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Abstract A classical result, fundamental to evolutionary biology, states that an
edge-weighted tree T with leaf set X , positive edge weights, and no vertices of
degree 2 can be uniquely reconstructed from the leaf-to-leaf distances between any
two elements of X . In biology, X corresponds to a set of taxa (e.g. extant species),
the tree T describes their phylogenetic relationships, the edges correspond to earlier
species evolving for a time until splitting in two or more species by some speciation/
bifurcation event, and their length corresponds to the genetic change accumulating over
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that time in such a species. In this paper, we investigate which subsets of
(X

2

)
suffice

to determine (‘lasso’) the tree T from the leaf-to-leaf distances induced by that tree.
The question is particularly topical since reliable estimates of genetic distance—even
(if not in particular) by modern mass-sequencing methods—are, in general, available
only for certain combinations of taxa.

Keywords Phylogenetic tree · Tree metric · Tree reconstruction · Lasso (for a tree) ·
Cord (of a lasso)

Mathematics Subject Classification (2000) 05C05 · 92D15

1 Introduction

A metric D on a finite set X is said to be a ‘tree metric’ if there is a finite tree with
leaf set X and non-negative edge weights so that, for all x, y ∈ X, D(x, y) is the
path distance in the tree between x and y. It is well known that not every metric is
a tree metric. However, when a metric D is a tree metric, the tree (together with its
edge weights) that provides a representation of D is—up to canonical isomorphism—
unique if we also insist that the tree is an ‘edge-weighted X -tree’, i.e., that it has no
vertices of degree 2 and that all of its interior edges have strictly positive edge weights.
However, not all of the

(|X |
2

)
pairs of distances are required in order to reconstruct the

underlying tree. Thus, it seems of some interest to investigate which subsets of
(X

2

)

suffice to determine (‘lasso’) the tree. In this first of a series of papers, we expound
various aspects of this problem, present some relevant definitions, and collect some
basic facts.

Our work is partly motivated by the widespread use of distance-based methods
for reconstructing phylogenetic trees in evolutionary biology (Felsenstein 2004). A
further reason is that asking similar questions for induced subtrees rather than for
‘sparse’ sets of distances gave rise to a rather appealing theory dealing with ‘sparse’
collections of induced subtrees that suffice to ‘define’ an X -tree (see e.g. Böcker et al.
1999; Dress et al. 2011b).

Provided one has access to all distances, and these are known to be sufficiently close
to the distances induced by some (as yet unknown) tree, then that tree, together with
its edge weighting, can be computed—with some degree of confidence—from those
distances in polynomial time (for example, by using Neighbor-Joining, Atteson 1999).
However, much of the data being generated—even by modern genomic methods—
have patchy taxon coverage (Philippe et al. 2004) whereby only certain pairs of taxa
have a known (or, at least, sufficiently reliable) distance. This raises interesting math-
ematical questions (besides the obvious statistical and algorithmic ones) concerning
tree reconstruction from such incomplete data some of which we will address here.

More specifically, in this first of a series of papers, we want to explore the basic
properties of ‘edge-weight’, ‘topological’, and ‘strong lassos’—being primarily inter-
ested in the uniqueness question: Given the restriction of a tree metric D to some
subset L of

(X
2

)
, how much can we learn about the tree representing D from that

restriction? In particular, we ask which subsets L of
(X

2

)
provide enough ‘coverage’
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‘Lassoing’ a phylogenetic tree I 79

Fig. 1 The set L4 =
{{a, b}, {c, d}, {a, c}, {b, d}}
lassos the shape of the X4-tree
T4 while L4 ∪ {{a, d}} and
L4 ∪ {{b, c}} are strong lassos
for T4 (see text for details)

ca

d

v

b

u

in order to fully determine an edge-weighted X -tree or, at least, its shape, or—given
its shape—its edge lengths in terms of just the distances it induces between the pairs
of taxa collected in L. Or, put differently, how much ‘missing data’ (pairs of taxa x, y
for which D(x, y) is not known) can we allow and still be guaranteed to recover them
from those distances that we can observe.

2 Some basic definitions and facts

2.1 Trees and tree metrics

Consider any finite tree T = (V, E) with vertex set V , leaf set X ⊆ V , and edge set
E ⊆ (V

2

)
together with an edge weighting—i.e., a map ω in the set � = �T := R

E≥0
that assigns a non-negative length ω(e) to every edge e ∈ E . Any such pair (T, ω)

induces a distance function:

Dω = D(T,ω) :
(

X

2

)
→ R≥0 : {x, y} �→ Dω(x, y) := ω+ (ET (x |y)) (1)

where ET (u|v) denotes, for any two vertices u, v ∈ V , the set of edges in E that
‘separate’ u and v in T (and, thus, together make up the path from u to v in T ) and
ω+(F) denotes, for any non-empty subset F of E , the sum

∑
e∈F ω(e).

For example, in Fig. 1, we have ET (a|c) = {{a, u}, {u, v}, {v, c}} and, thus,
Dω(a, c) = 3 for the binary tree T := T4 with leaf set X4 := {a, b, c, d} and an
interior edge that separates the leaves a, b from the leaves c, d provided unit edge
length has been assigned to all edges of that tree.

While Dω is clearly a (pseudo-)metric on X (and a proper metric if—but not neces-
sarily only if—ω is strictly positive), not every metric on X can be represented in this
way: The condition for an arbitrary metric D on X to have a phylogenetic represen-
tation, that is, to be representable in the form D = Dω for some finite edge-weighted
tree (T, ω) with leaf set X , is that D satisfies the well-known four-point condition
which states that, for all a, b, c, d ∈ X , the larger two of the three distance sums
D(a, b)+ D(c, d), D(a, c)+ D(b, d), D(a, d)+ D(b, c) coincide or, equivalently, if

D(ab|cd) := max {D(a, c) + D(b, d), D(a, d) + D(b, c)} − D(a, b) − D(c, d)

(2)

is non-negative for all a, b, c, d ∈ X .
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Such a metric D is said to be a tree metric, and any finite tree T = (V, E) as above
for which some ω ∈ �T with D = Dω exists will be dubbed a D-tree. Furthermore,
such a tree T will be said to be a proper D-tree if T has no vertices of degree 2 and
it has a proper edge weighting ω with D = Dω, i.e., a map ω ∈ �T that is strictly
positive on all interior edges of T .

Clearly, given any tree metric D, many non-equivalent D-trees T with edge weigh-
tings ω can exist such that D = Dω holds, since adding zero-length edges and/or
subdividing any edge of a D-tree by degree 2 vertices yields further D-trees. However,
it has been well known since the 1960s (see, for instance, Barthélemy and Guéoche
1991; Semple and Steel 2003 and the references therein) that there is ‘essentially’ only
one proper D-tree T for any tree metric D and, given T , only one edge weighting
ω ∈ �T for which D = Dω holds. This was actually one of the starting points of what
currently is called phylogenetic combinatorics.

More specifically, recall that, given a finite set X of cardinality at least 3 (the set
X typically represents the collection of ‘taxa’ under consideration—e.g. some extant
species), a finite tree T = (V, E) with vertex set V , leaf set X ⊆ V , and edge set
E ⊆ (V

2

)
having no vertices of degree 2 is said to be a phylogenetic X-tree or (in the

context of this paper) more briefly an X-tree and that an X -tree for which every interior
vertex has degree 3 is said to be a binary X-tree. With these definitions in hand, the
following relationships are well-known and easily established.

(i) |E | ≤ 2|X | − 3 holds for every X -tree T = (V, E); and
(ii) |E | = 2|X | − 3 holds if and only if T is a binary X -tree

Recall also that two X -trees T = (V, E) and T ′ = (V ′, E ′) are said to be (topo-
logically) equivalent (written T 
 T ′) if there exists a (necessarily unique) graph
isomorphism ϕ : T →̃ T ′ that respects X , i.e., a bijection ϕ : V →̃ V ′ with E ′ =
{{ϕ(u), ϕ(v)} : {u, v} ∈ E} and ϕ(x) = x for all x ∈ X , and that T ′ is defined to be
a refinement of T (written T ≤ T ′) if—up to equivalence—T can be obtained from
T ′ by collapsing edges in T ′ (see Semple and Steel 2003). Furthermore, two edge-
weighted X -trees (T, ω), (T ′, ω′) are said to be isometric

(
written (T, ω) ≡ (T ′, ω′)

)

if there exists a graph isomorphism ϕ : T →̃ T ′ as above that respects not only X ,
but also the edge lengths, i.e., also ω({u, v)}) = ω′({ϕ(u), ϕ(v)}) holds for all edges
{u, v} ∈ E of T . For example, denoting the ‘all-one map’ on a set A by 1A, two
X -trees T = (V, E) and T ′ = (V ′E ′) are equivalent if and only if the corresponding
edge-weighted X -trees (T, 1E ) and (T ′, 1E ′

) are isometric.
The basic result referred to above then states that, given any two X -trees T, T ′ with

proper edge weightings ω ∈ �T and ω′ ∈ �T ′ , one has

Dω = Dω′ ⇐⇒ (T, ω) ≡ (T ′, ω′) (3)

and, therefore, also

Dω = Dω′ ⇐⇒ ω = ω′ (4)

for any fixed X -tree T = (V, E) and all ω,ω′ ∈ �T .
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‘Lassoing’ a phylogenetic tree I 81

What we will be concerned with here is that, given (T, ω) and (T ′, ω′) as above,
we do not even always need the associated metrics Dω and Dω′ to coincide on all pairs
{x, y} ∈ (X

2

)
to conclude

– that T ′ must be equivalent to (or at least a refinement of) T ,
– that (T, ω) and (T ′, ω′) must be isometric, or
– that ω = ω′ must hold in case T = T ′.

Indeed, if T and T ′ are two X4-trees, and ω and ω′ are proper edge weightings of T
and T ′, respectively, then

(i) T and T ′ must be equivalent whenever the two metrics D := Dω and D′ :=
Dω′ coincide on the four pairs {a, b}, {c, d}, {a, c}, and {b, d}, and D(a, b) +
D(c, d) < D(a, c) + D(b, d) holds (in which case, both must be equivalent to
the tree depicted in Fig. 1);

(ii) (T, ω) and (T ′, ω′) must be isometric or, equivalently, D and D′ must coincide
if these two maps coincide, in addition, on just one of the remaining two pairs
{a, d} or {b, c}.

2.2 Lassos

To deal with such matters, we define, given a subset L of
(X

2

)
, two edge weighted

X -trees (T, ω) and (T ′, ω′) to be L-isometric (written (T, ω)
L≡ (T ′, ω′)) if D|L =

D′|L holds for D := Dω and D′ := Dω′ . Then, given an X -tree T , it seems of some
interest to study those subsets L of

(X
2

)
that have one of the following properties:

(L-i) ω = ω′ holds for all proper edge weightings ω,ω′ of T with (T, ω)
L≡ (T, ω′);

(L-ii) T 
 T ′ holds for any X -tree T ′ for which there exist proper edge weightings

ω of T and ω′ of T ′ with (T, ω)
L≡ (T ′, ω′);

(L-ii′) T ≤ T ′ holds for any X -tree T ′ for which there exist proper edge weightings

ω of T and ω′ of T ′ with (T, ω)
L≡ (T ′, ω′);

(L-iii) (T, ω) ≡ (T ′, ω′) holds, for every given proper edge weighting ω of T , for

any X -tree T ′ and any proper edge weighting ω′ of T ′ with (T, ω)
L≡ (T ′, ω′).

To this end, given an X -tree T , we define a subset L of
(X

2

)
to be:

(i) an edge-weight lasso for T (or to lasso the edge weights of T) if (L-i) holds;
(ii) a topological lasso for T (or to lasso the shape of T) if (L-ii) holds;

(ii′) a weak lasso for T (or to corall T) if (L-ii′) holds; and
(iii) a strong lasso for T (or just to lasso T) whenever (L-iii) holds.

As we deal here with ‘lassos’, any 2-subset c = {x, y} ∈ (X
2

)
of X will also be

called a cord, often written more briefly as c = xy; also, we refer to the cords in a
lasso L as the cords ‘in’ L.

Using this terminology, we can rephrase the example discussed at the end of Sect. 2.1
as follows: The four cords ab, cd, ac and bd form a topological lasso L4 for the tree
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T4 depicted in Fig. 1, and adding either the cord ad or bc yields a strong lasso for that
tree.

Clearly, a subset L is an edge-weight lasso for an X -tree T = (V, E) if and only
if D = D′ holds for any two tree metrics D, D′ defined on X with D|L = D′|L
for which T is simultaneously a proper D- and a proper D′-tree: Indeed, if ω

and ω′ are proper edge weightings of T with D = Dω and D′ = Dω′ , we have

“D|L = D′|L ⇐⇒ (T, ω)
L≡ (T, ω′)” and “D = D′ ⇐⇒ ω = ω′” and, therefore,

“D|L = D′|L ⇒ D = D′” if and only if “(T, ω)
L≡ (T, ω′)⇒ ω = ω′”.

Similarly, L is a topological (or a weak) lasso for T if and only if every X -tree T ′
for which there exist tree metrics D and D′ with D|L = D′|L such that T is a proper
D-tree and T ′ is a proper D′-tree is equivalent to (or a refinement of) T . And L is a
strong lasso for T if and only if D = D′ holds for any two tree metrics D, D′ defined
on X with D|L = D′|L for which T is a proper D-tree and, hence, if and only if it is
both, an edge-weight lasso and a topological lasso for T .

In particular, if there exists a pair ω,ω′ of edge weightings of T with Dω|L = Dω′ |L
such that ω is a proper and ω′ is not a proper edge weighting of T , then L is neither a
topological lasso for T nor for the X -tree that results by ‘collapsing’ any of the interior
edges e of T with ω′(e) = 0.

2.3 Some further conventions, definitions, notations, and well-known facts

We end this section by listing some simple conventions, definitions, and well-known
facts (see, e.g., Semple and Steel 2003) that will be used throughout.

2.3.1 Firstly, we will assume throughout that X is a finite set of cardinality n ≥ 3 and
we put

⋃ L := ⋃
c∈L c for any non-empty subset L ⊆ (X

2

)
. We will refer to a subset

L of
(X

2

)
as being ‘connected’, ‘disconnected’ or ‘bipartite’ etc. whenever the graph

�(L) := (X,L) is connected, disconnected, or bipartite and so on, and a connected
component of �(L) will also be called a connected component of L.

2.3.2 For every edge f of a tree T = (V, E), we denote by δ f ∈ �T the map
defined by

δ f : E→R : e �→ δe, f :=
{

1, if e = f ;
0, otherwise.

(5)

And for every leaf a of a tree T with at least 2 vertices, we denote by ea = eT
a the

unique edge of T containing a and by va the other (in case |V | ≥ 3 necessarily interior)
vertex of T contained in ea .

2.3.3 Two distinct leaves, a and b, in a tree T with va = vb will be said to form a
T-cherry, and they will be said to form a T-proper cherry if, in addition, va(= vb) has
degree 3; for example, the two pairs a, b and c, d form proper cherries in the tree T4
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‘Lassoing’ a phylogenetic tree I 83

Fig. 2 For X ′ := {a, c, d, e} ⊂ X5 = {a, b, c, d, e}, the X ′-tree on the right is obtained from the X5-tree
T5 on the left by restricting its leaf set to X ′. The associated induced edge weighting ω|X ′ is also indicated

depicted in Fig. 1. A caterpillar tree is a binary X -tree that has exactly two proper
cherries (see, for example the tree T6 in Fig. 4, or the tree in Fig. 7).

2.3.4 The median of three vertices u, v, and w of a tree T = (V, E) is the unique
vertex in V that is simultaneously contained in the three paths connecting any two of
u, v, and w in T , and will be denoted by medT (u, v, w). For example, the vertex u in
Fig. 1 is the median of the three leaves a, b, c.

Given an X -tree T = (V, E) and any subset X ′ of X , the restriction of T to X ′
(i.e., the tree with vertex set medT (X ′) := {medT (x, y, z) : x, y, z ∈ X ′} and edge
set the set of all pairs {u, v} ∈ (medT (X ′)

2

)
for which medT (u, v, x) ∈ {u, v} holds for

all x ∈ X ′) will be denoted by T |X ′ , and its vertex and edge sets by V |X ′ and E |X ′ ,
respectively. And, given any edge weighting ω of T , the induced edge weighting of T ′,
i.e., the edge weighting that maps any edge {u, v} ∈ E |X ′ onto the sum ω+ (ET (u|v)),
will also be denoted by ω|X ′ . These concepts are illustrated in Fig. 2 for the caterpillar
tree T5 with leaf set X5 := {a, b, c, d, e} and the two cherries a, b and d, e depicted
in Fig. 2 on the left.

It is well known and easily seen that T |X ′ is a (binary) X ′-tree for every (binary)
X -tree T and every subset X ′ of X of cardinality at least 3.

2.3.5 An X-split is a ‘split’ or ‘bipartition’ of X into two disjoint non-empty subsets.
A quartet is a bipartition of a 4-set into two disjoint subsets of cardinality 2. In case
a, a′, b, b′ are any 4 distinct elements, the quartet

{{a, a′}, {b, b′}} is also denoted, for
short, by aa′‖bb′ while a|a′|b|b′ stands for the partition of {a, a′, b, b′} into the four
one-element sets {a}, {a′}, {b}, {b′}.

A quartet tree is a binary tree T with exactly four leaves—and, therefore, exactly
two cherries. We will also say that such a tree T is a quartet tree of type aa′‖bb′ if
its two cherries are formed by the leaves a, a′ and b, b′, i.e., {a, a′, b, b′} is the 4-set
that forms the leaf set of T , and T has a (necessarily interior and necessarily unique)
edge that separates a, a′ from b, b′ (so, as stated in Fig. 1, the tree T4 depicted in that
figure is a quartet tree of type ab‖cd). In addition, a tree T with exactly four leaves
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84 A. W. M. Dress et al.

a, a′, b, b′ will be said to be a tree of type a|a′|b|b′ if it is non-binary, so that any tree
T with leaf set {a, a′, b, b′} is either a tree of type a|a′|b|b′ or a quartet tree of type
aa′‖bb′, ab‖a′b′, or ab′‖a′b.

Further, an X -tree T is said to display a quartet xx ′‖yy′ (or, respectively, the parti-
tion x |x ′|y|y′) if {x, x ′, y, y′} is a 4-subset of X and T |{x,x ′,y,y′} is a quartet tree of type
xx ′‖yy′ (or, respectively, a tree of type x |x ′|y|y′). By abuse of notation, T will also
be said to display xx ′|yy′ if it either displays xx ′‖yy′ or x |x ′|y|y′ or, equivalently,
neither xy‖x ′y′ nor xy′‖x ′y. The collection of all quartets displayed by T will be
denoted by Q(T ).

Recall also that, given any five distinct elements x, x ′, y, y′, y′′ ∈ X, T displays
xx ′‖yy′′ (or xx ′|yy′′, respectively) if it displays xx ′‖yy′ and xx ′‖y′y′′ (or xx ′|yy′ and
xx ′|y′y′′) (Colonius and Schulze 1981). In addition, given any proper edge weighting
ω of T, T displays

– xx ′‖yy′ if and only if Dω(xx ′|yy′) > 0 holds,1

– x |x ′|y|y′ if and only if Dω(x, y) + Dω(x ′, y′) = Dω(x, y′) + Dω(x ′, y) =
Dω(x, x ′) + Dω(y, y′) holds; and

– xx ′|yy′ if and only if Dω(x, y) + Dω(x ′, y′) = Dω(x, y′) + Dω(x ′, y) holds.

Furthermore (see for instance Chapter 7 in Dress et al. 2011b), one has

min
{

Dω(xx ′|yy′), Dω(xx ′|y′y′′)
} ≤ Dω(xx ′|yy′′) (6)

for all x, x ′, y, y′, y′′ as above whenever T displays xx ′|yy′ and xx ′|y′y′′.
In consequence,

Dω(xx ′|yz) = Dω(xx ′|y′z) (7)

holds for all x, x ′, y, y′, z ∈ X with Dω(xx ′|yy′) > Dω(xx ′|yz) and, given any six
elements x, x ′, y, y′, and z, z′, one has

Dω(xx ′|yz) = Dω(xx ′|y′z) = Dω(xx ′|yz′) = Dω(xx ′|y′z′) (8)

whenever Dω(xx ′|yy′), Dω(xx ′|zz′) > Dω(xx ′|yz) holds.

2.3.6 Next, given any two non-empty subsets A and B of X , an X -tree T is said to
display A‖B (or A|B, respectively), if A and B are disjoint and T displays aa′‖bb′
(or aa′|bb′, respectively) for any two distinct elements a, a′ ∈ A and b, b′ ∈ B or,
equivalently, if this holds for some fixed a ∈ A and b ∈ B and all a′ ∈ A − {a} and
b′ ∈ B − {b}.

If T displays A‖B and A ∪ B = X holds, the pair A, B will also be called a T-split,
and a non-trivial T -split if, in addition, |A|, |B| ≥ 2 holds. Similarly, if T displays
A|B and A ∪ B = X holds, the pair A, B will also be referred to as a virtual T -split,
and a non-trivial virtual T -split if, in addition, |A|, |B| ≥ 2 holds.

1 Recall that Dω(ab|cd)=max {D(a, c)+D(b, d), D(a, d)+D(b, c)}−D(a, b)−D(c, d) for D = Dω .
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‘Lassoing’ a phylogenetic tree I 85

Notice that if T displays both A‖B and A′‖B ′ (or A‖B and A′|B ′ or A|B and
A′‖B ′) then one of the four intersections A ∩ A′, A ∩ B ′, B ∩ A′, and B ∩ B ′ is empty.
Any two X -splits that satisfy this last property are said to be compatible, otherwise
they are incompatible.

Further, given—in addition—any edge weighting ω of T , we put

Dω(A|B) := min
{

Dω(aa′|bb′) : a, a′ ∈ A, b, b′ ∈ B
}

so that T displays A‖B if and only if Dω(A|B) > 0 holds for one or, equivalently,
for every proper edge weighting ω of T —note that this notation is consistent with
our previous notation as, in view of the triangle inequality, we have Dω(aa′|bb′) =
Dω({a, a′}|{b, b′}) for all a, a′, b, b′ in X .

Clearly, two leaves a, a′ ∈ X form a proper T -cherry if and only if the pair
{a, a′}, X−{a, a′} forms a T -split or, equivalently, if and only if T displays {a, a′}‖X−
{a, a′}; and they form just a T -cherry if and only if the pair {a, a′}, X − {a, a′} forms
a virtual T -split or, equivalently, if and only if T displays {a, a′}|X −{a, a′}. So, both
trees depicted in Fig. 2 display the quartet ac‖de; and the pair {a, b, c}, {d, e} forms
a T5-split.

2.3.7 It is also well known that an X -tree T displays A‖B for two disjoint non-empty
subsets A and B of X if and only if there exists some edge e ∈ E with e ∈ ET (a|b)

for all a ∈ A and b ∈ B and, hence, if and only if there exists a T -split A∗, B∗ of X
with A ⊆ A∗ and B ⊆ B∗. Furthermore, if A, B is a T -split, there is exactly one edge
e = eA‖B ∈ E with e ∈ ET (a|b) for all a ∈ A and b ∈ B. And associating, to each
T -split A, B, the edge eA‖B defines a canonical one-to-one correspondence between
the collection S(T ) of all T -splits and the edge set E of T as well as between the
collection Snt (T ) of all non-trivial T -splits and the set of all interior edges of T .

Furthermore, given any bipartition S′ of X into two disjoint and non-empty subsets
A′, B ′ of X and any X -tree T , the following assertions are equivalent:

– the pair A′, B ′ forms a virtual T -split;
– S′ = {A′, B ′} is compatible with every T -split S ∈ S(T );
– there exists an X -tree T ′ with S(T ′) = S(T ) ∪ {S′} such that collapsing the edge

eA′‖B′ in T ′ yields—up to canonical isomorphism—the tree T .

And putting A(a|bx) := {a′ ∈ X : a′ = a or aa′‖bx ∈ Q(T )} for any three
distinct elements a, b, x ∈ X , the pair A(a|bx), X − A(a|bx) always forms a T -split
and the pair A(a|bx) ∪ A(b|ax), X − (A(a|bx) ∪ A(b|ax)) forms a virtual T -split.
Furthermore, there exist, for every T -split S = A|B with |B| > 1, two distinct ele-
ments b, x ∈ B such that S coincides with the pair A(a|bx), X − A(a|bx) for one
or, equivalently, for every a ∈ A. Also, given any element x ′ ∈ X − {a, b, x} with
ab‖xx ′ ∈ Q(T ), one has a′ ∈ A(a|bx) for some a′ ∈ X − {a, b, x} if and only if
one has Dω(aa′|xx ′) > Dω(ab|xx ′) for some or, equivalently, for every proper edge
weighting ω of T . In particular, given any bipartition S of X into two disjoint and
non-empty subsets A, B of X , some a ∈ A and two distinct elements x, x ′ ∈ B, the
pair A, B forms a T -split if and only if one has Dω(aa′|xx ′) > Dω(ab|xx ′) for all
a′ ∈ A and b ∈ B (see Fig. 3).

123



86 A. W. M. Dress et al.

(b)(a)

Fig. 3 a When A, B forms a T -split and x, x ′ ∈ B, then Dω(aa′|xx ′) > Dω(ab|xx ′) holds for all
a, a′ ∈ A and b ∈ B. b If A, B does not form a T -split, there exists, for all a ∈ A and x, x ′ ∈ B, some
a′ ∈ A and b ∈ B with Dω(aa′|xx ′) ≤ Dω(ab|xx ′) (see text for details)

2.3.8 Finally, it is also well known (see e.g. Semple and Steel 2003) that, given two
X -trees T and T ′, one has

T 
 T ′ ⇐⇒ Q(T ) = Q(T ′) ⇐⇒ S(T ) = S(T ′) ⇐⇒ Snt (T ) = Snt (T
′)

or, more generally,

T ≤ T ′ ⇐⇒ Q(T ) ⊆ Q(T ′) ⇐⇒ S(T ) ⊆ S(T ′) ⇐⇒ Snt (T ) ⊆ Snt (T
′).

3 Contents and outlook

Our series of papers devoted to a rather detailed study of edge-weight, topological,
weak, and strong lassos is organized as follows: In the next section (Sect. 4), we
will present some elementary properties and some instructive examples of lasso sets.
In Sect. 5, we will present and apply some results that are helpful for investigating
lassos in a recursive fashion. In Sect. 6, we will introduce and discuss a useful con-
cept for recognizing strong lassos—the concept of ‘L-shellability’,—and, finally, we
will study two particular types of lassos called e-covers and t-covers, respectively, in
Sect. 7—lassos that show up naturally in our context and have, to some extent, already
been recognized in previous work (cf. Barthélemy and Guéoche 1991; Chaiken et al.
1983) as exhibiting some particularly attractive and useful properties.

In particular, for any bipartition A, B of X , the set L = A ∨ B :=
{{a, b} : a ∈ A, b ∈ B} is a topological lasso for an X -tree T if and only if A ∨ B
is a t-cover of T if and only if A, B is incompatible with every non-trivial virtual
T -split (Theorem 8).
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In a subsequent paper Dress et al. (2011a), we will discuss various classes of exam-
ples and ‘counter-examples’. In particular, we will present a full characterization of
topological lassos for X -trees with at most two interior vertices, we will show that
every t-cover of such an X -tree T is a weak lasso for T provided both of its two
interior vertices have degree at least 4, and we will classify all edge-weight and all
topological lassos for X -trees with at most five leaves. That paper will also show, in
particular, that all edge-weight lassos for such a tree are strong lassos and that there
are minimal topological lassos for every binary X -tree (V, E) with exactly five leaves
(there is ‘essentially’ only one such tree) that have cardinality |E | = 7 while most
such lassos are bipartite and have cardinality 6. And, using our recursive approach,
we will draw some consequences that are of general interest for lassos for arbitrary
X -trees.

In addition, noting that the minimal edge-weight lassos for an X -tree T form
the set of bases of a certain matroid with point set

(X
2

)
denoted by M(T ), we will

study this matroid in yet another paper. In particular, we will show that T is deter-
mined, up to equivalence, by M(T ), i.e., “T 
 T ′ ⇐⇒ M(T ) = M(T ′)” holds for
any two X -trees T, T ′. We will also show that

(i) a binary X -tree T is a caterpillar tree if and only if the matroid M(T ) is a binary
matroid,

(ii) a subset L of
(X

2

)
is a strong lasso for some X -tree T if and only if it is a

non-bipartite topological lasso for T —more generally, the co-rank of some
connected subset L of

(X
2

)
in M(T ) that is a weak lasso for T never exceeds 1,

and it coincides with 1 if and only if L is bipartite which can happen for T only
if every T -cherry is a proper T -cherry, and

(iii) the edge set L of a complete bipartite graph with vertex set X is a topological
lasso if and only if L has co-rank 1 in M(T ).

We will not deal here with the corresponding ‘existence question’: Given a subset
L of

(X
2

)
and some map D : L → X , when does D extend to a tree metric on X? The

computational complexity of this existence question has been settled, as it is nothing
but the ‘Matrix Completion to Additive’ problem that—not unexpectedly—was shown
to be NP-complete (Farach et al. 1995, Theorem 6), and algorithmic approaches to
special instances of this problem have already been explored in Guénoche and Leclerc
(2001), Guénoche et al. (2004), and Willson (2004).

Also, our focus here is on the mathematical, rather than the algorithmic, aspects
of the uniqueness question, as the mathematical structure underlying that question
appears to be intricate enough already compared with the case settled long ago in
which all distances are known. As such, it seems to deserve especially dedicated
attention.

4 Some basic properties and some instructive examples of lassos

Assume throughout this section that T = (V, E) is an X -tree and that L is a subset of(X
2

)
. Recall that we will often write xy as a shorthand for {x, y}.

We begin by noting that edge-weight lassos can be characterized in terms of the
linear forms their cords induce on the real vector space R

E :
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Theorem 1 The set L is an edge-weight lasso for T if and only if X = ⋃ L and there
is no non-zero map ω0 ∈ R

E such that the linear maps

λT
xy : R

E→R : ω �→ ω+ (ET (x |y)) (= Dω(x, y))

(
xy ∈

(
X

2

))
(9)

vanish on ω0 for all xy ∈ L.
In particular, |L| ≥ |E | must hold for every edge-weight lasso L for T , and |L| =

|E | must hold for every minimal edge-weight lasso L for T .

Proof If (T, ω)
L≡ (T, ω′) would hold for two distinct proper edge weightings

ω,ω′ ∈ �T , we would have λT
xy(ω0) = 0 for all xy ∈ L for the map ω0 := ω − ω′.

And if, conversely, λT
xy(ω0) = 0 holds, for all xy ∈ L, for some non-zero map

ω0 ∈ R
E , adding a sufficiently small multiple of ω0 to any proper edge weighting ω

of T would yield a proper edge weighting ω′ �= ω of T with (T, ω)
L≡ (T, ω′). The

last claim follows by applying some basic linear algebra to the bilinear pairing

〈· · · | · · · 〉T : R
L × R

E→R : (ρ, ω) �→ 〈ρ|ω〉T :=
∑

xy∈L
ρ(xy) λT

xy(ω).

��
We will say that an edge-weight (or a strong) lasso L for T is tight if the number of

cords in L coincides with the number |E | of edges of T or, equivalently, if the bilinear
map ‘〈· · · | · · · 〉T ’ defines a proper non-degenerate pairing between R

L and R
E , i.e.,

it identifies each of these two vector spaces with the dual of the other.

We now show that L is connected if L is a topological lasso for T , and that it is
‘strongly non-bipartite’—i.e., every connected component of the graph �(L) is not
bipartite—if L is an edge-weight lasso for T :

Theorem 2 (i) If n ≥ 4 holds and L is a topological lasso for T , then L must be
connected.

(ii) If L is an edge-weight lasso for T , then L must be strongly non-bipartite.
(iii) In particular, L must be connected and non-bipartite if L is a strong lasso for T .

Proof (i) Suppose there exists a bipartition of X into two non-empty disjoint subsets
A and B such that L contains no cord of the form ab with a ∈ A and b ∈ B. Consider
any proper edge weighting ω of T , the two trees T |A and T |B obtained by restricting
T to A and B, respectively, and the associated edge weightings ω|A and ω|B of T |A

and T |B . Obviously, we can always form an X -tree T ′ with a proper edge weighting
ω′ such that T ′ is not equivalent to T while T |A = T ′|A and T |B = T ′|B as well as

ω|A = ω′|A and ω|B = ω′|B and, therefore, also (T, ω)
L≡ (T ′, ω′) holds, for example

by ‘fusing’ T |A and T |B via any appropriately chosen bridge.
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(ii) Suppose that L contains a connected component that is bipartite relative to some
bipartition of its vertex set Y into the two subsets Y + and Y −. Then, the set L can
never be an edge-weight lasso for T as, given any proper edge weighting of T with
positive weights on all pendant edges, one can always add some small constant τ to the
weights of all pendant edges containing a leaf from Y + and subtract the same amount
from the weights of all pendant edges containing a leaf from Y − without changing the
distances between any two leaves x, x ′ ∈ X with xx ′ ∈ L.

(iii) The last assertion is a trivial consequence of the first two assertions. ��
Definition Given any cord c = xx ′ ∈ L, let �(L, c) = (X − c,L(c)) denote the
sub-graph of �(L) = (X,L) with vertex set X − c and edge set

L(c) :={yy′ ∈L : yy′ ⊆ X −c, xx ′‖yy′ ∈ Q(T ), and xy, x ′y′ ∈L or xy′, x ′y ∈L}.

Clearly, given an edge-weighted X -tree (T ′, ω′) with (T, ω)
L≡ (T ′, ω′), one has

Dω(xx ′|yy′) = Dω′(xx ′|yy′) (10)

for any two distinct elements y, y′ ∈ X − c with yy′ ∈ L(c) as if, say, xy, x ′y′ ∈ L
holds, one has Dω′(x, y) + Dω′(x ′, y′) = Dω(x, y) + Dω(x ′, y′) > Dω(x, x ′) +
Dω(y, y′) = Dω′(x, x ′) + Dω′(y, y′). We claim:

Theorem 3 Consider a subset L of
(X

2

)
with X = ⋃ L and a cord c = xx ′ ∈ L, and

assume that T is an X-tree. Assume further that the restriction �(L, c)|A of �(L, c)
to any subset A of X − c for which A, X − A is a virtual T -split is connected, that
ω is a proper edge weighting of T , and that T ′ is another X-tree with a proper edge

weighting ω′ such that (T, ω)
L≡ (T ′, ω′) holds. Then, Dω(xx ′|yy′) = Dω′(xx ′|yy′)

must hold for any two distinct elements y, y′ ∈ X − c with xx ′‖yy′ ∈ Q(T ).
In particular, the subset L of

(X
2

)
must be a topological lasso for T if the two ele-

ments x, x ′ in c form a proper T -cherry and �(L, c)|A is connected for any subset A
of X − c for which A, X − A is a virtual T -split.

Proof Consider two distinct elements y, y′ ∈ X − c with xx ′‖yy′ ∈ Q(T ). To show
that Dω(xx ′|yy′) = Dω′(xx ′|yy′) holds, we will use induction relative to the cardinal-
ity of the union A of the two disjoint and non-empty subsets A(y|y′x) and A(y′|yx) for
which, according to 2.3.7, the split A, X − A is a virtual T -split implying that, in view
of our assumptions, the restriction �(L, c)|A of �(L, c) to A ⊂ X − c is connected.
If |A| = 2 holds, this implies that yy′ ∈ L(c) and, therefore, also Dω(xx ′|yy′) =
Dω′(xx ′|yy′) must hold.

Otherwise, our induction hypothesis implies that Dω(xx ′|ya) = Dω′(xx ′|ya)

holds for all a ∈ X − {x, x ′, y, y′} with ya‖xy′ ∈ Q(T ), and that Dω(xx ′|y′a′) =
Dω′(xx ′|y′a′) holds for all a′ ∈ X −{x, x ′, y, y′} with y′a′‖xy ∈ Q(T ). Furthermore,
our assumption that �(L, c)|A is connected now implies that there must exist some cord
aa′ ∈ L(c) and, therefore, Dω(xx ′|aa′) = Dω′(xx ′|aa′) with a ∈ A(y|y′x) and a′ ∈
A(y′|yx). So, our claim holds in case a = y and a′ = y′. If, say, a �= y and a′ = y′ holds,
our induction hypothesis implies Dω′(xx ′|ya)= Dω(xx ′|ya) > Dω(xx ′|ay′) =
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Dω′(xx ′|ay′) and, therefore, Dω(xx ′|yy′)= Dω(xx ′|ay′) = Dω′(xx ′|ay′) = Dω′
(xx ′|yy′) in view of (7). And if a �= y and a′ �= y′ holds, our induction
hypothesis implies Dω′(xx ′|ya) = Dω(xx ′|ya)> Dω(xx ′|aa′) = Dω′(xx ′|aa′) and
Dω′(xx ′|y′a′) = Dω(xx ′|y′a′) > Dω(xx ′|aa′) = Dω′(xx ′|aa′) and, therefore,
Dω(xx ′|yy′) = Dω(xx ′|aa′) = Dω′(xx ′|aa′) = Dω′(xx ′|yy′) in view of (8), as
claimed.

In particular, if the two elements x, x ′ in c form a proper T -cherry, they must also
form one in T ′, and a bipartition A, B of X with, say, x ∈ B forms a non-trivial
T -split if and only if B contains also x ′ and Dω(xx ′|aa′) > Dω(xx ′|ab) or, equiv-
alently, Dω′(xx ′|aa′) > Dω′(xx ′|ab) holds for all a, a′ ∈ A and b ∈ B, that is, if
and only if A, B forms a non-trivial T ′-split. So, T 
 T ′ must clearly hold in this
case in view of the last remark in 2.3.7. Remarkably, requiring only that �(L, c)|A is
connected in case A, X − A is a T -split, does not even imply that L is a weak lasso
for T . ��

To conclude this section, we now discuss two instructive examples: We have seen
above that there exist topological lassos for X -trees (e.g., the tree T4) that are not edge-
weight lassos. To show that, conversely, there exist edge-weight lassos for X -trees that
are not topological lassos, consider the ‘star tree’

T ∗ = (
V ∗ := X ∪ {∗}, E∗ := {{∗, x} : x ∈ X})

with leaf set X and exactly one ‘central’ vertex ‘∗’ of degree n ≥ 3 adjacent to all
leaves of T ∗. While it is obvious that any subset of

(X
2

)
, even the empty set, is a topo-

logical lasso for the star tree T ∗ in case n = 3, there is only one topological lasso
in case n ≥ 4, viz., the set

(X
2

)
: Indeed, if ω is, e.g., the ‘all-one’ map 1E∗

and if

some cord ab ∈ (X
2

)
is not contained in a subset L of

(X
2

)
, we may “extract” the two

leaves in that cord to form a proper cherry that is attached to a vertex v of degree 3
that in turn is attached to the central vertex ∗ of T ∗ and adjust the edge length accord-
ingly by putting, say, ω′({a, v}) = ω′({b, v}) = ω′({v, ∗}) = 0.5 and ω′({x, ∗}) = 1
for all x ∈ X − {a, b} to obtain an X -tree T ′ with an edge weighting ω′ for which

(T ∗, ω)
L≡ (T ′, ω′) holds. So, no proper subset of

(X
2

)
can be a topological lasso—and,

hence, even less a strong lasso—for T ∗.
In contrast, it is easy to see that a subset L of

(X
2

)
with X = ⋃ L is an edge-weight

lasso for T ∗ if and only if it is strongly non-bipartite implying that—in accordance with
Theorem 1—any edge-weight lasso for T ∗ contains at least n cords and that all minimal
edge-weight lassos for T ∗ are tight, i.e., they contain exactly n cords: Indeed, it fol-
lows from Theorem 2 (ii) that any edge-weight lasso for any X -tree must be strongly
non-bipartite. And, conversely, if a subset L of

(X
2

)
is strongly non-bipartite, there

exists, for every x ∈ X , some sequence x0 := x, x1, x2 . . . , x2k, x2k+1 := x, k ≥ 0,
consisting of elements from X such that xi xi+1 ∈ L holds for all i = 0, . . . , 2k.

Thus, if ω,ω′ are any two edge weightings of T ∗ with (T ∗, ω)
L≡ (T ∗, ω′), the sum∑2k

i=0(−1)i Dω(xi , xi+1) = ∑2k
i=0(−1)i (ω(exi ) + ω(exi+1)) = 2ω(ex ) must coin-

cide with the sum
∑2k

i=0(−1)i Dω′(xi , xi+1) = 2ω′(ex ) implying that ω and ω′ must
coincide on all edges of T ∗.
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Fig. 4 The binary
{a, b, c, a′, b′, c′}-tree T6 for
which L6 as defined in (11) is an
edge-weight, but not a
topological lasso

It follows in particular that, in contrast to Assertion (i) in Theorem 2, L can be
disconnected if L is merely an edge-weight lasso for a (non-binary) X -tree. An exam-
ple is provided by the star tree with the leaf set X6 := {a, b, c, d, e, f } and the set
L := ({a,b,c}

2

)∪ ({d,e, f }
2

)
which, consisting of two disjoint triangles, is clearly strongly

non-bipartite. However, we will see shortly (Corollary 3) that L must be connected
whenever L is an edge-weight lasso for a binary X -tree.

Finally, we show that there exist edge-weight lassos also for binary X -trees that are
not topological lassos: Consider the set X ′

6 := {a, b, c, a′, b′, c′}, the binary X ′
6-tree

T6 depicted in Fig. 4, and the subset

L6 :=
({a, b, c}

2

)
∪

({a′, b′, c′}
2

)
∪ {

aa′, bb′, cc′} (11)

of
(X ′

6
2

)
. L6 is an edge-weight lasso for T6, since we can determine, for any proper

edge weighting ω of T6, the values of D(x, y) for the metric D := Dω for the six

‘missing’ cords xy in
(X ′

6
2

) − L6 starting from the D-values of the cords in L6. For
example, we have D(a, b′) = D(a, c) + D(b, b′) − D(b, c), from which we can
compute D(b, a′) as D(b, a′) = D(a, a′) + D(b, b′) − D(a, b′). By symmetry, we
can also compute D(c, a′) directly from the data and, then, D(a, c′) which, finally,
allows us to also compute D(b, c′) = D(b, a′) + D(a, c′) − D(a, a′) and D(c, b′) =
D(c, a′) + D(a, b′) − D(a, a′).

However, the example in Fig. 5 shows that L6 does not lasso the shape of T6 and,
so, is not a strong lasso for T6.

5 Towards a recursive analysis of lasso sets

In this section, we will establish a result that can be used to analyse lassos recur-
sively: Given an X -tree T = (V, E), we define a non-empty subset U of V to be
a T -core if the induced subgraph TU := (U, EU := {e ∈ E : e ⊆ U }) of T with
vertex set U is connected (and, hence, a tree) and the degree degTU

(v) of any vertex
v in TU is either 1 or coincides with the degree degT (v) of v in T . Clearly, putting
Ev = ET

v := {e ∈ E : v ∈ e} and Nv = N T
v := ∪e∈Ev e for every vertex v of T, Nv is

a T -core for every v ∈ V , and so is
⋃

v∈U Nv for every subset U of V for which TU

is connected.
It is also obvious that TU must be an XU -tree for XU := {y ∈ U : degTU

(y) = 1}
for every T -core U ⊆ V as XU is the leaf set of TU .
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Fig. 5 Although L6 is an edge-weight lasso for T6, it fails to be a strong lasso since both of the two
edge-weighted trees depicted above induce the same distances on all cords in L6

Further, let xU denote, for any leaf x ∈ X of T and any T -core U ⊆ V , the gate
of x in U , i.e., the unique vertex in U that is closest to x . Note that XU must coincide
with the set gateU (X) := {xU : x ∈ X} of all gates of the elements of X in U .

Finally, for any subset L of
(X

2

)
, let LU denote the set consisting of all pairs of

distinct elements y, y′ in XU for which there exists a cord xx ′ ∈ L with xU = y and
x ′

U = y′. Then, the following holds:

Theorem 4 Given an X-tree T = (V, E), a T -core U ⊆ V , and a subset L that
is a weak, an edge-weight, a topological, or a strong lasso for T . Then, the set LU

is, respectively, a weak, an edge-weight, a topological, or a strong lasso for TU . In
particular, the graph �(LU ) = (XU ,LU ) must be strongly non-bipartite for every
T -core U ⊆ V whenever L is an edge-weight lasso for T .

Proof Indeed, this is a direct consequence of the following simple observation: Given
any XU -tree T ′ = (U ′, F ′) with U ′ ∩ V = XU , the graph T ∗ with vertex set V ∗ :=
(V − U ) ∪ U ′ and edge set E∗ := (E − EU ) ∪ F ′ obtained by replacing the interior
vertices and edges of TU in T by those of T ′ is a well-defined X -tree. Furthermore,
one has

ETU (xU |yU ) ⊆ ET (x |y), ET ′(xU |yU ) ⊆ ET ∗(x |y),

and

ET (x |y) − ETU (xU |yU ) = ET ′(xU |yU ) − ET ∗(x |y),
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for all x, y ∈ X . So, restricting any edge weighting ω of T to the edges of TU induces
an edge weighting ωU of TU , and extending any edge weighting ω′ of T ′ to an edge
weighting ω∗ of T ∗ by putting ω∗(e) := ω(e) for every e ∈ E ∩ E∗ = E − EU yields

pairs of edge-weighted X - and XU -trees such that (T ∗, ω∗) L≡ (T, ω) if and only if

(T ′, ω′) LU≡ (TU , ωU ). ��

This theorem has a simple, yet useful consequence. To describe it, we define the
following graph.

Definition Given a non-empty subset L of
(X

2

)
, an X -tree T , and a vertex v of T , let

G(L, v) denote the graph with vertex set Ev and edge set EL,v consisting of all pairs
{e, e′} ∈ (Ev

2

)
for which some cord xy in L with e, e′ ∈ ET (x |y) exists.

Given any interior vertex v ∈ V , we can apply Theorem 4 to the T -core U := Nv

which, together with our results on star trees, yields:

Corollary 1 Given any interior vertex v ∈ V and any edge-weight lasso L for T , the
graph G(L, v) is strongly non-bipartite and is therefore the complete graph with vertex
set Ev if degT (v) = 3. It is also the complete graph with vertex set Ev independently
of the degree of v when L is a topological lasso for T .

It follows that a necessary condition for a subset L of
(X

2

)
to lasso the edge weights

or the shape of an X -tree T is that the graph G(L, v) is strongly non-bipartite or the
complete graph with vertex set Ev , respectively, for every interior vertex v of T .

5.1 The case of a proper cherry a, b

Let us now suppose that a, b is a proper T -cherry for some X -tree T = (V, E) and
let eab ∈ E denote the unique interior edge of T that is adjacent to v := va = vb so
that Ev = {ea, eb, eab} holds. Note that the set U = Uab := V − {a, b} obtained by
deleting the two leaves a, b in the vertex set V of T is a T -core, and that the leaf set XU

of the associated tree TU with vertex set U coincides with the set (X − {a, b}) ∪ {v}.
Note also that eab is the unique pendant edge eTU

v of TU containing its leaf v, and that
v = aU = bU , EU = E − {ea, eb}, and |EU | = |E | − 2 holds.

We pause to introduce some further terminology. Given any non-empty subset L of(X
2

)
, put Lab := L − {ab} and, given in addition any two distinct elements x, y ∈ X ,

put

δxy∈L :=
{

1, if xy ∈ L;
0, otherwise.

Further, let X (x,L) denote the set

X (x,L) := {y ∈ X : xy ∈ L}.
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If ωU denotes the restriction of an edge weighting ω ∈ �T to EU , the linear maps
λT

xy introduced above (Eq. 9) satisfy:

λT
ax (ω) = ω(ea) + λTU

vx (ωU ) and λT
bx (ω) = ω(eb) + λTU

vx (ωU ) (12)

for all x ∈ X −{a, b}, and λT
xy(ω) = λ

TU
xy (ωU ) for every cord xy ∈ (X−{a,b}

2

)
. We also

have

LU =
(

L ∩
(

X − {a, b}
2

))
∪

{
{x, v} : x ∈ X (a,Lab) ∪ X (b,Lab)

}

and, therefore, also

|LU | = |L| − δab∈L − |X (a,Lab) ∩ X (b,Lab)| (13)

for every subset L of
(X

2

)
. Thus, if L is a tight edge-weight lasso for T , we must have

|L| = |E | = |EU | + 2

≤ |LU | + 2 = |L| − δab∈L − |X (a,Lab) ∩ X (b,Lab)| + 2

= |L| + 1 − |X (a,Lab) ∩ X (b,Lab)| ≤ |L| + 1

because (i) LU must be an edge-weight lasso for TU according to Theorem 4 and (ii)
ab ∈ L must hold in this case.

In consequence, the induced edge-weight lasso LU for TU is tight if and only if there
exists some (necessarily unique!) leaf x ∈ X − {a, b} with xa, xb ∈ L. Otherwise,
X (a,Lab) ∩ X (b,Lab) = ∅ must hold and LU has cardinality |EU | + 1 in which
case there must exist—up to scaling—exactly one non-zero map ρU : (XU

2

)→R with
support in LU and

∑

xy∈(XU
2 )

ρU (x, y)λTU
xy = 0.

Furthermore, we must have α := ∑
x∈X (a,Lab) ρU (x, v) �= 0 and β :=∑

x∈X (b,Lab) ρU (x, v) �= 0 for every such non-zero map ρU : Indeed, put

ρ(x, y) :=
{

ρU (xU , yU ) , if xy ∈ L;
0, if xy ∈ (X

2

) − L;

and note that ρ is a non-zero map with support in L. Note also that—as LU is, by
assumption, the disjoint union of

{{v, x} : x ∈ X (a,Lab)
}
,
{{v, x} : x ∈ X (b,Lab)

}
,
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and LU ∩ (X−{a,b}
2

)
—also

∑

xy∈(X
2)

ρ(x, y) λT
xy(ω)

=
∑

xy∈(X−{a,b}
2 )

ρU (x, y) λTU
xy (ωU ) +

∑

x∈X (a,Lab)

ρ(a, x)
(
λTU

xv (ωU ) + ω(ea)
)

+
∑

x∈X (b,Lab)

ρ(b, x)
(
λTU

xv (ωU ) + ω(eb)
)

=
∑

xy∈(XU
2 )

ρU (x, y) λTU
xy (ωU ) + α ω(ea) + β ω(eb)

must hold for every map ω ∈ R
E . However, noting that

∑
xy∈(XU

2 )
ρU (x, y) λ

TU
xy van-

ishes by our choice of ρU , we must (with δeab as defined by Eq. (5)) also have

0 =
∑

xy∈(XU
2 )

ρU (x, y) λTU
xy (δeab )

=
∑

x∈X (a,Lab)

ρU (x, v) +
∑

x∈X (b,Lab)

ρU (x, v)

= α + β

So, α = 0 would imply that also β = 0 must hold and, therefore, also

∑

xy∈(X
2)

ρ(x, y) λT
xy(ω) =

∑

xy∈(XU
2 )

ρU (x, y) λTU
xy (ωU ) = 0

for every map ω ∈ R
E , which is impossible if L is a tight lasso for T .

This yields a good part of the following result.

Theorem 5 Continuing with the definitions and notations introduced at the start of
Sect. 5.1, a subset L of

(X
2

)
is an edge-weight lasso for T if and only if:

(U1) L contains the cord ab;
(U2) LU is an edge-weight lasso for TU ; and at least one of the following two

assertions (U3-a) or (U3-b) holds:
(U3-a) The two subsets X (a,Lab) and X (b,Lab) of X have a non-empty intersec-

tion.
(U3-b) There exists some non-zero map ρU : (XU

2

)→R with support in LU and

∑

xy∈LU

ρU (x, y)λTU
xy = 0 as well as

∑

x∈X (a,Lab)

ρU (x, u) �= 0.
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In particular, a subset L of
(X

2

)
is a tight edge-weight lasso for T if and only if it

has cardinality |E |, and (U1), (U2), and either one of the following two assertions
(U3-a′) or (U3-b′) holds:

(U3-a′) LU is a tight edge-weight lasso for TU ,
(U3-b′) LU has cardinality |EU |+1 = |L| − 1 and

∑
x∈X (a,Lab) ρU (x, u) �= 0

holds for every non-zero map ρU : (XU
2

)→R with support in LU for which
∑

xy∈LU
ρU (x, y)λ

TU
xy = 0 holds.

Proof In view of our observations above applied to any tight lasso for T = (V, E)

contained in L, it suffices to show that a subset L of
(X

2

)
is an edge-weight lasso for

T if (U1), (U2) and at least one of the assertions (U3-a) or (U3-b) hold.
So, assume that, for some map η ∈ R

E , one has λT
xy(η) = 0 for all cords xy ∈ L.

We have to show that η(e) = 0 must hold for every edge e ∈ E . To this end, note
first that to establish our claim, it suffices, in view of (12), to show that, if (U1), (U2),
and either (U3-a) or (U3-b) hold, then η(ea) = η(eb) = 0 must hold for every map
η ∈ R

E as above.
Yet, if (U3-a) holds (i.e., if xa, xb ∈ L holds for some x ∈ X −{a, b}), the assump-

tion that λT
xy(η) = 0 holds for some η ∈ R

E and for all cords xy ∈ L implies that the
following hold:

0 = λT
ab(η) = η(ea) + η(eb),

0 = λT
ax (η) = η(ea) + λT

ux (ηU ),

0 = λT
bx (η) = η(eb) + λT

ux (ηU ).

This readily implies η(ea) = η(eb) = 0 in this case (since we may add the first
equation to either the second or the third one, and subtract the other one).

Moreover, if (U1) and (U2) hold, if
∑

xy∈(XU
2 )

ρU (x, y)λ
TU
xy = 0 and also

∑
x∈X (a,Lab) ρU (x, u) �= 0 holds for some non-zero map ρU : (XU

2

)→R, and if
λT

xy(η) = 0 holds for all xy ∈ L for some map η ∈ R
E , we must have

λTU
ux (ηU ) = −η(ea) for all x ∈ X (a,Lab),

λTU
ux (ηU ) = −η(eb) for all x ∈ X (b,Lab),

and

ρU (x, y)λTU
xy (ηU ) = 0 for all xy ∈

(
X − {a, b}

2

)
.

Thus, evaluating the identity
∑

xy∈LU
ρU (x, y)λ

TU
xy = 0 on ηU and noting that LU is,

by assumption, the disjoint union of
{{v, x} : x ∈ X (a,Lab)

}
,
{{v, x} : x ∈ X (b,Lab)

}
,
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and LU ∩ (X−{a,b}
2

)
, we get:

0 =
∑

x∈X (a,Lab)

−ρU (v, x)η(ea) +
∑

x∈X (b,Lab)

−ρU (v, x)η(eb)

= −η(ea)

⎛

⎝
∑

x∈X (a,Lab)

ρU (v, x)

⎞

⎠ − η(eb)

⎛

⎝
∑

x∈X (b,Lab)

ρU (v, x)

⎞

⎠ .

Furthermore, evaluating the identity
∑

xy∈(XU
2 )

ρU (x, y)λ
TU
xy = 0 on the map δeab

(Eq. 5) also yields the following:

0 =
∑

x∈X−{a,b}
ρU (v, x) =

∑

x∈X (a,Lab)

ρU (v, x) +
∑

x∈X (b,Lab)

ρU (v, x)

and, therefore, the following holds:

0 = (η(eb) − η(ea))
∑

x∈X (a,Lab)

ρU (u, x).

So, our assumption
∑

x∈X (a,Lab) ρU (x, v) �= 0 implies 0 = η(eb) − η(ea) which,

together with 0 = λT
ab(η) = η(ea) + η(eb), implies that also in this case 0 = η(ea) =

η(eb) must hold, as claimed. ��
Our observations imply also that we can construct all the tight edge-weight lassos

of T from the edge-weight lassos L′ of TU with |L′| ≤ |EU | + 1 as follows:

Corollary 2 (i) Given any tight edge-weight lasso L′ of TU , there is a canonical
one-to-one correspondence between all tight edge-weight lassos L of T with
LU = L′ and all pairs of subsets A, B of XU (v,L′) with |A ∩ B| = 1.

(ii) Furthermore, given any edge-weight lasso L′ of TU of cardinality |EU | + 1,
there is a canonical one-to-one correspondence between all tight edge-weight
lassos L of T with LU = L′ and all pairs of disjoint subsets A, B of XU (v,L′)
for which

∑
x∈A ρU (x, v) �= 0 holds for one (or, equivalently, every) non-zero

map ρU : (XU
2

)→R with support in L′ for which
∑

xy∈(XU
2 )

ρU (x, y)λ
TU
xy = 0

holds.
In both cases, the correspondence is given by associating to each pair A, B, the

set:

L′
A,B :=

(
L′ ∩

(
X − {a, b}

2

))
∪ {ax : x ∈ A ∪ {b}} ∪ {bx : x ∈ B}.

As a second consequence of Theorem 5, we have the following result already indi-
cated in the remark at the end of Sect. 4.

Corollary 3 If L is an edge-weight lasso for a binary X-tree, then (X,L) is a con-
nected graph.
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6 Shellability

In this section, we introduce a concept that relates to strong lassos and will apply in
particular in the discussion of all edge-weight lassos for X -trees with |X | = 5 and other
examples in Dress et al. (2011a): Given a subset L of

(X
2

)
with X = ⋃ L, and an X -tree

T , we say that
(X

2

)−L is T-shellable if there exists a labelling of the cords in
(X

2

)−L
as, say, a1b1, a2b2, . . . , ambm such that, for every μ ∈ {1, 2, . . . , m}, there exists a
pair xμ, yμ of ‘pivots’ for aμbμ, i.e., two distinct elements xμ, yμ ∈ X − {aμ, bμ},
for which the tree T |Yμ obtained from T by restriction to Yμ := {aμ, bμ, xμ, yμ}, is

a quartet tree of type aμxμ‖yμbμ, and all cords in
(Yμ

2

)
except aμbμ are contained in

Lμ := L∪{
aμ′bμ′ : μ′ ∈ {1, 2, . . . , μ − 1}}. Any such labelling of

(X
2

)−L will also

be called a T -shelling of
(X

2

) − L, and any subset L of
(X

2

)
for which a T - shelling of

(X
2

) − L exists will also be called an s-lasso for T.

6.1 Example

Consider the caterpillar tree T5 on X5 depicted in Fig. 2. We claim that the set L :=
{ab, bc, cd, de, ea, ad, ac}, is an s-lasso for T5: Indeed, labelling the elements in the
cords in

(X
2

) − L = {bd, be, ce} as

a1 := c, b1 := e; a2 := b, b2 := e; and a3 := b, b3 := d

yields a T5-shelling of
(X

2

) − L because, choosing the elements

x1 := a, y1 := d; x2 := a, y2 := c; and x3 := a, y3 := e

as pivots, the quartet trees T5|Yμ are indeed quartet trees of type aμxμ‖bμyμ for

Yμ = {aμ, bμ, xμ, yμ}, μ = 1, 2, 3, as required, and all cords in
(Yμ

2

)
except aμbμ

are contained in Lμ = L∪{
aμ′bμ′ : μ′ ∈ {1, 2, . . . , μ − 1}} for all μ = 1, 2, 3. Thus,

listing the cords in
(X

2

) − L ‘anti-lexicographically’ in the order ce, be, bd yields a

T5-shelling of
(X

2

) − L, implying that L is an s-lasso for T5 as claimed. ��
We now establish the following simple, yet sometimes rather helpful result:

Theorem 6 Every s-lasso L ⊆ (X
2

)
for an X-tree T is a strong lasso for T .

Proof Given a T -shelling a1b1, a2b2, . . . , ambm of
(X

2

)−L with corresponding pivots
x1, y1; x2, y2; . . . ; xm, ym , we can compute, for every proper edge weighting ω of T ,
the distances Dω(aμ, bμ) for all μ ∈ {1, 2, . . . , m} recursively, because:

Dω(aμ, bμ) = Dω(aμ, yμ) + Dω(bμ, xμ) − Dω(xμ, yμ)

must hold in view of the fact that, by assumption,

Dω(aμ, xμ) + Dω(bμ, yμ) < Dω(aμ, bμ) + Dω(xμ, yμ)

must hold. ��
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The converse to Theorem 6 does not hold, that is, there exists an X -tree T and a
strong lasso for T that is not an s-lasso for T , as the following example shows.

6.2 Example

Put X7 := {a, b, c, d, e, f, g}, and let T7 denote the binary X7-tree with exactly two
proper cherries a, b and f, g, and the three ‘single’ leaves c, d, e. Assume furthermore
that the corresponding adjacent vertices vc, vd , ve are passed in this order on the path
connecting the cherry a, b with f, g. Then, the bipartite set

L7 := {ab, ad, bc, be, cd, c f, de, dg, e f, f g}

is a topological lasso for T7 since any X7-tree T ′ with (T7, ω)
L7≡ (T ′, ω′) for

some proper edge weightings ω ∈ �T7 and ω′ ∈ �T ′ must display the quartets
ab‖cd, bc‖de, cd‖e f, and de‖ f g which is well known to imply that T7 and T ′ must
be equivalent (see e.g. Böcker et al. 1999 or Dress et al. 2011b). It follows that adding
the cord ag to L7 yields an edge-weight lasso for T7, since the associated 11 × 11
incidence matrix of paths (one for each cord) and edges of T7 has full rank. Thus
L = L7 ∪ {ag} is a strong lasso for T7 which, however, is easily seen not to be an
s-lasso for T7 as there exists not even any 4-subset Y of X7 with |(Y

2

) ∩ L| ≥ 5.

7 Covers of binary X-trees

Recall that, by Corollary 1, a necessary condition for a subset L of
(X

2

)
to lasso the

edge weights (or, respectively, the shape) of a tree T is that, for every interior vertex
v of T , the graph G(L, v) defined above is strongly non-bipartite (or, respectively, a
complete graph). This suggests the following:

Definition A subset L of
(X

2

)
is an e-cover of T if X coincides with

⋃ L and G(L, v)

is strongly non-bipartite for every interior vertex v of T , and it is called a t-cover of
T if X = ⋃ L holds and G(L, v) is a complete graph for every interior vertex v of
T —see Fig. 6(i) below for an illustration.

In the first part of this section, we restrict our attention to covers of binary X -trees.
Clearly, e- and t-covers coincide for such trees—so, we will just call them covers in
this case.

By definition (and Corollary 1), every edge-weight lasso for an X -tree T is an
e-cover of T . The converse, however, does not hold, not even for binary X -trees. For
example, the topological lasso L4 = {ab, ac, bd, cd} for the quartet tree T4 of type
ab‖cd depicted in Fig. 1 is clearly a cover for T4, but—in view of |L| < |E |—it does
not lasso the edge weights of T .

Note also that, if L is a topological lasso for T , then L must also be a t-cover of T .
However, once again, the converse does not hold; for example, the subset

L′
6 := {ab, ac, a′b′, a′c′, bb′, cc′} (14)
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Fig. 6 i The three cords ab, b′c, and c′a′ provide a ‘cover of the degree 3 vertex v’. ii The three cords
ax, bx, and a′b′ provide a ‘pointed cover of v’. iii The three cords ab, bc, and ca provide a ‘triplet cover
of v’. It is possible for a = a′ or b = b′ (in cases i and ii) and also c = c′ (in case i) (see text for details)

of L6 as defined in (11) is a cover for the two non-equivalent binary X ′
6-trees depicted

in Fig. 5.
More strikingly, L6 itself is, thus, both an edge-weight lasso and a t-cover for T6,

yet L6 fails to lasso the shape of this tree.
We now describe two particular types of covers: Given a binary X -tree T = (V, E),

we will say that a subset L of
(X

2

)
is a triplet cover of T if, for every interior ver-

tex v ∈ V of T , there exist three distinct leaves a, b, c with ab, ac, bc ∈ L and
v = medT (a, b, c) (see Fig. 6(iii) for an illustration of this concept). Note that a
triplet cover of a binary X -tree T can be represented as a collection C of 3-element
subsets of X with

⋃ C = X and with the property that the function that assigns each
triplet to its associated median vertex in T maps C surjectively onto the set of interior
vertices of T . A combinatorial characterization of arbitrary collections C of 3-element
subsets of X with

⋃ C = X for which this function is injective for some binary X -tree
is simply, as described recently in Dress and Steel (2009), that | ⋃ C′| ≥ |C′|+2 holds
for all non-empty subsets C′ of C.

Secondly, given an element x ∈ X , a subset L of
(X

2

)
is called a pointed x-cover of

a binary phylogenetic X -tree T if it is a cover of T and there exist, for each interior
vertex v of T , two distinct leaves a, b ∈ X with ax, bx ∈ L and v = medT (a, b, x)

(see Fig. 6(ii) for an illustration). Moreover, it is called just a pointed cover of T if
there exists some x ∈ X such that L is a pointed x-cover of T .

Clearly, every triplet and every pointed cover of T is, in particular, a cover of T .
To present some examples of triplet and pointed covers, recall first that a circular
ordering of (the leaf set X of) an X -tree T is a cyclic permutation σ of the elements
in X for which there exists a planar embedding of T such that, for every x ∈ X , the
leaf that follows the leaf x when one traverses the leaves of T in that embedding in,
say, a clockwise fashion is the leaf σ(x). An equivalent characterization is that each
edge of T is covered only twice by the paths connecting the n pairs of leaves in the set
{{x, σ (x)} : x ∈ X}. For example, there exist planar embeddings of the two X ′

6-trees
depicted in Fig. 5 such that the permutation (a, b, b′, a′, c′, c) is a circular ordering

123



‘Lassoing’ a phylogenetic tree I 101

Fig. 7 A caterpillar tree for which (a0, a1, . . . , an−2, an−1) is a circular ordering

for both of them, while the permutation (a, b, a′, c′, b′, c) is a circular ordering for
T6 (under a different planar embedding), but not for the other X ′

6-tree depicted in that
figure under any planar embedding (as the three paths connecting the three pairs b and
a′, a′ and c′, and c′ and b′ share one edge). For more details on circular orderings, see
Semple and Steel (2003).

Now, let (a0, a1, . . . , an−2, an−1) be a circular ordering for a binary X -tree T =
(V, E), and put

L := {a0ai : i = 1, . . . , n − 1} ∪ {ai−1ai : i = 2, . . . , n − 1}.

Then, |L| = |T | = 2n − 3 holds and L is a triplet as well as a pointed a0-cover of T ,
and it is a well-known fact that L lassos the edge weights of T (see Proposition 2.3 of
Barthélemy and Guéoche 1991 or Chaiken et al. 1983 for the case where ω(e) = 1
for all e ∈ E).

Further, if T is a caterpillar tree with the two cherries a0, a1 and an−2, an−1 and
(a0, a1, . . . , an−2, an−1) is a circular ordering for T relative to the planar embedding
of T that is indicated in Fig. 7, then the union L of the sets {a0x : x ∈ X, x �= a0} and
{an−1x : x ∈ X, x �= an−1} is a triplet as well as a pointed a0-cover of T for which
|L| = |E | = 2n − 3 holds.

Theorem 5 implies the following result.

Proposition 1 Every triplet cover L of a binary X-tree T lassos the edge weights
for T . Furthermore, (T, ω) ≡ (T ′, ω′) must hold for every proper edge weighting ω

of T and every pair (T ′, ω′) that consists of an X-tree T ′ and an edge weighting ω′

of T ′ such that L is also a triplet cover of T ′ and (T, ω)
L≡ (T ′, ω′) holds.

Proof Choose any T -cherry a, b and note that, with U = Uab := V − {a, b} and
all the notations and conventions introduced in the context of Theorem 5, the subset
LU of

(XU
2

)
is a triplet cover of XU whenever L is a triplet cover of T . Thus, we

may assume that, by induction, LU satisfies our claims for TU . Moreover, every triplet
cover L of T must contain the cord ab and there must exist some c ∈ X − {a, b} with
ac, bc ∈ L. So, all the assertions (U1), (U2), and (U3-a) must hold for L, implying
that L is indeed an edge-weight lasso for T .

Furthermore, given any proper edge weighting ω of T , the pair a, b must form a
T ′-cherry in every X -tree T ′ for which L is also a triplet cover of T ′ and an edge weight-

ing ω′ of T ′ with (T, ω)
L≡ (T ′, ω′) exists. Indeed, it is obvious that, given any triple

a′, b′, c′ of distinct leaves with a′b′, a′c′, b′c′ ∈ L, the interior vertex medT (a′, b′, c′)
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Fig. 8 One of the various
configurations that can occur for
T if one adds the vertices
y, y′, z to the three vertices
a, b, x (see text for details)

is adjacent to a′ in T if and only if we have

Dω(a′a′|b′c′) = min(Dω(a′a′|yz) : y, z ∈ X − {a′}; a′y, a′z, yz ∈ L),

(note that, by definition (cf. 2), Dω(aa|bc) = Dω(a, b) + Dω(a, c) − Dω(b, c) holds
for all a, b, c ∈ X ). Thus, if medT (a′, b′, c′) is adjacent to a′ for some a′, b′, c′ ∈ X
as above, this must also be true for the vertex medT ′(a′, b′, c′) in T ′, provided that

(T, ω)
L≡ (T ′, ω′) holds. In particular, the pair a, b must form a T ′-cherry if it forms

a T -cherry and (T, ω)
L≡ (T ′, ω′) holds. It follows that (TU , ωU )

LU≡ (T ′
U , ω′

U ) must
also hold and, by induction, therefore (TU , ωU ) ≡ (T ′

U , ω′
U ) also holds, which easily

implies our claim (T, ω) ≡ (T ′, ω′). ��
Regarding pointed covers, even a stronger result holds:

Theorem 7 If a subset L of
(X

2

)
is a pointed cover of a binary X-tree T , then L is an

s-lasso and, hence, a strong lasso for T . More specifically, if L is a pointed x-cover of
T for some x ∈ X, then there exists an “x-shelling” a1b1, a2b2, . . . ambm of

(X
2

)−L,
i.e., a shelling such that, for every μ = 1, . . . , m, one of the two pivots xμ, yμ for
aμbμ can be chosen to coincide with x.

Proof Clearly, we may assume, without loss of generality, that n ≥ 5 holds. Consider
a (necessarily proper) T -cherry a, b not containing x . As above, we put U = Uab :=
V − {a, b} and use all the notations and conventions introduced in the context of
Theorem 5.

First note that, if we have any two distinct elements y, z ∈ X − {x, a, b}, the tree
T |{a,b,x,y} obtained from T by restriction to {a, b, x, y} is always a quartet tree of
type ab‖xy. Moreover, the two trees T |{a,x,y,z} and T |{b,x,y,z} obtained from T by
restriction to {a, x, y, z} and {b, x, y, z} are, respectively, quartet trees of type xy‖az
and xy‖bz in case the tree TU |{v,x,y,z} obtained from TU by restriction to {v, x, y, z}
is a quartet tree of type xy‖vz, and these two trees are, respectively, quartet trees of
type xa‖yz and xb‖yz in case TU |{v,x,y,z} is a quartet tree of type xv‖yz—see Fig. 8
for an illustration.

Now assume that L ⊆ (X
2

)
is a pointed x-cover of T for some leaf x ∈ X . It is

obvious that LU is an pointed x-cover of TU . So, by induction, there must exist a
shelling a1b1, a2b2, . . . , ambm of

(XU
2

) − LU such that, for every μ ∈ {1, 2, . . . , m},
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there exists some element yμ in XU − {x, aμ, bμ} for which the tree TU |{aμ,bμ,x,yμ}
obtained from TU by restriction to {aμ, bμ, x, yμ} is a quartet tree of type aμx‖yμbμ

and all cords in
({aμ,bμ,x,yμ}

2

)
except aμbμ are contained in LU,μ := LU ∪ {aμ′bμ′ :

μ′ ∈ {1, 2, . . . , μ − 1}}. So, to produce an x-shelling of
(X

2

) − L, we may first take

all cords in
(X

2

) − L of the form ay with by ∈ L and use b as their second pivot.
Noting that the tree T |{a,b,x,y} is a quartet tree of type ab‖xy and that all cords in({a,b,x,y}

2

)
except for ay, are contained in L, we can take these cords in any order.

Then, we take all cords in
(X

2

) − L of the form by with ay ∈ L in any order
and use a as their second pivot, which works for the same reason. Then, for each
μ = 1, 2, . . . , m with v �∈ {aμ, bμ, yμ}, we take the cord aμbμ and use yμ as its
second pivot. In case yμ = v, we take the cord aμbμ and use a or b as its second pivot.
In case aμ = v, we take the cord abμ and use yμ as the second pivot and then add the
cord bbμ, taking a as the second pivot. And finally, in case bμ = v, we switch aμ and
bμ and, otherwise, proceed as above. Now, a simple inductive argument shows that
this defines an x-shelling of

(X
2

) − L as required. ��
Our earlier Example 6.1 illustrates Theorem 7, as {ab, bc, cd, de, ea, ad, ac} is

obviously a pointed a-cover of T5.
Let us finally return to the general setting of (not necessarily binary) X -trees and

consider subsets L of
(X

2

)
that are of the form

L = A ∨ B := {{a, b} : a ∈ A, b ∈ B}

for some X -split A, B. For example (cf. Fig. 1), the topological lasso L4 for T4 is of
this form as it coincides with {a, d} ∨ {b, c}.

It follows immediately from our definitions that, given any 2-subset c = {x, x ′} of
X with x ∈ A and x ′ ∈ B and any subset Y of X − c, the restriction �(L, c)|Y of the
graph �(L, c) introduced in Sect. 4 is the complete bipartite graph with vertex set Y
whose edge set is (A ∩Y )∨ (B ∩Y ). Thus, it is connected if and only if one has either
|Y | = 1 or neither A ∩ Y nor B ∩ Y are empty. And it is also obvious that, whenever
L = A ∨ B is a t-cover of an X -tree T , one must have A ∩ c �= ∅ �= B ∩ c for every
2-subset c of X whose elements form a T -cherry.

L can therefore only be a t-cover of an X -tree T if there exist no three distinct
leaves a, b, c of T with va = vb = vc. Thus, Theorem 3 implies the following
characterization of topological lassos L that are of the form L = A ∨ B for some
X -split A, B:

Theorem 8 Given an X-tree T and an X-split A, B of X, the following four assertions
are equivalent:

(i) The subset A ∨ B of
(X

2

)
is a topological lasso for T .

(ii) A ∨ B is a t-cover of T .
(iii) A ∩ c �= ∅ �= B ∩ c holds for every 2-subset c of X whose elements form a

T -cherry.
(iv) The bipartition A, B of X is incompatible with every non-trivial virtual T -split.
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Proof It is obvious from the definitions and previously recorded facts that “(i) ⇒ (ii)
⇒ (iii)” holds. The implication “(iii) ⇒ (iv)” holds because any subset A′ of X for
which A′, X − A′ is a non-trivial virtual T -split must contain two elements that form
a T -cherry.

And “(iv) ⇒ (i)” holds in view of Theorem 3: First observe that there exists always
a 2-subset c of X whose elements form a proper T -cherry.2 Note next that, for any such
2-subset c, there must exist x ∈ A and x ′ ∈ B with c = {x, x ′} (as A, B is supposed
to be incompatible with every non-trivial virtual T -split and, hence, in particular with
the T -split c, X − c), and that (for the same reason) A ∩Y �= ∅ �= B ∩Y must hold for
every subset Y of X − c for which Y, X − Y is a non-trivial virtual T -split implying
that �(L, c)|Y must be connected (as required in Theorem 3). ��

8 Remarks and questions

Our results raise further questions concerning the properties of different types of lassos:

Q1. Does there exist a triplet cover of a binary tree that is not a strong lasso?
Q2. Can we characterize those covers of a binary X -tree T that are a tight edge-

weight or strong lasso of T ?

Regarding the second question, two necessary conditions for a cover of a binary
X -tree T of cardinality 2n − 3 to lasso the edge weights of T are as follows:

– For each subset Y of X of cardinality m, the cardinality of L ∩ (Y
2

)
cannot exceed

2m − 3 (to avoid over-determination at Y ).
– If ab, bc, cd, da ∈ L holds for some four leaves a, b, c, d ∈ X , then no edge

of T can separate a, c from b, d (as this would imply that D(a, b) + D(c, d) =
D(b, c) + D(d, a) would hold).

It may also be of interest to investigate further the properties of weak lassos. Note
that if T is a binary X -tree, then L is a weak lasso for T if and only if L is a topolog-
ical lasso for T ; however, for non-binary trees, these are quite different concepts. For
example, any subset of

(X
2

)
(including the empty set) is a weak lasso for the star tree

T ∗ with leaf set X since any X -tree is a resolution of that tree, but it requires all of(X
2

)
to lasso the shape of T ∗.

Finally, we can view a triplet cover as a subset of
(X

2

)
that contains all the cords

“induced” by a sufficiently large collection of subtrees each of which has three leaves.
Thus, it is mathematically natural, and relevant to phylogenetic analysis (supertree
reconstruction), to study the lasso properties of subsets of

(X
2

)
that are induced by

collections of phylogenetic trees with three or more leaves. More precisely, given an

2 To see this, just take any leaf a of maximal distance to some other arbitrary vertex u. Then, a must be
part of a cherry a, b whose elements a, b must be adjacent to an interior vertex v = va = vb that is incident
with only one interior edge (by the maximal distance to u assumption) and with no other pendant edge (by
the condition imposed in (iv)). So, a, b must necessarily be a proper cherry.
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X -tree T and a collection P = {X1, . . . , Xk} of subsets of X , let

LP :=
k⋃

i=1

(
Xi

2

)
.

It would be of interest to determine conditions on P in order for LP to lasso T ,
at least in case T is binary. The quartet case (where all sets in P are 4-subsets of X )
is an obvious candidate for analysis, in view of a range of combinatorial results from
Böcker et al. (1999), Dress and Erdös (2003), Dress et al. (2011b), Grünewald et al.
(2008) and Steel (1992).
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