn and Sn(p), respectively,
the same quantities when conditioning the initial number N of
species (i.e. before sampling) to equal n.

The second model consists in fixing the number of sampled
species, to k say, and to sample these k species uniformly at
random, provided that NZk. We will denote by SN;k the remaining
PD after sampling these k species (and removing all others);
similarly, Sn;k denotes the same quantity when conditioning on
the initial number of species to equal n.

Fig. 1 provides an overview of the three steps in the processes
we consider: (a) the phylogenetic tree generated by a speciation

Fig. 1. (a) An evolutionary tree as it arises under a continuous model of speciation and extinction, observed at the present time T. (b) The reconstructed tree obtained by
deleting lineages that do not survive to the present. The leaves are now subject to a further extinction event at the present (e.g. under a ‘field of bullets’ model). The tree
connecting the surviving leaves (indicated by þ in (b)) is shown in (c).

A. Lambert, M. Steel / Journal of Theoretical Biology 337 (2013) 111–124112



and extinction model; (b) the reconstructed tree; and (c) the tree
that connects leaves that survive mass extinction (e.g. a field of
bullets model or sampling k species from n).

We will also use the notation Sn ¼ Sn;n ¼ Snð1Þ for the initial PD
of the tree (i.e. before removing species at the present, and
conditional on N¼n).

Notice that, conditional on Kn ¼ k under the field of bullets
model, Sn(p) does not depend on p and is equal to Sn;k. Conversely,
Sn(p) can be seen as a mixture over k of the random values Sn;k,
where the mixing distribution is the binomial distribution with
parameters n and p.

In this paper, we characterize the distribution of the quantities
SN(p), Sn(p), SN;k and Sn;k, and we provide explicit formulae for their
expectations. In Theorem 4.1, we prove that, for an explicitly
computable function πT ðpÞ of the diversification process:

lim
n-1

SnðpÞ
Sn

¼ πT ðpÞ and lim
n-1

Sn;kn
Sn

¼ πT ðpÞ;

where the first convergence holds almost surely and the second
one holds in probability (with kn=n-p). Notice that the expecta-
tions of these ratios, as well as the ratios of the expectations
EðSnðpÞÞ=EðSnÞ and EðSn;kn Þ=EðSnÞ, also converge to πT ðpÞ. Table 1
provides a summary of the notation introduced so far.

In Theorem 4.2, in the case of time-homogeneous supercritical
branching processes (where NT-1 as T-1 conditional on
survival), we write ST(p) instead of SN(p) and we prove the
convergence of ST ðpÞ=ST to a deterministic limit denoted π1ðpÞ,
as time T-1. That is, we show that

lim
T-1

ST ðpÞ
ST

¼ π1ðpÞ;

where this convergence holds in probability, and ST ¼ ST ð1Þ.
Moreover, we have the convergence of πT ðpÞ to π1ðpÞ as T-þ1

for any time-homogeneous supercritical branching processes.
In the case of birth–death processes with a constant speciation

rate b, a constant extinction rate d and diversification rate r¼ b"d,
we show in Corollary 4.3 that

π1ðpÞ ¼

dp
bp"r

lnðbp=rÞ
lnðb=rÞ

if b4rabp;

"
p lnðpÞ
1"p

if b¼ r4bp;

"
1"p
lnðpÞ

if b4r¼ bp:

8
>>>>>>>><

>>>>>>>>:

The convergence of the ratio of expectations EðST ðpÞÞ=EðST Þ to
π1ðpÞ in the case of birth–death trees was first displayed in
Mooers et al. (2012) (equation (7) of that paper).

Before stating these convergence results, we provide exact
expressions for the expected surviving PD, EðSnðpÞÞ, when con-
ditioning on the number n of initial species and the depth of
the tree, n being fixed and finite. From this, one can immediately
derive exact expressions for the expected loss of PD, which is
EðSn"SnðpÞÞ, as well as for the ratio of expected new-to-initial PD
(i.e. EðSnðpÞÞ=EðSnÞ). Moreover, if we further condition on the number
k of surviving species (after the passage of the field of bullets), one
can also provide exact expressions for these quantities.

We stress that our results hold for any macroevolutionary
model of diversification with no diversity-dependence, (possibly)
time-dependent speciation rate and (possibly) time-dependent
and/or trait-dependent extinction rate. These results are totally
explicit in the case when the rates are only time-dependent or
simply constant (by Eqs. (3), (8) and (9), below) and semi-explicit
in the case when the extinction rate can additionally be age-
dependent (by Eqs. (4) and (5), below). Compared to the limits
obtained for expected loss of PD in Mooers et al. (2012), the results
we obtain here are stronger, because (i) they apply to a wider class

of random trees, (ii) the expected loss of PD is given for a wider
spectrum of mass extinction models, and (iii) the convergences are
almost sure convergences of new-to-initial PD ratios instead of the
convergence of the ratio of their expectations.

1.4. Why assume a constant value of p across species?

In the field of bullets model, each leaf of the reconstructed tree
has the same survival probability p. However, often it is clear that
different species will have higher or lower extinction risks than
others, so it would seem that a more realistic extension of this model
would allow each leaf x of the reconstructed tree to have its own
survival probability p(x). This ‘generalized field of bullets’ model
(Faller et al., 2008) is relevant if we are given a phylogenetic tree and
some indication of species survival probabilities (estimated, for
example, from the International Union for Conservation of Nature
(IUCN) red list). However, when the trees are randomly generated, as
is the case in the birth–death models we consider here, the identity
of the species among the leaves is effectively randomized (i.e. each
permutation of leaf labels results in a tree having the same prob-
ability as the original) so the closest and biologically most realistic
analogue of a generalized field of bullets model in this setting would
be the following:

Each leaf in the reconstructed tree is independently assigned a
survival probability s that is drawn from a fixed probability
distribution D(s) on [0, 1].

This model is, in fact, stochastically equivalent to the simpler field
of bullets mode in which all species have survival probability p,
where p is the mean of the distribution D(s). This is due to the
observation that any sequence of independent Bernoulli random
variables in which the success probability s for each variable is
drawn independently from a common distribution has the same
joint probability distribution as a sequence of i.i.d. Bernoulli
variables with a success probability p equal to the mean of that
distribution. In summary, the generalized field of bullets is an
important extension on a given phylogenetic tree, if one has good
estimates of the extinction risk of particular species (e.g. from the
IUCN red list), but in the setting of this paper, it provides no
additional complication.

2. Diversification, coalescent point processes and phylogenetic
diversity

2.1. Modelling diversification

We model species diversification by a binary branching process,
where species are viewed as autonomous and independent particles
that speciate and become extinct at random times. We assume that
the diversification process starts with one species at time 0, that
species speciate during their lifetime at some rate b(t) that may
depend on absolute time t, and become extinct at some rate dðt; xÞ
that may depend both on absolute time t and on the age of the
species or any non-heritable trait x varying with the same probability
transitions for all species. When x is the age, the tree embedded in
continuous time thus generated is called a (time-inhomogeneous)
splitting tree (Geiger and Kersting, 1997; Lambert, 2010).

It has been known since Lambert (2010) and Lambert and
Stadler (2013), that, conditional on survival up until time T, for this
general class of diversification processes, the reconstructed tree
seen at T, i.e. the tree spanned by all species extant at time T is a
coalescent point process. This means that:

1. the number NT of species extant at time T is geometric with a
success probability of, say, aT;
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2. conditional on NT ¼ n, all node depths are i.i.d.;
3. the shape of the tree is uniform among (oriented) ranked tree

shapes.

We denote by AT (or simply A) a random variable having the
common distribution of these node depths. There is a random
variable H such that PðHZTÞ ¼ aT (sometimes simply denoted a)
and AT is distributed as H conditional on HrT . It will be
convenient to define the scale function W by

WðtÞ≔1=PðHZtÞ: ð1Þ

We will also write FT ðtÞ≔PðAT otÞ and FðtÞ ¼PðHotÞ, so that
W ¼ 1=ð1"FÞ and aT ¼PðHZTÞ ¼ 1"FðTÞ and

FT ðtÞ≔PðAT otÞ ¼PðHot HoTÞ ¼
FðtÞ
FðTÞ

:

!!!! ð2Þ

Note that the law of a coalescent point process is totally char-
acterized from the knowledge of the function W.

2.2. Links to macroevolutionary models of diversification

Here, we provide means of computing the function W char-
acterizing the reconstructed tree in terms of the parameters of the
underlying macroevolutionary model of diversification, i.e. the
speciation rate b(t) and the extinction rate dðt; xÞ of species
carrying trait value x at time t. The results stated here can be
found in Lambert and Stadler (2013). This subsection can be
skipped in a primary reading.

In the case when the diversification rates do not depend on a
trait (Markovian case), but may depend on time, W is explicit.
Setting rðtÞ≔bðtÞ"dðtÞ, we have the following expression:

WðtÞ ¼ 1þ
Z t

0
bðT"sÞe

R T

T"s
rðuÞ du ds; tA ½0; T (: ð3Þ

In all other cases, there is generally no explicit expression for W.
However, if one knows the density at time s of the lifetime of a
species born at time t, say hðt; sÞ, then W is the unique solution to

W′ðtÞ ¼ bðT"tÞðWðtÞ"
Z t

0
WðsÞhðT"t; T"sÞ dsÞ; tA ½0; T (; ð4Þ

satisfying Wð0Þ ¼ 1. Furthermore, the density h can be computed
in many cases of biological interest. For example, if the trait is the
age, then

hðt; sÞ ¼ dðs; s"tÞe"
R s

t
dðu;u"tÞ du ð5Þ

In the time-homogeneous case, that is, when (a) the diversification
rates do not depend on time; (b) the initial value of the trait of a
new species (can be random but) does not depend on the
speciation time; (c) the probability transitions of the trait
dynamics do not depend on time either, then all species have
equally distributed lifetimes. The common density g of these
lifetimes satisfies hðt; sÞ ¼ gðs"tÞ, and so (4) becomes

W′ðtÞ ¼ bðWðtÞ"
Z t

0
WðsÞgðt"sÞ dsÞ; tZ0:

In this case, the function W does not depend on T and is the unique
non-negative solution to
Z 1

0
WðtÞe"xt dt ¼ ðx"bþb

Z 1

0
gðuÞe"xu duÞ"1; xZ0: ð6Þ

If in addition to time-homogeneity we assume that the trait is the
age, then by (5), we get the following expression for g:

gðaÞ ¼ dðaÞe"
R a

0
dðsÞ ds; aZ0: ð7Þ

The intersection between the Markovian case and the time-
homogeneous case is the linear birth–death process, with a
constant speciation rate b and a constant extinction rate d. Then
g is the exponential density with parameter d and it can easily be
verified that the common solution to (3) and (6) is given by

WðtÞ ¼ 1þbt; ð8Þ

in the critical case when b¼d, whereas when r≔b"da0,

WðtÞ ¼ 1þ
b
r
ðert"1Þ: ð9Þ

The density function fH(t) of H for a pure-birth and a critical
process is illustrated in Fig. 2.

In conclusion, everything that follows holds under a general
lineage-based branching model with speciation rate that possibly
depends on time and an extinction rate that is possibly dependent
on a non-heritable trait and time, starting with one single species
and conditioned to survive to time T. Practically speaking, the
expressions in (1) and (2) can be: (a) expressed explicitly in the
case when rates do not depend on a trait, thanks to Eq. (3);
(b) evaluated numerically when the extinction rate further
depends on age, thanks to Eqs. (4) and (5); evaluated numerically
when the extinction rate further depends on a non-heritable trait,
provided the probability density h of lifetimes is known (see
Lambert and Stadler, 2013, for additional formulae allowing the
treatment of this general case).

2.3. Coalescent point processes: formal definition

We now define precisely a coalescent point process and review
their main properties. We then explain how these processes can
model phylogenetic trees exactly under a wide range of diversifi-
cation models.

Fig. 2. The density function of fH(t) of H for a pure-birth (b¼ 0:1; d¼ 0, where
f HðtÞ ¼ 0:1expð"0:1tÞ) and a critical process (b¼ d¼ 0:1, where f H ðtÞ ¼ 0:1t=
ð1þ0:1tÞ2). The critical process gives a density with a faster decay initially, but has a
heavier tail than for the pure-birth model.

Table 1
A summary of the notation introduced so far.

N Total number of tips (geometric with parameter a )
K Number of sampled tips (binomial (N,p) conditional on N)
SN(p) PD after passage of the field of bullets with sampling

probability p
SN;k Same quantity conditional on K¼k
Kn, SnðpÞ; Sn;k Same quantities conditional on N¼n
Sn The PD prior to the field of bullets Snð1Þ
πT ðpÞ Limiting ratio of new-to-old PD SnðpÞ=Sn , as n-1

A. Lambert, M. Steel / Journal of Theoretical Biology 337 (2013) 111–124114



An oriented tree is a rooted, binary tree embedded in the plane
where time flows upwards and where mother and daughter are
distinguished by putting the daughter to the right of her mother.
An ultrametric tree is a rooted tree whose tip points are all at the
same graph distance to the root point.

A coalescent point process is a random, oriented, ultrametric
tree with edge lengths, where the tips are numbered 0, 1, 2, …
from left to right, starting with a single root point, and which
satisfies the independence property stated below.

We call T the stem age of this tree, that is, the common graph
distance of the tips to the root point. Note that thanks to the
orientation of the tree, if Ci;iþk denotes the time elapsed since the
lineages of tips i and iþk have diverged, then

Ci;iþk ¼maxfHiþ1;…;Hiþkg; ð10Þ

where Hi≔Ci"1;i. In particular, the genealogical structure is entirely
given by the knowledge of the sequence H1;H2;…, which we will
call either coalescence times or node depths (see Fig. 3)

Independence property: There is a random variable H (whose
probability distribution may depend on T) such that node depths
form a sequence of independent, identically distributed random
variables, all distributed as H which terminates at its first value
that is larger than T.

In other words, the number NT of tips (more simply denoted N)
in the coalescent point process follows the geometric distribution
with success probability aT≔PðHZTÞ, more simply denoted a, and,
conditional on N¼n, the node depths H1;…;Hn are independent
copies of H conditioned on HrT .

From now on, to simplify the notation, we will let AT, or simply
A, denote a random variable distributed as H conditioned on HrT .
Then A follows the common distribution of node depths of the
coalescent point process. We will always assume that A has a
density, which we will denote f. Recall that FT ðtÞ≔PðAotÞ and
FðtÞ≔PðHotÞ, so that a¼PðH4TÞ ¼ 1"FðTÞ and FT ðtÞ ¼ FðtÞ=FðTÞ.

From now on, we will assume that we are given a (recon-
structed) phylogenetic tree generated by a coalescent point pro-
cess, and we will study the change in PD (total length of the tree
spanned by the extant species) when k species are uniformly
sampled among the N extant species, in particular when this
number is random given by a binomial distribution with prob-
ability p (the field of bullets model).

It has been known since Lambert (2010) and Lambert and
Stadler (2013) that the reconstructed tree of a wide class of time-
continuous binary branching processes (not necessarily Marko-
vian) starting at 0 with one particle and conditioned to survive
until time T is a coalescent point process. This statement includes
branching processes where the birth rate is possibly time-
dependent and the death rate is possibly time-dependent and
trait-dependent (if the trait is non-heritable and varies with age
and absolute time in the same possibly stochastic manner for all

particles). In the (linear) birth–death process with a constant birth
rate b and a constant death rate d, this result had been previously
known since Aldous and Popovic (2005) in the critical case, and since
Gernhard (2008) and Rannala (1997) in non-critical cases. In these
cases, and in the case of time-dependent rates, recall that Eqs. (3),
(8) and (9) can be used to plug explicit expressions into the formulae
provided hereafter. In the case when the extinction rate additionally
depends on age, numerical evaluations can be achieved thanks to Eqs.
(4) and (5).

2.4. Phylogenetic diversity of coalescent point processes

Recall that the number N of tips in a coalescent point process is
a geometric random variable with success probability a:

PðN¼ nÞ ¼ ð1"aÞn"1a; nZ1:

In addition, the node depths A1;…;AN"1 of the tree are i.i.d.
random variable with common distribution function FT, indepen-
dent of N.

Recall that SN (respectively Sn) denotes the phylogenetic diversity
(PD) of the reconstructed tree (respectively of the reconstructed
tree conditional on N¼n), so that the phylogenetic diversity of a
coalescent point process is just

SN≔Tþ ∑
N"1

i ¼ 1
Ai:

It will often be more useful to add a mark ⋆ to denote the PD minus
the stem age, provided that the PD is not 0, so that here we have

S⋆N≔ ∑
N"1

i ¼ 1
Ai:

Then it is clear that

EðS⋆n Þ ¼ ðn"1ÞEðAÞ and EðS⋆NÞ ¼ EðN"1ÞEðAÞ; ð11Þ

so that, using

EðAÞ ¼
Z T

0
PðA4tÞ dt;

we obtain

EðS⋆n Þ ¼ ðn"1Þ
Z T

0
ð1"FT ðtÞÞ dt and EðS⋆NÞ ¼ a"1ð1"aÞ

Z T

0
ð1"FT ðtÞÞ dt:

ð12Þ

Recall that Sn ¼ TþS⋆n , so that limn-1n"1EðSnÞ ¼ EðAÞ. Actually,
thanks to the strong law of large numbers, we also have the almost
sure convergence of n"1Sn to EðAÞ.

Moreover, by the central limit theorem,
ffiffiffi
n

p
ðSn=n"EðAÞÞ andffiffiffi

n
p

ðS⋆n=n"EðAÞÞ both converge in distribution, as n-þ1, to a
centered Gaussian random variable with the same variance as A
(this result is developed further in Crawford and Suchard, 2012).

3. Loss of PD under the field of bullets model

3.1. Distribution of the surviving PD when N is random

Given a coalescent point process with N tips, we remove each
of its tips independently with the same probability 1"p (the field
of bullets model Nee and May, 1997; Purvis et al., 2000; Raup,
1992). We will say that the remaining tips are the ‘sampled’ tips.
The number of sampled tips is denoted by K, or by Kn when
conditioning on N¼n. We denote by SN(p) the PD of the tree
spanned by sampled tips, and we set S⋆NðpÞ≔SNðpÞ"T if Ka0
(0 otherwise).

Fig. 3. Illustration of a coalescent point process showing the node depths H1 ;…;H6

for each of the six consecutive pairs of tips. The node depth H7 is the first one which
is larger than T.
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From now on G will denote a geometric random variable with
success probability p, that is,

PðG¼ kÞ ¼ ð1"pÞk"1p; kZ1:

Let G′ denote the random variable equal to minðG;NÞ, where G
and N are assumed to be independent. Thus G′ has a geometric
distribution with success probability 1"ð1"pÞð1"aÞ. Let A″ be the
maximum of G′ independent copies of A, that is

A″≔ max
i ¼ 1;…;G′

Ai

where ðAiÞ are i.i.d. copies of A, independent of the geometric
random variable G′.

The next result expresses the expected values of SN;k and SN(p) in
terms of the expected value of A″, and provides explicit formulae for
these quantities. Its proof is provided in the Appendix.

Proposition 3.1.
EðS⋆N;kðpÞÞ ¼ ðk"1ÞEðA″Þ and EðS⋆NðpÞÞ ¼ EððK"1Þþ ÞEðA″Þ; ð13Þ

where xþ denotes the positive part of x. Moreover, the terms in (13)
are given as follows:

EððK"1Þþ Þ ¼
p2a"1ð1"aÞ

1"ð1"aÞð1"pÞ
; ð14Þ

and

EðA″Þ ¼
Z T

0

1"FT ðtÞ
1"ð1"aÞð1"pÞFT ðtÞ

dt: ð15Þ

Notice that Proposition 3.1 allows us to recover Eq. (12) when p¼1.
Note also that the first expectation in (13) is conditional on K¼k
but is not conditional on N. We will see later that conditioning on
N leads to different results with more complicated proofs.

Table 2 summarizes some of the additional notation introduced
in this section. Recall that since N is geometric, both the total
number of tips and the remaining number of tips after any
sampled tip are distributed according to N. This explains why a
CPP tree can be seen as the concatenation of i.i.d. bits, which are all
of size (¼number of tips) distributed as G′, and the number of
such bits depends on the probability that GZN (which is geo-
metric with this probability as parameter).

3.1.1. Expected remaining PD when N¼n
Here, we assume that N is fixed equal to n. We denote by Xj the

maximum of j independent copies of A. That is,

Xj≔ max
i ¼ 1;…;j

Ai;

where ðAiÞ are i.i.d. copies of A, so that we have

EðXjÞ ¼
Z T

0
ð1"FT ðtÞjÞ dt: ð16Þ

The proof of the following result is presented in the Appendix.

Proposition 3.2. Conditional on N¼n, we have

EðS⋆n ðpÞÞ ¼ p2 ∑
n

i ¼ 2
∑
i"1

j ¼ 1
ð1"pÞj"1EðXjÞ ¼ p2 ∑

n"1

j ¼ 1
ðn"jÞð1"pÞj"1EðXjÞ;

where EðXjÞ is given by (16), and so EðS⋆n ðpÞÞ can also be expressed as

EðS⋆n ðpÞÞ ¼
p2

1"p

Z T

0
dtðhnð1"pÞ"hnðð1"pÞFT ðtÞÞÞ; ð17Þ

where

hnðxÞ≔
xnþ1"nx2þðn"1Þx

ð1"xÞ2
; xa1:

Note that, by using Eq. (17), one can easily recover the identity
∑nZ1að1"aÞn"1EðS⋆n ðpÞÞ ¼ EðS⋆NðpÞÞ, where EðS⋆NðpÞÞ is given by (13).

Now let Y be the random variable defined by

Y≔ max
i ¼ 1;…;G

Ai;

where ðAiÞ represents independent copies of A, independent of the
geometric random variable G with success probability p, that is,

PðYotÞ ¼ ∑
jZ1

pð1"pÞj"1PðXjotÞ ¼ ∑
jZ1

pð1"pÞj"1FT ðtÞj

¼
pFT ðtÞ

1"ð1"pÞFT ðtÞ
: ð18Þ

Also note that Y has the same law as A″ when G′ is replaced by G,
so Eq. (18) also stems from Eq. (43) (in the Appendix), when taking
a value of a equal to 0, and the following one also stems from
Eq. (15) by taking a¼0:

EðYÞ ¼
Z T

0
PðY4tÞ dt ¼

Z T

0

1"FT ðtÞ
1"ð1"pÞFT ðtÞ

dt: ð19Þ

The proof of the following result is provided in the Appendix.

Corollary 3.3. We have

lim
n-1

1
n
EðSnðpÞÞ ¼ p2 ∑

1

j ¼ 1
ð1"pÞj"1EðXjÞ ¼ pEðYÞ:

Taking p¼1, we recover the convergence of n"1EðSnÞ to EðAÞ.

3.1.2. Sampling k species out of n
In addition to assuming that N is fixed equal to n, we now

assume that the number K of sampled species also is fixed to k, and
that these k species are chosen uniformly at random. If the k
sampled species are labelled 1;…; k from left to right, and if we
denote by Ci the coalescence time between sampled species i and
sampled species iþ1, for i¼ 1;…; k"1, then it is obvious that
S⋆n;k ¼∑k"1

i ¼ 1Ci. The next statement yields more information on
these new coalescence times. It states that the coalescence times
C1;…;Ck all have the same distribution (moreover, although they
are not independent, they are stochastically ‘exchangeable’, as is
described further in the Appendix, where the proof of Proposition
3.4 is presented).

Table 2
A summary of some additional notation.

H Random branch length
A Random branch length of the CPP with depth T (distributed as H

conditional on HoT)
N Total number of tips (geometric with parameter a¼ PðH4TÞ)
G Number of lineages between two sampled tips in an infinite tree (geometric

with parameter p)
G′ Number of lineages between two sampled tips in a finite tree ¼minðG;NÞ

(geometric with parameter 1"ð1"pÞð1"aÞ)
A′ Contribution to PD of the initial tree (before sampling) between two

sampled tips ¼∑G′
i ¼ 1Ai

A″ Contribution to PD of the new tree (after sampling) between two sampled
tips ¼maxG′i ¼ 1Ai

Y Same as A″ in an infinite tree (replacing G′ with G)
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Proposition 3.4. Each coalescence time Ci has the same distribution,
given by

PðC1otÞ ¼ k
ðn"kÞ!
n!

∑
n"kþ1

j ¼ 1

ðn"jÞ!
ðn"j"kþ1Þ!

FT ðtÞj

¼ kFT ðtÞð1"FT ðtÞÞ"k
Z 1

FT ðtÞ
yn"kðy"FT ðtÞÞk"1 dy:

This result allows us to compute the expected value of S⋆n;k as
follows. Recall that Xj denotes the maximum of j independent
copies of A. Then the following statement is an immediate
consequence of the last proposition.

Proposition 3.5. Conditional on N¼n and K¼k, we have

EðS⋆n;kÞ ¼ kðk"1Þ
ðn"kÞ!
n!

∑
n"kþ1

j ¼ 1

ðn"jÞ!
ðn"j"kþ1Þ!

EðXjÞ;

where EðXjÞ is given by (16).

There is a satisfying connection between this result and the
previous section. Namely, if we compute the expected value of
EðS⋆n;K Þ (with respect to K following a binomial distribution) then
this expected value is ∑n

k ¼ 1ðn!=k!ðn"kÞ!Þpkð1"pÞn"kEðS⋆n;kÞ; it is
easily verified that this equals EðS⋆n ðpÞÞ, as given in Proposition 3.2.

3.2. Application to predicting biodiversity loss

Using the results we have derived so far we can provide exact
expressions for the expected values of Sn(p) (the expected surviv-
ing PD) as well as Snð1Þ"SnðpÞ (the expected loss of PD) in terms of
(i) the number n of initial species, (ii) the depth T of the tree, and
(iii) the distribution function FT for A. To see this, first observe that,
by definition:

EðSnðpÞÞ ¼ EðS⋆n ðpÞÞþTPðSnðpÞa0Þ ¼ EðS⋆n ðpÞÞþTð1"ð1"pÞnÞ: ð20Þ

Thus, we have

EðSnð1Þ"SnðpÞÞ ¼ EðS⋆n ð1ÞÞ"EðS⋆n ðpÞÞþTð1"pÞn

and the first two terms on the right-hand side are given by Proposition
3.2. Similarly, the ratio of expected surviving PD to expected initial PD
can be written as ðEðS⋆n ð1ÞÞþTÞ=ðEðS⋆n ðpÞÞþTð1"ð1"pÞnÞ and so can
also be explicitly determined.

Similar comments apply for Section 3.1.1 if we condition on the
number k of species that survive the field of bullets extinction
event, since if k40, we have Sn"Sn;k ¼ S⋆n"S⋆n;k.

4. Convergence of the ratio of surviving PD to initial PD

4.1. Convergence as n-1

For our first result in this section, we allow the full generality of
diversification processes (with rates bðtÞ; dðt; xÞ) that allow a
coalescent point process to model the reconstructed tree, as
described at the start of Section 2.

Recall the random variable Y defined by Y ¼maxi ¼ 1;…;GAi,
where ðAiÞ represents independent copies of A, independent of
the geometric random variable G with success probability p. Also
recall from the beginning of the previous section that n"1Sn
converges almost surely to EðAÞ and recall from Corollary 3.3 that
n"1EðSnÞ and n"1EðSnðpÞÞ converge to EðAÞ and pEðYÞ, respectively.
The proof of the following result is provided in the Appendix.

Theorem 4.1. The following convergence holds almost surely:

lim
n-1

n"1SnðpÞ ¼ pEðYÞ;

so that

πT ðpÞ ¼
pEðYÞ
EðAÞ

¼
p
R T
0

1"FT ðtÞ
1"ð1"pÞFT ðtÞ

dt
R T
0 ð1"FT ðtÞÞ dt

ð21Þ

is not only the limit of EðSnðpÞÞ=EðSnð1ÞÞ but also the almost sure limit
of SnðpÞ=Snð1Þ.
For any deterministic sequence ðknÞ such that kn=n-p as n-1,

the following convergence holds in probability:

lim
n-1

n"1Sn;kn ¼ pEðYÞ;

and πT ðpÞ is both the limit of EðSn;kn Þ=EðSn;nÞ and the limit in
probability of Sn;kn=Sn;n.

We point out that EðYÞ has been computed earlier in the text, in
Eq. (19):

EðYÞ ¼
Z T

0

1"FT ðtÞ
1"ð1"pÞFT ðtÞ

dt:

For the constant-rate birth–death process, in the critical case
where the birth and death rates are equal (b¼d), one can derive an
explicit expression for the limiting ratio πT ðpÞ (which SnðpÞ=Snð1Þ
converges almost surely to), since Eqs. (2) and (8) give FT ðtÞ ¼
tð1þbTÞ=Tð1þbtÞ, from which the following can be derived:

πT ðpÞ ¼
pRðxðpÞÞ
Rðxð1ÞÞ

; ð22Þ

where RðxÞ ¼ ðð1þxÞlnð1þxÞ"xÞ=x2 and xðpÞ ¼"1þpð1þbTÞ. Note
that xðpÞ4"1 for all p40 and that R(x) is decreases monotonically
with xAð"1; þ1Þ from Rð"1Þ ¼ 1 to an asymptotic value of 0 as
x-þ1. In the limit as bT-0þ , the exact expression for this
curve is given by

πT ðpÞ ¼ 2pðp lnðpÞþ1"pÞ=ð1"pÞ2: ð23Þ

We will graph this function (and those for other values of bT) later
in this paper.

4.2. Convergence as T-1

Here, we assume that the diversification process is time-
homogeneous. Recall that in this case, we denote by g the
probability density of species lifetimes, given in particular by (7)
in the case when the extinction rate depends on species age. Then
the mean number of species begot per mother species is

m≔b
Z 1

0
xgðxÞ dx:

We further assume that m41, so the diversification process is
supercritical, in the sense that (the survival probability is not zero
and that) conditional on the survival event, the number of species
increases on average exponentially with time. This is the case for
birth–death processes as soon as r¼ b"d40. Here, we want to get
asymptotic results for the ratio of surviving PD to initial PD as T
becomes large.

Let Z be defined as

Z≔ max
i ¼ 1;…;G

Hi;

where (Hi) represents independent copies of H, independent of the
geometric random variable G with success probability p. The proof
of the following theorem is presented in the Appendix.
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Theorem 4.2. Conditional on NT 40, we have

lim
T-þ1

ST ðpÞ
ST ð1Þ

¼ lim
T-þ1

EðST ðpÞÞ
EðST ð1ÞÞ

¼ π1ðpÞ;

where the first convergence holds in probability and

π1ðpÞ ¼
pEðZÞ
EðHÞ

¼
p
R1
0

1"FðtÞ
1"ð1"pÞFðtÞ

dt
R1
0 ð1"FðtÞÞ dt

: ð24Þ

It is fairly elementary to show in general that

EðHÞ ¼
Z 1

0

dt
WðtÞ

and EðZÞ ¼
Z 1

0

dt
1"pþpWðtÞ

;

where WðtÞ ¼ 1=PðH4tÞ (cf. Eq. (1)). As mentioned previously,
there is an even stronger result that the trees obtained from
coalescent point processes after Bernoulli sampling with prob-
ability p are coalescent point processes with an inverse tail
distribution 1"pþpW (see Lambert and Stadler, 2013). Recalling
that F is the distribution function of H, i.e. 1"F ¼ 1=W , we get

EðHÞ ¼
Z 1

0
ð1"FðtÞÞ dt and EðZÞ ¼

Z 1

0

1"FðtÞ
1"ð1"pÞFðtÞ

dt:

Now let us do the calculations in the case of birth–death
processes. First, it can be verified that

EðHÞ ¼
Z 1

0

dt

1þ
b
r
ðert"1Þ

¼
1
d
ln

b
r

# $
;

which simply equals b"1 in the Yule case when d¼0 (since then
H is exponentially distributed with parameter b). Second,
1"pþpWðtÞ ¼ 1þðbp=rÞðert"1Þ, so we get the same expression as
for W after replacing b with bp but keeping r unchanged. As a
result,

EðZÞ ¼
1

bp"r
ln

bp
r

# $
;

which simply equals r"1 when p¼r/b. This can be recorded in the
following corollary.

Corollary 4.3. In the case of birth–death processes with speciation
rate b, extinction rate d, and diversification rate r¼ b"d40,

π1ðpÞ ¼

dp
bp"r

lnðbp=rÞ
lnðb=rÞ

if b4rabp;

"
p lnðpÞ
1"p

if b¼ r4bp;

"
1"p
lnðpÞ

if b4r¼ bp:

8
>>>>>>>><

>>>>>>>>:

4.3. Additional remarks

! Proportion of the PD in the original tree or in another tree?
We have established the convergence of the random ratios
SnðpÞ=Snð1Þ and ST ðpÞ=ST ð1Þ to the constants πT ðpÞ and π1ðpÞ,
respectively. Actually, we do not directly prove the convergence of
these quantities considered as the ratios of new-to-old PD of the
same original (random) tree. Strictly speaking, we prove that each
PD (new vs old) separately converges after normalization by the
same quantity. For example, we prove the convergences of SnðpÞ=n
and of Snð1Þ=n. Because these two convergences are actually laws
of large numbers, both limits are deterministic, and the conver-
gence in probability of each normalized PD (SnðpÞ=n and Snð1Þ=n)
implies the convergence in probability of their ratio to the ratio of
their limits. And since each PD is normalized by the same quantity,
the ratio of normalized PDs is also the ratio of the new-to-old PD of

the same (random) tree. The study of fluctuations around the
limiting value (see next point) is more problematic, because we use
the central limit theorem and have to deal with covariances
between new and old PD.

! Distribution of ST ðpÞ=ST ð1Þ about its limiting value.
Although Theorem 4.1 ensures the almost sure convergence of
SnðpÞ=Snð1Þ to its limit, for applications it is useful to also have
on hand the distribution of SnðpÞ=Snð1Þ about its limit, for finite
values of n. It can be shown (see Appendix, Section A.7) that
this distribution is asymptotically normally distributed with a
standard deviation that can be explicitly computed, and which
decays towards zero at the rate 1=

ffiffiffi
n

p
. More specifically, let G be

a geometric random variable with success probability p, let ðAiÞ
be independent copies of the typical node depth A and set

Y≔ max
i ¼ 1;…;G

Ai and Y′≔ ∑
G

i ¼ 1
Ai;

where both definitions use the same G and the same ðAiÞ.
In particular, YrY ′. Then

lim
n-1

ffiffiffi
n

p SnðpÞ
Snð1Þ

"πT ðpÞ
# $

¼ p"1=2V ;

where V is a centered, Gaussian random variable with variance
s2 equal to

s2 ¼
EðYÞ
EðY ′Þ

# $2

Var
Y

EðYÞ
"

Y ′
EðY′Þ

# $

¼
EðYÞ
EðY ′Þ

# $2 EðY2Þ
E Yð Þ2

þ
EðY ′2Þ
E Y′ð Þ2

"2
EðYY ′Þ

EðYÞEðY′Þ

 !

: ð25Þ

This gives us a quantification of the error made by approximat-
ing the ratio of new-to-old PD by the asymptotic ratio πT .
Roughly speaking, this error is of the order s=

ffiffiffiffiffiffi
pn

p
. Moreover, s

can be explicitly computed (see in particular Lemma A.1 in the
Appendix).

5. Properties of the phylogenetic diversity ratios ðπðpÞÞ

In the previous section, we have been able to provide a closed-
form formula for the limiting proportion of PD that would remain
after mass extinction events at the present for trees generated
under the wide class of models described by Lambert (2010) and
Lambert and Stadler (2013). Here, ‘limiting’ refers to the case when
the number of species n becomes large for a fixed value of T, or
when T becomes large for a supercritical process conditioned on
non-extinction. In both cases, when each species survives inde-
pendently with probability p, this limiting proportion can be
expressed under the general form

πðpÞ ¼
p
R
I

1"GðtÞ
1"ð1"pÞGðtÞ

dt
R
Ið1"GðtÞÞ dt

; ð26Þ

where the notation (I, G and π) is as follows. In the first case,
where π ¼ πT , I denotes the interval [0, T] and G¼ FT , i.e.
GðtÞ ¼ FðtÞ=FðTÞ. In the second case, where π ¼ π1, I denotes the
interval ½0;1Þ and G¼F. We will now refer to πðpÞ as the
phylogenetic diversity ratio. In this section we describe some of
the properties of the mapping p↦πðpÞ.

Firstly, notice that from Eqs. (21) and (24), this mapping is fully
determined by just p and the distribution F associated with the
underlying coalescent point process for the model.

Secondly, it is clear that πð0Þ ¼ 0, πð1Þ ¼ 1; moreover, πðpÞZp
for all pA ½0;1( (this last fact can be shown directly from Eq. (26) or
from results that follow). Thus, the proportion of lost PD under
these models will always (in the limit) be less than the proportion
of present-day species that disappear.
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Furthermore, p↦πðpÞ is a strictly increasing function of p
(cf. Fig. 4). This last fact can be verified by various arguments,
including a direct appeal to Eqs. (21) and (24). Using the Leibniz
rule to differentiate (wrt p) inside the integral and re-arranging,
we obtain

d
dp
πðpÞ ¼

R
I

1"GðtÞ
1"ð1"pÞGðtÞ

% &2
dt

R
Ið1"GðtÞÞ dt

; pAð0;1Þ: ð27Þ

Notice that in the first case, when To1, as p-0þ , this last
equation gives

lim
p-0þ

d
dp
πT ðpÞ ¼

T
R T
0 ð1"GðtÞÞ dt

; ð28Þ

which is a sublinear function of T, and which tends to þ1
as T-1. In the second case, it is obvious that limp-0þ ðd=dpÞ
π1ðpÞ ¼ þ1.

The limiting value limp-1"ðd=dpÞπðpÞ is more interesting. For-
mally,

lim
p-1"

d
dp
πðpÞ ¼

R
Ið1"GðtÞÞ2 dtR
Ið1"GðtÞÞ dt

¼ 1"
R
IGðtÞð1"GðtÞÞ dtR

Ið1"GðtÞÞ dt
: ð29Þ

We can also provide an explicit interpretation of this value by
considering the field of bullets operating on any given binary tree
T with positive branch lengths, as we now explain. Let SðT ; pÞ
denote the PD remaining after the passing of the field-of-bullets
model (with leaf survival probability p) on this tree. As in Faller
et al. (2008), we can write

ET ðSðT ; pÞÞ ¼ SðT ;1Þ"∑
e
leð1"pÞnðeÞ;

where ET denotes expectation with respect to the passage of the
field of bullets model, conditional on the given tree T , the
summation is over all the edges of T , l(e) is the length of edge e
and n(e) is the number of leaves of T that are descendants of e. It
follows that

d
dp

ET ðSðT ; pÞÞ ¼∑
e
lðeÞnðeÞð1"pÞnðeÞ"1: ð30Þ

Now, we let E denote the law of T and we assume it is that of a
coalescent point process, conditioned or not upon its number of
tips. Letting S(p) denote the corresponding PD, an application of

the Dominated Convergence Theorem yields

d
dp

EðSðpÞÞ ¼
d
dp

EðET ðSðT ; pÞÞÞ ¼ E
d
dp

ET ðSðT ; pÞÞ
# $

:

Notice that as p-1" the right-hand side of (30) converges to
∑e:nðeÞ ¼ 1lðeÞ, which is the sum of the lengths of the pendant edges,
and so

lim
p-1"

d
dp

EðSðpÞÞ ¼ E ∑
e:nðeÞ ¼ 1

lðeÞ

 !

: ð31Þ

It can now be seen that limp-1"ðd=dpÞπðpÞ is the (limiting) ratio
of the expected PD that is spanned by the pendant branches,
divided by the expected total PD in the tree. For example, for the
constant-rate pure-birth model, the ratio of the expected sum of
the pendant branch lengths to the expected sum of the interior
(non-pendant) branch lengths converges to 1 as T-þ1 (Mooers
et al., 2012) and so limp-1"ðd=dpÞπ1ðpÞ ¼ 1

2.
Another generic property of the phylogenetic diversity ratio is

that it is strictly concave:

d2

dp2
πðpÞo0; pAð0;1Þ: ð32Þ

This is evident from the following identity, which is obtained by a
further differentiation (with respect to p) of Eq. (27):

d2

dp2
πðpÞ ¼ "2

R
I
ð1"GðtÞÞ2GðtÞ
ð1"ð1"pÞGðtÞÞ3

dt
R
Ið1"GðtÞÞ dt

ð33Þ

The concave relationship (Eq. (32)), illustrated in Fig. 4 for various
processes, is also a consequence of the concavity of expected
PD on a fixed binary tree T with positive branch lengths. More
precisely, by further differentiation (with respect to p) of Eq. (30),
we obtain

d2

dp2
ET ðSðT ; pÞÞ ¼" ∑

e:nðeÞ41
lðeÞnðeÞðnðeÞ"1Þð1"pÞnðeÞ"2r0: ð34Þ

Notice that the inequality in Eq. (34) is strict unless all of the
interior edges of T have zero length. Consequently, taking expec-
tation with respect to the tree T and its branch lengths, one could
also recover Eq. (32) from Eq. (34).

Fig. 4. Left: The slow progression of the curve p↦π1ðpÞ towards the unit step function U for a constant-rate birth–death process for d/b¼0 (the lowest curve) and d/b¼0.5,
0.9, 0.99, 0.999. Right: For a critical constant-rate birth–death process, the graph of p↦πT ðpÞ also shows a slow progression towards U as bT-1. Here, bT-0þ is the lowest
curve, with bT¼10, 100, 1000 for the curves of increasing height.
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5.1. Extreme cases

Although the curve p↦πT ðpÞ lies above the straight line p↦p,
there are birth–death processes for which the PD ratio curve
comes arbitrarily close to this straight line. Consider first the
constant-rate pure-birth model ðbðtÞ ¼ b; d¼ 0Þ for which we have

πT ðpÞ ¼ p
Z T

0

e"bt"e"bT

ð1"pÞe"bt"e"bT þp
dt:

This function converges to "p lnðpÞ=ð1"pÞ as T tends to infinity,
shown as the lowest curve on the left-hand graph of Fig. 4 (and in
agreement with Corollary 4.3). Now compare this with a pure-
birth model where the speciation rate is (exponentially) higher in
early times; in this case we obtain a curve that can be made as
close to the line p↦p as we wish. More precisely, if we set

bðtÞ ¼ γe"γt and d¼ 0;

then Eq. (3) shows that in the limit as γ-1 we have

πT ðpÞ ¼ p: ð35Þ

That is, the phylogenetic diversity ratio is (asymptotically) propor-
tional to the expected proportion of surviving species. This makes
perfect sense, since as γ becomes large, all speciation events occur
right at the start of the tree, thereby generating a star-like phylogeny.

A further limiting result concerns the behavior of πðpÞ as we
approach a critical process where the extinction rate equals the
speciation rate. Corollary 4.3 implies that for a supercritical
constant-rate birth–death process ðr40Þ, we have

lim
r-0þ

π1ðpÞ ¼ UðpÞ ð36Þ

where U is the step function defined by

UðpÞ ¼
0 for p¼ 0;
1 for 0opr1:

(

ð37Þ

The left-hand graph in Fig. 4 illustrates this rather slow
convergence towards U(p) as r decreases towards 0.

Also, by Eq. (22), when r¼0 (i.e. a critical constant-rate birth–
death process), we also have

lim
T-þ1

πT ðpÞ ¼UðpÞ: ð38Þ

Note that in both these two limits, the expected node depth H in
the coalescent point process is diverging to þ1 (as r-0 in (36)
and, by Eq. (8), as T-þ1 in Eq. (38)). Moreover, when r¼0, the
tree is guaranteed to become extinct as T-1; therefore, the limit
in Eq. (38), while formally correct, is not particularly meaningful as
it involves conditioning on an event that has a limiting probability
of zero. The graph of the curve p↦πT ðpÞ for this critical constant-
rate birth–death process is shown on the right-hand graph of Fig. 4
for bT-0þ (the lowest curve, described exactly by Eq. (23)), and
bT¼10, 100, 1000.

As a final remark, notice that ðd=dpÞπðpÞ is strictly greater
than 1 as p-0þ (by Eq. (28)) and is strictly less than 1 as
p-1" (by Eq. (29)), and so, since ðd=dpÞπðpÞ strictly decreases
between 0 and 1 (by the concavity relationship in Eq. (32)), there
is a unique value p¼ pn for which

d
dp
πðpnÞ ¼ 1: ð39Þ

Moreover, for all popn, πðpÞ has a superlinear dependence on p, while
for all p4pn, the dependence is sublinear. Solving Eq. (39) for pn

provides the precise transition point between these two regimes.
For example, for the constant-rate pure-birth model (the case where
b¼ r4bp in Corollary 4.3), we have π1ðpÞ ¼ "p lnðpÞ=ð1"pÞ; routine
calculus shows that pn is the solution to the equation "lnðpÞ ¼
ð2"pÞð1"pÞ for 0opo1, which gives us pn ) 0:316.

An interesting question is whether every supercritical birth–
death process, with a constant speciation rate and an extinction
rate that is dependent only on age, leads to a ratio π1ðpÞ that
always lies above the curve "p lnðpÞ=ð1"pÞ of a pure-birth process.

6. Concluding comments

Measuring biological diversity in terms of evolutionary heritage is a
type of ‘last hope’ one might seek to cling to in the face of the current
biodiversity crisis. In other words, despite many extinction events, we
might still keep most of the biodiversity, because the loss of a species
that is closely related to other species survive results in a relatively
small decline in phylogenetic diversity. Some minor mathematical
support for this view is provided by the inequality πðpÞZp (the loss of
relative PD under the field of bullets model is never more than the loss
of relative species numbers); however, we have also shown that for
certain (time-inhomogeneous) diversification models, the function
πðpÞ can be as close to p as we wish.

At the other extreme, we have seen that there are diversifica-
tion models for which π approaches the step function U (with
πðpÞ ¼ 1 for p40). In a well-cited paper, Nee and May (1997)
stated that “80% of the underlying tree of life can survive even
when approximately 95% of the species are lost.” However, their
analysis involved trees produced by Kingman's coalescent model
from population genetics, which results in tree shapes with
extremely short pendant edges and a few very long deep interior
edges, as noted by Mooers et al. (2012). By contrast, the shape of
most real evolutionary trees tend to be better described by models
that are closer to the shape of pure-birth trees than Kingman
coalescent trees (see e.g. Hey, 1992; McPeek, 2008; Morlon et al.,
2010). In other words the data tend to fit models where bod
better than b¼d. In this case, πðpÞ lies much closer to the curve
"p lnðpÞ=ð1"pÞ of a pure-birth process, for which the loss of 95% of
species would lead to the loss of more than 84% of the PD (Mooers
et al., 2012).

Given that extinction plays such a major role in evolution
(Erwin, 2008), it may seem surprising that reconstructed trees
tend to fit models with high values of b relative to d. However,
ascertainment bias may provide an explanation for this. For
example, as d gets close to b, we get a tree which is extremely
unlikely to have survived (and additionally has node depths with
infinite expectations), so this extreme world where π ¼ U is totally
unlikely. In the real world, phylogenetic trees are much more likely
to have a small d and a high b; just because they have survived, it
is more likely to get a π which is closer to the lower curve
"p lnðpÞ=ð1"pÞ. In other words, clades that had b) d would have
been much less likely to have left any surviving species today than
clades with bod.

The fact that π is always concave as a function of p (including if
we condition on the underlying tree) means that if the present
mass extinctions are more or less painless (slow and sublinear),
they will go faster than expected below pn when the dependence
becomes superlinear, as illustrated in Fig. 5. Moreover, the field of
bullets model represents a conservative estimate: in reality, the
extinction of a contemporary species will be likely to be correlated
with the extinction of closely related species (due to shared traits,
Faller and Steel, 2012, or niche proximity), which would yield an
even worse portrait than the one we depict.

Notice that we have two extinctions in our analysis – a rapid
(mass) extinction at the present (modelled by the field of bullets
model) and the extinctions that are part of the on-going and
slower rate diversification process that generates the phylogenetic
tree. There is a good reason to treat these two processes separately
– the extinctions at the present are considered to be over a
time-scale that is effectively instantaneous on an evolutionary
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time-scale (e.g. 100 years) and too short for new speciation events,
or for existing branch lengths to change significantly.

Notice also that ‘extinction’ need not necessarily refer to actual
species extinctions, but could simply mean the absence of avail-
able taxa in a larger phylogeny; in this way our results may also be
relevant to estimating the PD of a tree from a randomly sampled
subset of taxa.

Danish physicist Neils Bohr (1885–1962) is credited with
the quip “Prediction is very difficult, especially about the future.”
In the case of predicting potential biodiversity loss in the near
future, not only is a rapid extinction event likely to be a highly
random process, but the resulting loss of biodiversity depends also
on the properties of the underlying evolutionary tree, only some of
which are known with any precision. We have shown that under a
general class of diversification models and a simple model of mass
extinction, the proportion of lost PD can be estimated from two
simple quantities: the expected proportion of species that survive
(p) and the distribution of coalescence times (FT). The latter
function may be estimated from the shapes of reconstructed trees,
reflected in the way in which branch lengths are distributed. For
certain data-sets, early radiations followed by long periods of
stasis lead to quite different shaped trees from ones in which
recent speciation rates are higher (cf. Morlon et al., 2010; Rabosky
and Lovette, 2008). It would be of interest to estimate FT for a
variety of real data-sets, and to determine the impact of tree shape
on expected biodiversity loss, for various values of p.

One feature of our approach is that it allows for general
properties (and upper and lower bounds) of biodiversity loss to
be determined, as well as the estimation, for any particular model,
of how much diversity is likely to disappear as a function of p. In
that sense, the explicit expressions for πðpÞ may be viewed as
biodiversity analogues of some early formulae in population
genetics concerning allele frequencies.1 The stronger of our two
convergence results (Theorem 4.1) is the case where the time-
scale T is fixed and n grows. In this case, we require the least
restriction on the diversification process (the speciation rate can
depend on time, and the extinction rate can depend on both time

and lineage age), and in this case we have almost sure convergence
of the proportion of surviving PD to its expected value rather than
just convergence in probability. Our second convergence result
(Theorem 4.2) holds for supercritical processes with a constant
speciation rate (but an extinction rate that may depend on time
and lineage age) and holds in the limit as T becomes large.

Finally, we note that, despite Bohr's quip above, the almost sure
convergence of phylogenetic ratio to πT ðpÞ provides a considerable
bonus over merely computing expected values – it shows that PD
loss becomes more predictable than we might imagine, at least
under the models we have investigated here.
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Appendix A

A.1. Proof of Proposition 3.1

Recall that G′ is a geometric random variable distribution
defined as minðG;NÞ, where G and N are assumed independent,
that is

PðG′¼ nÞ ¼ ðð1"pÞð1"aÞÞn"1ð1"ð1"pÞð1"aÞÞ; nZ1

and denote by ðA′;A″Þ a pair of real random variables defined by

A′≔ ∑
G′

i ¼ 1
Ai and A″≔ max

i ¼ 1;…;G′
Ai; ð40Þ

where ðAiÞ are i.i.d. copies of A, independent of the geometric
random variable G′. In particular, A″rA′.

First, it is easy to see that

p0≔PðK ¼ 0Þ ¼ Eðð1"pÞNÞ ¼
að1"pÞ

1"ð1"aÞð1"pÞ
;

and that conditional on Ka0, K is geometric with success
probability c≔PðNrGÞ (where N and G are assumed indepen-
dent), that is

PðK ¼ kÞ ¼ ð1"p0Þcð1"cÞk"1; kZ1;

where

c¼PðNrGÞ ¼ ∑
nZ1

PðN¼ nÞð1"pÞn"1

¼ a ∑
nZ1

ð1"aÞn"1ð1"pÞn"1 ¼
a

1"ð1"aÞð1"pÞ
:

Second, observe that the tree obtained from the coalescent point
process after the passage of the field of bullets again satisfies (10),
and that the coalescence time between two consecutive sampled
tips is the maximum of the coalescence times of unsampled tips
separating them. In addition, the numbers of unsampled tips
between two consecutive sampled tips in the coalescent point
process are independent copies of G′, independent of K, so we get
the following joint equality in distribution:

S⋆N ¼ B1fKa0gþ ∑
K"1

i ¼ 1
A′
iþC and S⋆NðpÞ ¼ ∑

K"1

i ¼ 1
Ai″; ð41Þ

Fig. 5. The expected PD, shown here for a Yule pure-birth process, moves from
sublinear to superlinear decay as the extinction probability q¼ 1"p passes a critical
value qn ¼ 1"pn ) 0:684. The line shown has slope "1.

1 Curiously, the same function "p lnðpÞ=ð1"pÞ that appears in Corollary 3.3 also
plays a role in population genetics for the estimation of the mean time till the loss
of a deleterious allele where the initial proportion of the allele is p.
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where the pairs ðAi′;Ai″Þ represent independent copies of ðA′;A″Þ,
independent of K and of B and C which, respectively, denote the
contributions to the initial PD before the first sampled tip and after
the last one. Notice that when K¼0, C is the only nonzero term. To
be specific, B and C are independent, independent of K, both
distributed as ∑G′"1

i ¼ 1Ai. In particular, since EðA′Þ ¼ EðG′ÞEðAÞ, we get

EðS⋆NjK ¼ kÞ ¼ ½1fka0gðkEðG′Þ"1ÞþEðG′"1Þ(EðAÞ
¼ ½ðkþ1ÞEðG′Þ"1fka0g"1(EðAÞ

(note that the first term on the right-hand side of the first equality
is the contribution of the first two terms in (41)), so that, thanks to
EðKÞ ¼ pEðNÞ ¼ p=a and EðG′Þ ¼ ð1"ð1"pÞð1"aÞÞ"1, we recover

EðS⋆NÞ ¼ ½ðEðKÞþ1ÞEðG′Þ"PðKa0Þ"1(EðAÞ

¼
ðp=aÞþ1

1"ð1"pÞð1"aÞ
"

p
1"ð1"pÞð1"aÞ

"1
% &

EðAÞ

¼ a"1ð1"aÞEðAÞ;

which is not different from (12).
Similarly,

EðS⋆N;kðpÞÞ ¼ ðk"1ÞEðA″Þ and EðS⋆NðpÞÞ ¼ EððK"1Þþ ÞEðA″Þ; ð42Þ

where xþ denotes the positive part of x.
Let us compute the two quantities expressed on the right-hand

side of (13). First,

EððK"1Þþ Þ ¼ ð1"p0Þc ∑
kZ1

ðk"1Þð1"cÞk"1 ¼ ð1"p0Þc
"1ð1"cÞ

¼
p2a"1ð1"aÞ

1"ð1"aÞð1"pÞ
:

Second,

PðA″otÞ ¼ EðPðAotÞG′Þ ¼ FT ðtÞ
1"ð1"aÞð1"pÞ

1"ð1"aÞð1"pÞFT ðtÞ
;

so that we get

PðA″4tÞ ¼
1"FT ðtÞ

1"ð1"aÞð1"pÞFT ðtÞ
; ð43Þ

and subsequently

EðA″Þ ¼
Z T

0
PðA″4tÞ dt ¼

Z T

0

1"FT ðtÞ
1"ð1"aÞð1"pÞFT ðtÞ

dt: ð44Þ

A.2. Proof of Proposition 3.2

Each tip is labelled 1, …, n from left to right. Let Ri denote the
Bernoulli random variable equal to 1 if tip i is sampled. Set

Gi≔minfkAf1;…; i"1g : Ri"k ¼ 1g;

with the convention that min∅¼ þ1, so that i"Gi is the label of
the rightmost tip left of i to be sampled. Next, set

Bi≔1fRi ¼ 1;Gi o1gmaxfAiþ1"k : 1rkrGig;

which is the coalescence time between tips i"Gi and i (consecutive
tips in the tree spanned by sampled tips). It is obvious that

S⋆n ðpÞ ¼ ∑
n

i ¼ 2
Bi;

and that EðBiÞ ¼ p∑i
j ¼ 1EðXjÞPðG¼ jÞ, where G is the geometric

random variable with parameter p defined in the beginning of
this section. As a consequence,

EðS⋆n ðpÞÞ ¼ p2 ∑
n

i ¼ 2
∑
i"1

j ¼ 1
ð1"pÞj"1EðXjÞ ¼ p2 ∑

n"1

j ¼ 1
ðn"jÞð1"pÞj"1EðXjÞ:

This expression is satisfying, but we can go further if we want an
alternative formulation in terms of the distribution function FT of

the initial node depths. Note that PðXjotÞ ¼ FT ðtÞj, so that

EðS⋆n ðpÞÞ ¼ p2 ∑
n

i ¼ 2
∑
i"1

j ¼ 1
ð1"pÞj"1

Z T

0
ð1"FT ðtÞjÞ dt

¼
p2

1"p

Z T

0
dt ∑

n

i ¼ 2
∑
i"1

j ¼ 1
ð1"pÞjð1"FT ðtÞjÞ

¼
p2

1"p

Z T

0
dtðhnð1"pÞ"hnðð1"pÞFT ðtÞÞÞ;

where hn is the function defined by

hnðxÞ≔ ∑
n

i ¼ 2
∑
i"1

j ¼ 1
xj ¼ xn ∑

n"1

j ¼ 1
jx"j:

The formula for hn stems from elementary calculations.

A.3. Proof of Corollary 3.3

Proof. From Proposition 3.2, we know that

1
n
EðS⋆n ðpÞÞ ¼

1
n

∑
n

i ¼ 2
p2 ∑

i"1

j ¼ 1
ð1"pÞj"1EðXjÞ;

which is the Cesaro sum of the sequence with generic
term p2∑n"1

j ¼ 1ð1"pÞj"1EðXjÞ, and so converges to the limit
p2∑jZ1ð1"pÞj"1EðXjÞ of this sequence. The convergence of
n"1EðSnðpÞÞ to this same limit is merely due to the fact that
EðSnðpÞÞ ¼ TþEðS⋆n ðpÞÞ. □

A.4. Proof of Proposition 3.4

The joint distribution of ðC1;…;Ck"1Þ remains the same under
any permutation of these k"1 random variables. This condition is
referred to in probability theory as exchangeability. Here it is easily
seen to hold when conditioning on the leftmost and rightmost
sampled species, and obviously holds after integrating over
the law of this pair. Of course, the coalescence times are not
independent.

As for the formula, first observe that the probability of any
configuration of k sampled species among n has the same prob-
ability equal to k!ðn"kÞ!=n!, so the probability of the event Ui;j that
the two species with (old) labels i and i"j are sampled and no
species between them is sampled, equals

k!ðn"kÞ!
n!

ðn"j"1Þ!
ðk"2Þ!ðn"j"kþ1Þ!

:

On the other hand, summing over all possible such pairs (i,j), we
get

∑
k"1

u ¼ 1
1fCu o tg ¼ ∑

n

i ¼ 2
∑

1r jrminði"1;n"kþ1Þ
1fUi;jg1f max

v ¼ i"jþ 1;…;i
Av o tg:

Taking expectations and using exchangeability, we get

ðk"1ÞPðC1otÞ

¼
k!ðn"kÞ!

n!
∑
n

i ¼ 2
∑

1r jrminði"1;n"kþ1Þ

ðn"j"1Þ!
ðk"2Þ!ðn"j"kþ1Þ!

PðAotÞj

¼ kðk"1Þ
ðn"kÞ!
n!

∑
n"kþ1

j ¼ 1
FT ðtÞj ∑

n

i ¼ jþ1

ðn"j"1Þ!
ðn"j"kþ1Þ!

¼ kðk"1Þ
ðn"kÞ!
n!

∑
n"kþ1

j ¼ 1
FT ðtÞj

ðn"jÞ!
ðn"j"kþ1Þ!

which yields the first formula. For the second formula, see Lambert
and Stadler (2013) or check by hand that for any xa1,

ð1"xÞ"k
Z 1

x
yn"kðy"xÞk"1 dy¼

ðn"kÞ!
n!

∑
n"kþ1

j ¼ 1
xj"1 ðn"jÞ!

ðn"j"kþ1Þ!
;
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by using the change of variables u¼ ðy"xÞ=ð1"xÞ and expanding
the sum.

A.5. Proof of Theorem 4.1

We first explain how the random values ðSnðpÞ;nZ1Þ can be
simultaneously embedded in the same probability space, in
order to be able to speak of almost sure convergence. Consider a
sequence ðAiÞiZ1 of independent copies of A, and a sequence
ðRiÞiZ0 of i.i.d. Bernoulli random variables with parameter p.
Consider the coalescent point process built from one edge with
tip labelled 0 and length T, along with edges with tips labelled 1,2,
… and respective lengths A1;A2;… as in Fig. 3. The sampled tree is
the tree spanned by sampled tips, i.e. tips with labels i such that
Ri¼1. Then we define Snð1Þ (resp. Sn(p)) as the PD of the tree (resp.
the sampled tree) restricted to tips with labels iAf0;1;…;n"1g.
This coupling is assumed in the statement of Theorem 4.1, which
allows us to obtain almost sure convergences (implying in parti-
cular convergence in probability).

Let J(i) be the label of the i-th sampled tip, with the convention
that Jð0Þ ¼ 0. Set

Yi≔ max
u ¼ JðiÞþ1;…;Jðiþ1Þ

Au:

In particular, it is obvious that the random variables ðYiÞ represent
independent copies of Y, so by the law of large numbers, the
following convergence holds almost surely

lim
n-1

n"1 ∑
n

i ¼ 1
Yi ¼ EðYÞ:

Now let Kn the number of sampled tips in f0;1;…;n"1g. Similarly,
the following convergence holds almost surely

lim
n-1

n"1Kn ¼ p:

Now for all n, JðKnÞrnr JðKnþ1Þ, so similarly as in Eq. (41), we
can write

∑
Kn

i ¼ 1
YirS⋆n ðpÞr ∑

Kn þ1

i ¼ 0
Yi;

which shows that almost surely limn-1K"1
n S⋆n ðpÞ ¼ EðYÞ, so that

almost surely limn-1n"1S⋆n ðpÞ ¼ pEðYÞ. The convergence of n"1SnðpÞ
follows from the fact that SnðpÞ ¼ S⋆n ðpÞþT .

We now turn to the case when the number kn of sampled
species is fixed, and depends on n in such a way that kn=n-p as
n-1. Let [x] denote the integer part of x. Then

Sn;½nðp"εÞ(rSnðpÞ1fp"εrn"1Kng and SnðpÞ1fn"1Kn rpþεgrSn;½nðpþεÞ(;

where the two previous inequalities hold in probability (but could
easily be extended to hold almost surely). As a consequence, we
have the following stochastic inequalities between limits in prob-
ability

lim sup
n-1

n"1Sn;½nðp"εÞ(rpEðA″Þr lim inf
n-1

Sn;½nðpþεÞ(;

which shows that

lim sup
n-1

n"1Sn;kn r lim sup
n-1

n"1Sn;½nðpþεÞ(r ðpþ2εÞEðA″ðpþ2εÞÞ

and

lim inf
n-1

n"1Sn;kn Z lim sup
n-1

n"1Sn;½nðp"εÞ(Z ðp"2εÞEðA″ðp"2εÞÞ;

where A″ðqÞ is the random variable with the same distribution
as A″, but after changing p for q. Letting ε-0 shows that n"1Sn;kn
converges in probability to pEðA″Þ (the continuity of the expecta-
tion of A″ in the parameter p is trivial). The convergence of
expectations stems from taking the expectations of the same
inequalities.

A.6. Proof of Theorem 4.2

To keep the dependence on T in mind, we denote by NT the
number of extant species at T and by ST(p) the remaining PD after
the passage of the field of bullets with sampling probability p
(which was denoted SN(p) until now). We will also denote by AT

the typical node depth and by aT the success probability of the
geometric random variable NT conditional on NT a0. Since rates
are not time-dependent, recall that there is a random variable H
whose distribution does not depend on T (with tail distribution
PðH4tÞ ¼ ð1þðb=rÞðert"1ÞÞ in the Markovian case), such that AT is
distributed as H conditional on HoT and aT ¼PðH4TÞ. As a
consequence,

EðS⋆T Þ ¼ a"1
T ð1"aT ÞEðAT Þ ¼PðH4TÞ"1PðHoTÞEðH HoTÞ

!!

¼
1

PðH4TÞ
EðH1fHoTgÞ;

where, for an event E, 1E is the ‘indicator’ function that takes
the value 1 when E occurs, and 0 otherwise. Because a"1

T ¼
EðNT jNT a0Þ ¼PðH4TÞ"1, we see that in the supercritical case, H
has an exponential tail and in particular has a finite expectation. In
particular,

lim
T-þ1

aTEðS
⋆
T Þ ¼ EðHÞ:

Also thanks to (15), we have

EðS⋆T ðpÞÞ ¼
p2a"1

T ð1"aT Þ
1"ð1"aT Þð1"pÞ

EðAT″Þ;

where AT″ is the maximum of G′
T independent copies of AT, and G′

T
is the geometric random variable with success probability
1"ð1"aT Þð1"pÞ. Similarly, it is elementary to prove that

lim
T-þ1

aTEðS
⋆
T ðpÞÞ ¼ pEðZÞ;

with Z defined as Z≔maxi ¼ 1;…;GHi, where ðHiÞ represents inde-
pendent copies of H, independent of the geometric random
variable G with success probability p.

Last, since S⋆T ðpÞ ¼ ST ðpÞ"T , we get

lim
T-þ1

aTEðST ð1ÞÞ ¼ EðHÞ and lim
T-þ1

aTEðST ðpÞÞ ¼ pEðZÞ;

and subsequently

lim
T-þ1

EðST ðpÞÞ
EðST ð1ÞÞ

¼
pEðZÞ
EðHÞ

:

Now, we can embed all trees with stem age T in the same
probability space. Consider a sequence ðHiÞiZ1 of independent
copies of H, and build a tree starting with one infinite half-line
with tip labelled 0 and edges with tips labelled 1;2;… and lengths
H1;H2;…, as in Fig. 3. Build the sample tree as in the previous
subsection thanks to a sequence of i.i.d. Bernoulli random variable
with parameter p. Define NT≔minfiZ1 : Hi4Tg. Then we define
ST ð1Þ (resp. ST(p)) as the PD of the tree (resp. the sampled tree)
restricted to the tip labels f0;1;…;NT"1g. Regardless of edge
lengths, we have exactly the same picture as in the previous
subsection after replacing A with H. In this setting, Theorem 4.1
yields the almost sure convergence of SnðpÞ=Snð1Þ to pEðZÞ=EðHÞ.
This almost sure convergence ensures the almost sure conver-
gence of SnðpÞ=Snð1Þ along the subsequence fNT : T40g, which is
exactly the almost sure convergence of ST ðpÞ=ST ð1Þ. This estab-
lishes the claim in Theorem 4.2.
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A.7. Fluctuations around the deterministic almost sure limit

Recall G, Y and Y ′ from main text. Recall that EðYÞ has been
computed in (19) and that EðGÞ ¼ p"1, so we have

EðY ′Þ ¼ EðGÞEðAÞ ¼ p"1EðAÞ:

As a consequence, Eq. (21) can be read as the convergence (a.s. or
in probability) of SnðpÞ=Snð1Þ, as n-1, to

πT ðpÞ ¼
pEðYÞ
EðAÞ

¼
EðYÞ
EðY ′Þ:

Actually, this is not surprising since

SJðnÞðpÞ
SJðnÞð1Þ

¼
∑n

i ¼ 1Yi

∑n
i ¼ 1Y

′
i
;

where J(n) is the label of the n-th sampled species, and the pairs
ðYi;Yi′Þ represent independent copies of the pair ðY ;Y′Þ. Then the
strong law of large numbers ensures the a.s. convergence of
SJðnÞðpÞ=SJðnÞð1Þ, as n-1, to EðYÞ=EðY ′Þ. Forgetting momentarily the
fact that ðSJðnÞðpÞ=SJðnÞð1ÞÞ is only a subsequence of ðSnðpÞ=Snð1ÞÞ, this is
the aforementioned result. With this new presentation, we can go
further and apply the central limit theorem to get, by an elementary
Taylor expansion, the following convergence in distribution:

lim
n-1

ffiffiffi
n

p SJðnÞðpÞ
SJðnÞð1Þ

"
EðYÞ
EðY′Þ

# $
¼ V ;

where V is a centered, Gaussian random variable with variance s2

given by (25). Using the fact that J(n) is the sum of n independent
(geometric) random variables with expectation 1/p, we get that JðnÞ=n
goes to 1/p almost surely. We can then write

lim
n-1

ffiffiffiffiffiffiffiffi
JðnÞ

p SJðnÞðpÞ
SJðnÞð1Þ

"
EðYÞ
EðY′Þ

# $
¼ p"1=2V :

Now it is easy to see that the difference between SJðnÞðpÞ=SJðnÞð1Þ and
SkðpÞ=Skð1Þ for JðnÞrko Jðnþ1Þ is of the order of 1/n, so we get the
convergence in distribution of the whole sequence, and not only of the
subsequence indexed by J(n).

Since we have already displayed formulae for EðYÞ and EðY′Þ, it
is sufficient, to evaluate s, to have the values of EðY2Þ, of EðY ′2Þ and
of EðYY ′Þ. First, note that

EðA2Þ ¼
Z T

0
2tð1"FT ðtÞÞ dt;

and similarly

EðY2Þ ¼
Z T

0

2tð1"FT ðtÞÞ
1"ð1"pÞFT ðtÞ

dt:

Elementary calculations provide the following formula:

EðY ′2Þ ¼ p"1EðA2Þþ2p"2ð1"pÞEðAÞ2:

The last expression is given in the following statement.

Lemma A.1. We have

EðYY ′Þ ¼ Tp"1EðAÞ"
Z T

0

pgðtÞ
ð1"ð1"pÞFT ðtÞÞ2

dt;

where gðtÞ ¼ EðA1fAo tgÞ ¼ tFT ðtÞ"
R t
0 FT ðuÞ du.
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