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Leaf-colored binary trees, with an induced integer “length,” arise in biomathe-
matics. We analyse such trees in terms of a natural bipartition of their edge set,
and, extending a recent decomposition for binary trees, obtain enumerative formu-
lae. © 1993 Academic Press, Inc.

1. INTRODUCTION

A tree with a colouration of its leaves (degree-one vertices) has an
associated non-negative, integer “length” which forms the basis for the
widely used “minimum length tree” construction in taxonomy. This proce-
dure estimates the ancestral evolutionary tree of a collection S of species
as the tree(s), whose degree-one vertices are S, and which minimizes the
sum of the lengths induced by a set of colorations of S. In practice these
colorations arise from the characteristics on which § is being compared,
for example, nucleotide bases on aligned DNA sequences (see, for exam-
ple, Felsenstein [7]). The problem of finding a minimum length tree (also
called a “maximum parsimony tree”), or even just the minimum possible
length, is known to be NP-hard. However, good branch-and-bound and
heuristic algorithms are available, and these are necessary when find-
ing an optimal tree for a large number of species since any exhaustive
search would have to consider every binary tree with labelled leaves. As
is well known, the number of such trees is 2n — 5)!!=Q2n —5) X
(2n — 7 X...Xx 3 x 1, where n is the number of leaves; see [4] for a
bijective enumeration of various classes of leaf-labelled trees.

To evaluate the statistical properties of the minimum length tree method
it is helpful to enumerate binary trees by their length according to a fixed
leaf coloration. This task was taken up by Carter et al. [2] who obtained
exact formulae in two cases: when the number of colors present is either
two (the “bichromatic binary tree theorem”), or larger by one than the
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length of the tree. An exact enumeration formulae was then found for the
case when the number of colors present equals the length of the tree
(Steel [13]). That paper, and Erdds and Székely [5] also provided a
structural proof, based on Menger’s theorem, of the bichromatic binary
tree theorem. Applications of this theorem to taxonomy were outlined in
Steel [13], and implemented by Steel et al. [14]. Most recently, Erd3s and
Székely [6] have obtained an extension for trees of Menger’s theorem as a
first step toward a structural analysis of trees whose leaves are r-colored,
r> 2.

In this paper we study the structure of trees which are subject to leaf
r-colorations by considering a natural partition of the edge set of a
leaf-colored tree T, into two classes: “reducible” and “irreducible” edges
(Section 2). This in turn induces a decomposition of T into a set of
subtrees over which the length function is additive, but so that these trees
cannot be decomposed further while preserving additivity. In one special
case this decomposition is shown to be unique. In Section 3 enumerative
formulae are derived for bicolored trees (Theorem 3) and 3-colored trees
(Theorems 4 and 5), using results from Section 2, the Lagrange inversion
formula, and an extension of the methods from Steel [13].

DerinrTions.  We mostly follow the terminology of Erdds and Székely
[5]; for standard graph theoretic terminology see Bondy and Murty [1]. A
semilabelled tree T = (V(T), E(T)) is a finite tree whose leaves (degree-one
vertices) only are labelled. Throughout we let L denote the set of labelled
leaves, and n = |L|. In case all the non-leaf vertices of 7 have degree
three we say that T is binary. If T has a distinguished vertex v we say T
is rooted, and v is the root of T. A leaf r-coloration is a map x: L — C,
where C is a set of r colors. If {[y Na)l:a€Cl={a;2a,>,..., >
a, > 1}, we say y is of type (a,,...,a,). A coloration y : V(T) — C is a
extension of y if y and y agree on L, and the changing number of x is the
number of edges whose ends are assigned different colors by y. An
extension which has the smallest changing number amongst all extensions
is called a minimal coloration (according to x), and its changing number is
called the length of the tree (according to y).

We denote the length of T according to y by (T, x), or more briefly
I(T) when y is clear. If x is an r-coloration of the leaves of T, and ¢ is a
subtree of T, let x|, denote the induced leaf coloration of ¢, and let
I() =1(¢, x1).

If a semilabelled tree T consists of two rooted semilabelled trees T, T,
and an edge e, incident with their roots, we write T = [T}, T,],, or just
T = [Ty, T,], as indicated in Fig. 1(a), and say T,, T, are pendant in T. For
a rooted semilabelled tree 7' with root r we write T = [T,,...,T,]" if
deleting r and its incident edges produces the forest of rooted semi-
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r

T=IT,T2], T[T, T

Fic. 1. Elementary edge (a) and root (b) tree decompositions.

labelled trees, {T},...,7,}, as indicated in Fig. 1(b). Given a rooted
semilabelled tree T let M(T, x) denote the set of colorations of the root
of T which occur in at least one minimal coloration of T that extends y.
When y is unambiguous we write M(T) = M(T, x), and M(t) = M(t, x|.)
for a subtree ¢ of T.

Next we summarize some of the basic properties of /(7). As mentioned
in [6], the problem of determining the minimum value of /(T) over all
semilabelled trees T is a special case of the “multiway cut problem” for
graphs, described by Chopra and Rao [3], which is NP-hard even for
r = 3. However, for trees, O(r X n) algorithms—in particular, the “Fitch
algorithm”—for determining /(7)) and a minimal coloration are well
known in biomathematics; see, for example, {6, 9, 11]. We first describe a
recursive and efficient way to calculate I(T), established by Hartigan [9].
An extension of this result, not required here, also gives an explicit
minimal coloration in O(r X n) time.

Taeorem 1. (1) If T' is a subdivision of T then I(T") = I(T).

(2) Suppose T =[T,,...,T.]. For a € C let f, = |{i: @« € M(T)}|,
and let K = max{f,: a € C}. Then,

M(T) ={aeC: f,=K}; I(T)=il(T,-)+s—K.

i=1

When r = 2, an application of Menger’s theorem shows that I(T) equals
the maximal number of edge-disjoint paths joining differently colored
leaves. For r > 2 this result has been generalized by Erdds and Székely
[6], as follows.

DeriNiTION. By an Erdds—Székely path system on T (according to y)
we mean a collection P of oriented paths in T, each connecting a pair of
differently colored leaves and having the property that if two paths in P
use a common edge of T then both paths have the same direction along
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that edge and the leaves that the two paths are directed toward have
different colors. If P has the maximum cardinality of any Erd8s—Székely
path system system on T (according to x) we say that P is optimal.

Tueorem 2 (Erdés and Székely [6]). The size of an optimal
Erdds—-Székely path system on T equals I(T, x).

A third, basic property of I(T) is an inequality which arises from a
recursion on the color set C. For @ € C and T a semilabelled tree having
at least one vertex colored « by a leaf coloration y, let T~ denote the
semilabelled tree obtained by deleting from T all leaves colored a,
together with their incident edges, let y ™ = x|7-« and let y, denote the
leaf bicolouration of T by {«a, 8} defined by

a, if x(v) =a
B, otherwise.

Xa(0) = {

LemMma 1. (1) For any leaf r-coloration, r —1 <I(T) <n — a,, and
I(T) = n — a, if and only if T has a minimal coloration which is monochro-
matic on the non-leaf vertices of T.

(2) For all pairs (T, x), (T, x) < KT~ x~*) + T, x)-

Furthermore, equality holds if (T, x) =n — a, and a, < a,, where a, =
lx~Wa)|. In that case KT"% x™*) =n — a, — a, and (T, x,) = a,,.

Proof. (1) Choose r differently colored leaves v,,...,v,. Then the
collection of directed paths from v, to v,, i = 2,..., r, is an Erdds—-Székely
path system of cardinality r — 1, and thus r — 1 < I(T) by Theorem 2.
Coloring all the non-leaf vertices of T by a color which occurs most
frequently on the leaves gives an extension y of y having changing
number n — a,, hence (T) < n — a,, with equality precisely if x is a
minimal coloration according to x.

(2) Choose the following minimal colorations: y; for 7~* according

to x % and ¥, for T, according to x,. Define a coloration y of V(T) by
setting

a, if v € x; Y(a)

xi(v), otherwise.

Then Y is an extension of y, so /(T x) is at most the changing number of
X, which is the number of edges vv’ of T for which y(v) # x(v'). This set
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is contained in the disjoint union of two sets:
¢, = {w': [{o, v} N k7 ()] = 1)
CZ = {UU’: {U7Ul} m/?;l(a) = @, /\_/1(U) * /?I(U,)}‘

Now, since y, and y, are minimal colorations (according to their respec-
tive leaf-colorations), we have |C,| = (T, x_), and |C,| < I(T~%, x~%).
Thus UT) < |C,UGC,| = |C| + |Gyl <UT™ % x™%) + UT, x,), as re-
quired. From part (1) (and since y, is a leaf bicoloration) we have

(T, x,) <a, (1.1)
and if e, < a, then part (1) also gives
T x*)<(n—-a,) —ay. (1.2)

Thus if (T, x) = n — a, then the first part of result (2) gives n — a, =
KT) < KT~*, x~*) + T, x,) <n —a, and so (1.1) and (1.2) must both
be equalities, as claimed.

2. RepuciBLE EDGES, IRREDUCIBLE TREES

DeriniTioN.  If T = [T, T,],, then by Theorem 1, KT, x) — KT,) —
I(T,) € {0,1}). We say e is reducible (according to x) if T, x) = (T) +
I(T,). If every edge of T is irreducible (i.e, not reducible) according to x,
we say T is irreducible (according to y).

Clearly,
T) = m;ix Zl(t), (2.1)

tel

where I ranges over sets of disjoint irreducible semilabelled subtrees of T
according to their induced leaf colorations.

Remarks. (1) The notion of reducible edges already exists in biomath-
ematics (see, for example, Rinsma et al. [10])—its biological relevance
relates to the estimation of the temporal lengths of edges of evolutionary
trees constructed by the minimum length tree method—although irre-
ducibility of trees appears to be a new concept.

(2) A set I which realizes equality in (2.1) can be constructed in
polynomial time, although in general it is not unique.

(3) In case r = 2, the only irreducible binary trees are paths of length
2, with differently colored leaves; however, even for r = 3 there is an
infinite number of irreducible binary trees.
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Lemma 2. Given a leaf coloration of T = [T,,T,],, the following are
equivalent:

(i) e is reducible
(i) M(T) N M(T,)) + @

(iii) all minimal colorations of T assign a common color to the
endpoints of e.

(iv) at least one optimal Erddés—Székely path system avoids e.

Proof. (i) < (ii) Theorem 1 with s =2 implies that for 7' =
[T, T,), KT", x) — KT,) — (T,) = 0 precisely if M(T)) n M(T,) # &,
and since I(T”, x) = I(T, x) the result follows.

(ii) < (iii) is clear.

(i) = (i) If e is reducible select, for i = 1,2, an optimal Erd6s—-Székely
path system P, on 7T; (according to x|r,). Thus |P,| = I(T;). Now P, U P, is
an Frdds—Székely path system on T and

|P, U P,| = |P| + |P,] =I(T,) +1(T,) =IT),

the last equality holding since e is reducible. Thus P, U P, is optimal and
avoids e.

(iv) = (i) Suppose an optimal Erdds—Székely path system P avoids e.
For i = 1,2, let P, denote the set of paths in P, which lie in 7. Then

4

|P,| + |P,| = |P| = I(T). However, for i = 1,2, P, is an Erdds-Sz¢kely

1

path system on T, and hence I(T;) > |P|. Thus KT)) + KT,) = KT),

which combined with the reverse inequality (which always holds) gives
KT,) + KT,) = (T), and so e is reducible.

Lemma 3. (1) Suppose T = [T, T,],, where e is an irreducible edge of T
according to x, and e, is an irreducible edge of T, according to x|r,. Then e,
is an irreducible edge of T according to x.

(2) Suppose T =[T\,...,T,), and let €; denote the edge of T incident
with r and the root of T, Then T is irreducible according to x if, for
i=1,...,s, T, is irreducible according to x|,, and e} is irreducible accord-
ing to x.

Proof. (1) Delete e and e, from T to partition T into three trees,
to, ti» t,, Where we may suppose ¢, lies between ¢, and ¢,, and £, =T,
(thus t,, and ¢, are rooted). Then I(T) = I(T,) + I(T,) + 1, since e is
irreducible, and I(¢,) + I(¢,) + 1 = I(T,) since e, is an irreducible edge of
T,. Thus :

I(T, x) = I(ty) + I(t,) + I(1,) + 2. (2.2)
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Now writing T = [y, 7"],, and noting that I(T") < I(t}) + I(t;) + 1, we
deduce from (2.2) that I(T) > I(t,) + I(T’) and so e, is an irreducible
edge of T.

(2) The “only if” direction is immediate. For the “if” direction,
suppose e/, ..., ¢, are all irreducible and that T is reducible. Then T has
a reducible edge of e, & {¢},..., €}}, where we may suppose e, lies in T.
But since T =[7,,T'],,, where T' = [T,,...,T,]” we can apply Lemma
3(1) (with e = ¢€}) to obtain the required contradiction.

The following result is useful in determining whether or not a tree is
reducible. Given a set C’ of colors, let S(C’) denote the “star-shaped”
rooted semilabelled tree consisting of leaf set C’ together with one other
root vertex. Note that S{(C’) is endowed with a natural leaf |C’|-colora-
tion.

Lemma 4. T =[T,,T,], is irreducible according to x if and only if
[T,,S,], and [S,,T,], are irreducible according to their induced leaf col-
orations, where S; = S(M(T})).

Proof. Let M; = M(T},). Suppose T is irreducible and ¢’ is an edge of
[T}, S,].- If ¢ = e then ¢ is irreducible since M, "M, = &. If €' is an
edge in §, incident with a leaf v and the root r of S, then let §" denote
the tree obtained from S, by deleting v and its incident edge, let
T' = [T.,8'), and let ¥’ be the induced leaf coloration of 7'. By Theorem
1, M(T', x') =M, UM, — {x(v)},and so M(T', x') N x(v) = &, and thus,
by Lemma 2, ¢ is an irreducible edge of [T}, S,1,. If ¢’ lies in T, delete ¢’
from [T}, S, ], to partition this tree into two subtrees ¢,, t,, where ¢, say, is
contained entirely in 7. Let ¢, denote the subtree of T for which
T = [t,,t5],. Then by Theorem 1, M(¢,) = M(¢,) and, since €' is an -
irreducible edge of T, Theorem 1 implies M(t;) N M(t,) = &. Thus
(again by Theorem 1) €' is an irreducible edge of [T}, S,],. The same
applies for [S;, T,].. The converse argument to establish the irreducibility
of every edge e’ of T is similar, by considering separately the cases e’ = e;
¢’ liesin T; and ¢ lies in T5.

As mentioned above, the set of trees I which realizes I(T) in (2.1) is
generally not unique, even when r = 2. However, there is a special case
where this is so.

DeFINITION.  We say a semilabelled tree T is r-tight (according to yx) if
I(T) =n — a,. By Lemma 1 (1), this condition is equivalent to requiring
that y is an r-coloration of type (k,k,...,k) and that (T)=n —k
(= k(r — 1)), or that, equivalently, every coloration of the non-leaf ver-
tices of T by a single color is a minimal coloration.
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"LemMMA 5. Suppose T is r-tight according to x.
() If T =I(T,,T,], then T, and T, are both r-tight precisely when e is
reducible, and neither tree is r-tight when e is irreducible.
(ii) A unique set I realizes the equality in (2.1) and consists of the
irreducible r-tight subtrees of T. .

Proof. (i) Since T is r-tight, either T, and T, are both r-tight or
neither tree is. Thus it suffices to show that 7|, T, are r-tight if and only if
e is reducible. Suppose first that T, and 7T, are r-tight. If T, has rk; leaves,
then I(T)) = k,(r — 1) so that

KT,) + (T,) = (ky + ky)(r — 1) = U(T),

and hence e is reducible.

Conversely, suppose at least one of the pair T, T, is not r-tight. Let K;
denote the number of leaves of T, and for each a € C, let k, be the
number of leaves of T, colored a. Thus,

Y k, =K,
acC
There are two possible cases:

(@) k, > kg for some a, B € C.

(b) k, is a constant value, k' for each @ € C, and at least one tree,
say T, is not r-tight; that is, (7)) < k'(r — 1) — 1.

In case (a), since (T}) < K, — k,, and (T,) < K, — (k — kp) (as T, has
k — kg leaves colored B), we have

I(T,) + (T,) <k(r—1) = (k, —kg), since K, + K, =rk,
<k(r—1)-1,
=IT) -1,

which implies that e is irreducible. In case (b) let v denote the unique
vertex of T, which is adjacent to a vertex of 7,. If a minimal coloration of
T, according to y, assigns color y € C to v, extend this coloration to T
by assigning color vy to all the non-leaf vertices of T,. Since X(T') is at most
the changing number of this coloration,

(T) < (kK'(r—1)—-1) + (k—Kk')(r—=1)

=k(r—-1) -1, a contradiction.

Thus case (b) cannot occur.



)

“

COLORED SEMILABELLED TREES 9

(i) First note that the trees in any set I which realizes the equality in
(2.1) must collectively cover every leaf of T, for let n, denote the number
of leaves of each tree ¢t in I and let f(t) be the largest number of
monochromatic leaves in t. Then,

Yon, <rk, I(t) <n,~f(1), X f(1) =k,

tel tel

and these inequalities (in particular, the first) are compatible with an
equality in (2.1) for I, only if they are all equalities.

Suppose I,, I, are two sets which realize equality in (2.1). We show
I, = I, by induction on m = |I,| + |I,|. This holds trivially for m = 2, so
suppose m > 2. Since the trees in each of I, and I, collectively cover all
the leaves of T there exists, for j = 1,2, a tree T; € [; which is pendant in
T, and for which T, N T, # &. If T, # T,, it follows that one of these
trees is pendant in the other, say 7, is pendant in 7,. But by part (i), any
pendant tree of 7 which lies in I; or I, (in particular, T} and T,) is
r-tight, and so, writing 7, = [T,,T’],, for some pair e,7’, a second
application of part (i) shows that 7, is reducible, a contradiction. Thus
there exists an irreducible r-tight tree T;, common to I, I,, and for which
T =[T,,T,], for some T}, e. Then by part (i) T is r-tight, and since
I, — {T,} and I, — {T,) both realize the equality in (2.1) for Ty, it follows
by induction that I, — {T,} = I, — {T,}, which completes the proof.

3. APPLICATION TO BINARY TREES

DerINiTION. By a rooted semilabelled binary tree T we mean either an
isolated labelled leaf or a semilabelled binary tree on two or more vertices,
for which one edge has been subdivided—the new vertex being the root
of T.

Let F,(a,,...,a,) denote the set of semilabelled binary trees of length
k according to a fixed coloration of type (a,,...,a,), and let f,(a,,...,a,)
be the cardinality of Fi(ay,...,a,), as in Carter et al. [2]. We will suppose
a, > 1, since if a, = 1 one has

filay,ooosa,_,1) = 2n = 5) fi_(ay, ..., a,_1).

Exact expressions for f,(a,,...,a,) have so far been found in three
cases: r = 2 (Carter et al. [2]), k =r — 1 (Carter et al. [2]) and k =r
(Steel [13]). In the case r = 2 the bichromatic binary tree theorem, proved
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in [2, 5, 13], states

(20 — k) (a, Yb(n)
b(n—k+2) ’

n=a+b,

fk(a’b) =

where b(n) = Q2n — S!'=Qn -5 X 2n —7) X -+ X 3 X 1, which is
the number of binary trees on n leaves, and :

“»

Y (a,b) = (k- 1)!IN(a,k)N(b, k),
where

2n—k -1 )
N(n, k) = ( k—1 )XM"-k+m, if k <n

0, if k> n

which is the number of forests consisting of k rooted semilabelled binary
trees on a total of » labelled leaves (see [2]).

We first extend this theorem by adding as an additional parameter the
number of irreducible edges and the colors a root vertex can take over all
minimal colorations.

DeriniTions.  Let  fi(ay,...,a,ls) denote the number of trees in
F(a,,...,a,) which have exactly s irreducible edges, and let f;(a,,...,qa,)
denote the number of pairs, (7T, e), where T € F,(a,,...,a,) and e is an
irreducible edge of T. Thus,

fk(al""’ar) = ka(aly---,arls)a

s20

fia,,...,a,) =Y. X fi(ay,...,a,ls).

s=>0

A link between the latter quantity and f,(a,,..., a,) is provided by the ‘
following result.

LemMMA 6. Ifa, =2,

fi(ays....a,) = (2n — 7)(fk—l(a1""’ar—1) -
+(2n - 6)fk—2(a]”"’ar—l))
= Z(fl;—l(al"'ﬂar—l) _fli—z(al""’ar—l))‘ !

Proof. First note that a binary tree with p leaves has exactly 2p — 3
edges. For T € F,(a,,...,a,), a, = 2, let v,V denote the two leaves of T
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assigned a least frequently occurring color. Then T is obtained from a
unique tree 7" € F(ay,...,a,_,), j <k, in precisely one of the following
ways:

(1) Make v and v’ ends of a new edge e, then subdivide both e and
an edge ¢ of T’ and make these two new vertices ends of a new edge.
There are (2(n — 2) — 3) ways to do this and in this case j = k — 1.

(2) Subdivide two different edges of T’ and make each of v and v’
adjacent to exactly one of the new vertices by a new edge. There are
2(n — 2) = 3)2(n — 2) — 4) ways to do this, and in this case j = k — 2.

(3) Twice subdivide an edge, e, of T' and make each of v and v’
adjacent to exactly one of the new vertices by a new edge. For each edge
there are two ways to do this. Writing 7" = [T}, T,], and M, = M(T}; x11,),
an application of Theorem 1 shows that

(k-1 M NOM,=0
T=Vk-2 M OM,+02.

In view of Lemma 2, this implies that j =k — 1 precisely if e is an
irreducible edge of 77, and j = k — 2 otherwise. Thus the number of
trees in T € F,(ay,...,a,) arising from case (3) is precisely 2f; {(a,,...,
a, )+ 2Qn —2) = Df_fay...,a,_) — fi_Xay,...,a,_). The
lemma now follows.

For a nonempty subset M of C let f, ,(a,,...,a,) denote the number
of rooted semilabelled binary trees of length k according to a fixed
coloration y of type (a,,...,a,), and for which M(T, x) = M. Clearly,

Y fem(ar,-.ra,) =(2n=3)fi(ay,...,a,).
M

In the following theorem, n =a + b, and in part (2a), n!! is n X
(n—-—2)x(n—4),..., where the last term is 1 or 2 depending on
whether n is odd or even, respectively.

THeorReM 3., (1) The number of irreducible edges in a semilabelled
binary tree T of length k according to some leaf bicoloration, lies between k
and 3k — 2. '

(2a) The semilabelled binary trees which attain the lower bound in part
(1) are precisely those which have a unique minimal coloration. The number
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of such trees is:

(2n — 4k)d(a, b)(2n — k = 5!
fila. blk) = (2n — 3k — D!

@b) fi(a,blk +1) =0 :
(3) f(a,bI3k — 2) = Y, (a, b)3k — 3)'/(2k -1
@ fi(a,b) = k2* "'y (a,bXn — 2 /(n — k — D!
(5) writing C = {a, B}, where |x " (a)| = a, we have

2(a = k)Y (a,b)b(n + 1)

b(n—k + 2) if M= {a},
2b - k), (a,b)b(n + 1
PR L MEY LR R
ki (a,b)b(n + 1) |
b(n —k + 2) it M = {a, B}

Proof. We first summarize some recent results relating to the enumer-
ation of semilabelled binary trees and establish a mild generalization of
one of these formulae. Suppose F = {t,...,t,_,} is a forest of rooted
semilabelled binary trees, ¢, is a semilabelled binary tree, and the leaf sets
of t, and the trees in F are disjoint. As in [13] let Ext(¢,; F) denote the set
of semilabelled binary trees which contain disjoint subtrees Ty,..., 7,4
such that for i > 0, each 7, is a subdivision of ¢;, and if i > 0 the root of
t;, when regarded as a vertex of T, lies on the path from any vertex in T;
to T,. A complementary, recursive description of Ext(¢,; F ), given in [5], is
as follows. For |F| =1, Ext(¢,;{t,}) is the set of trees which can be
obtained by subdividing by a new vertex an edge of #,, and making this
new vertex adjacent to the root of ¢, by a new edge. For |[F| > 1,atree T
lies in Ext(ty; F) precisely if T € Ext(7";{t}) for some t € F and 17" &
Ext(t,; F — {t}). We call such a description of T a recursive Ext construc-
tion (of T). From Steel [13], or Erdés and Székely [5], we have

egb(n)

|Ext(to; F)l = m,

(3.1)

where e, = |E(ty)| and r — 1 = |F|. Let

Exty(1o; F) = {Te Ext(t; F): IV(T) - U V(T)I - k}

i=z0
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N

F(T,.T)

11> Te-t,

Fic. 2. A tree in Ext(to, F), F ={t,,...,t,} regarded as a tree in F5(5,6) with s =1,
d = 2. The iT) = 8 irreducible edges are marked by x, the fibre above T, F(T5,T), is
circled.

From [13],

|Ext,(ty; F)l =

eO(k+r—l)!X(2n_r_k_4 (32)

k12% r—k-—1 ’

where r — 1 = |F|. A representation of a tree in Ext,(ty; F), |F| =4, is
shown in Fig. 2.

Next we generalize (3.1) by allowing conditional restrictions on the
possible edges which may be subdivided at each step of any recursive Ext
construction of a tree in Ext(¢,; F). The fibre above T; (i > 0) in T,
denoted F(T,, T), is defined as follows: For i > 0, F(T;,T) is the minimal
subtree of T which contains the root of 7; and all the trees in
{T,,T,,...,T,_;} — {T} encountered on the path from T to T;; for i = 0
we let F(T,,T) = &. For example, in Fig. 2, the fibre above the tree
T, = t5 is depicted as an enclosed region and consists of T, T, one other
vertex, and three other edges. Suppose the set of edges of ¢, which may
be subdivided to form 7, in T € Ext(¢,; F) is restricted to lie in a subset
(of the edge set of f,), which may depend on F(T;, T) by some pre-given
rule, but always has the same cardinality, denoted ¢/, and let Ext'(¢,; F)
denote the set of trees in Ext(zy; F) which satisfy this requirement for
i=0,...,r— 1. Then we claim there is the following strengthening
of (3.1),

eh( E' + 2r — 4)
E' ’

|Ext’(ty; F)| = (3.3)

where E' = Y/Zlel and r — 1 = |F|.
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(Proof of the claim: Apply induction on r. The result clearly holds when
r = 2, so suppose r > 2. For T € Ext'(¢,; F), consider the set S(T) of the
subtrees 7; (subdivisions of the trees in F) of T for which the fibre above
T, consists only of T, and possibly vertices of degree 2. By induction, the
number of trees in Ext'(z,; F) for which S(T') is a given set S is

(E' = ¢y +2(r — 1S]) — 4)I!
(E' — eg)!! '

ep(eh +2) - (eh + 2SI —2) X Y e X

tes

Summing over all sets S of size p this expression depends only on E’, e,
p, and r. Thus, summing over p, |Ext'(¢,; F)| depends only on E’, ej, and
r, and so we may take e} = E’ — e, and ¢; = 0 for i > 2; in which case it
is easily shown that (3.3) holds.)

Next we describe an inverse, constructive aspect of a decomposition
from [13] which allows the realization of all bicolored semilabelled binary
trees of a given length in terms of Ext(¢y; F) for simply colored choices of
ty, F. By a bichromatic tree we mean a rooted semilabelled binary tree
T =[T,, T,]" and a leaf bicoloration y of 7 under which T; and T, are
each monochromatic, but oppositely colored. Let H(a, b, k) denote the
set of forests consisting of exactly & bichromatic trees and for which a
total of exactly a > 0 leaves are assigned one color and b > 0 leaves are
assigned the other. Clearly,

\H(a,b, k)| = k!X N(a,k)N(b, k) = kis(a,b), (3.4)

where N(m, k) and ¢,(a, b) are as in the definitions preceding Theorem
3. Given a rooted semilabelled binary tree ¢, let t” denote the semil-
abelled tree obtained by deleting from ¢ the root, and identifying its two
incident edges. Set

Gi(a,b) = ((F,t,T): F€H(a,b,k),t €F,T € Ext(+"; F - {1})},

and let f denote the projection f((F,¢,T)) = T. By the decomposition
from [13],

fis k-to-1 from G,(a, b) onto F (a,b). (3.5)

An example of the construction of a tree in Fy(5,6) in this way is
illustrated in Fig. 2, where y({1,...,5)}) = {a}, x{6,...,11}) = {B}.

We now describe recursively the set of irreducible edges in T for
(F,t,T) € G,(a, b). Suppose T € Ext(t"; F — {t}), where t € F and F is
a set of k bichromatic trees. For convenience we write ¢, for ", and F’
for F — {t}. By the recursive description of Ext we have T € Ext(T";{¢'}),
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where T’ € Ext(ty; F' — {t'}) for some t' € F'. Let €' denote the edge of
T' which was subdivided by the new vertex v’ in forming 7.
By Theorem 1 it is easily seen that

_ (i) an edge # e’ of T’ is irreducible in T precisely if it is irreducible
inT'.

(i) Subdividing e’ creates two new edges which are both irreducible
(resp. both reducible) in T precisely in e’ is irreducible (resp. reducible)
inT',

(iii) The edge of T incident with v’ and the root of ¢ is reducible.

Regarding the edges of ¢, write t' = [t,,t,]", where the leaves of ¢,,1,
are colored a, B, respectively. Then,

(iv) edges in t, or t, are reducible in T.

Regarding the two remaining edges of ¢’ which are incident with r, let T;
denote the first tree in F’ — {T;} encountered in the directed path from T,
to T, and let v denote the degree-two vertex of 7, where this path first
meets T..

By case (ii) above (applied inductively), the two edges of T, which are
incident with v are either both reducible or both irreducible in 7. If they
are both reducible then all minimal colorations of T assign the same value

vy(€ {a, B} to v. Then it is easily seen that

(v) In this case the edge of ¢’ incident with r and the root of ¢, is

reducible in 7, while the other edge of ¢ incident with r is irreducible
in 7.
Similarly,

(vi) if the edges of T; that are incident with v are both irreducible in
T then both edges of ¢’ incident with r are irreducible in 7.

In this last case we say that ¢’ is descended from an irreducible edge. Cases
(v) and (vi) are illustrated by taking ¢ = t,, t; (respectively) in Fig. 2.
Since ¢, has exactly one irreducible edge, (i) through (vi) gives

i(T)=k+d+s, (3.6)

where

i(T) is the number of irreducible edges of T, and k = I(T).

d is the number of trees in F’ which are descended from an
irreducible edge in any recursive Ext construction of 7.

s is the number of edges of times an irreducible edge is subdivided.
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For example, for the construction illustrated by Fig. 2 we have s =1,
d = 2. We now apply these results to establish the claims in the theorem.

(1) By Lemma 2, i(T) > (T). Also, since s <d <k — 1 we have
i(T) < 3k — 2, establishing (1).

(2a) By the equivalence of (1) and (3) in Lemma 2, i(T') = k precisely
if T has a unique minimal coloration. If i(T) = k, then d = s = 0. In this
case in any recursive Ext construction of 7 no tree from F’ can be
descended from an irreducible edge, and no subdivisions of irreducible
edge are allowed. Thus the set of edges of ¢+ € F’ which can be subdivided
in the construction of T is always one edge less than the full edge set of ¢
(this prohibited edge being dependent on the fibre of ¢ in 7). Applying
(3.4) (with E' = 2n — 3k — 1) and (3.5) gives the equation in (2a).

(2b) If {T)=k + 1 then s +d = 1. But this is impossible since
s <d, and yet d = 1 clearly implies s = 1.

(3) Let v = |V(T) — U, J(T)I|, where T, is, as usual, the subdivi-
sion of ¢, in T. Then

s+v<k-—1, (3.7

since the vertices counted by s and v are a subset of vertices created by
edge subdivisions in the construction of T. Suppose i(T) = 3k — 2. Then
from s <d<k—1we have s =d =k — 1, and thus v = 0, by (3.7).
Hence i(T) = 3k — 2 precisely if T is obtained from a recursive Ext
construction in such a way that subdivisions are confined to the irreducible
edge of t,, and, for each tree ¢ in F’, the two edges of ¢ which are
incident with the root. Thus in a recursive Ext construction of 7 we may
as well regard ¢, f,,...,t,_; as having just two leaves, and at the end of
the construction replace each pair of leaves by the corresponding rooted
subtrees of ¢,, for i = 0,...,k — 1. Thus the number of trees in Ext(¢,; F')
with i(T) = 3k — 2 is just |Ext,(t); F*)|, where |F*| = k — 1 and where
t, and the trees in F* all have just two leaves. The result now follows
from (3.2) (taking k = 0) and (3.4).

(4),(5) Let

aj,...,a
Ty = Tyy(x15--5%,,2) = Y femar " ) X xfzk,
- a,!

a,!:

Order the elements of C as ay,...,a, so that [y (a;)| = a,. Then by
Theorem 1, the collection {T,,: M # O} satisfies the system of simultane-

~
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ous quadratic equations:

1
Ty==Ti+ Yy T,T,
{4, B}: AnB=M}
r
+ > 2T, Tp+ Y8, ar,
{{A, BY: ANB=0, AUB=M) i=1

where, fori=1,...,r,
{ 1 if M={a)}
& m= ;
0 otherwise.

In case r = 2, writing T, = T, for i = 1,2, and T5 = T, ., these above
equations can be written 7; = x, (T, T,, T;), where x3; = z, and

(1‘%”’1_”’3)_1, i=1
q)i(w17W27w3) = (1 - %Wz - W3)—1, i = 2,
ww,(1 — %w3)_l, i=3.

As in [12] we can apply the multivariate Lagrange inversion formula for
monomials (see Goulden and Jackson [8]) to evaluate 7; and T,T, (this is
considerably simpler than applying the full multivariate Lagrange inver-
sion formula, as in the calculation by Carter et al. [2] of (T} + zT, + T5)).
Omitting the details of the calculation, the results now follow from the
identities:

fi(a,b) = alb![x{x5z* | T\T,;
fi.m(a,b) = a!b![xfxé’z"]TM(xl, Xy, 2),

where “[ 1’ denotes coefficient extraction, as in [8]. This completes the
proof of Theorem 3.

Remarks. (i) The upper bound 31(T) — 2 in Theorem 3(1) is realized
by the semilabelled binary caterpillar tree and bicoloration described in an
example below.

(ii)) The combination of result (4) with Lemma 6 gives an exact
expression for f,(a, b,2).

(iii) Result (5) is a refinement of the bichromatic binary tree theorem,
as this follows from (5) immediately. Result (5), while not stated explicitly
as such by Carter et al. [2], is implicit in the formulae given in that paper.
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ol 2n-1
B2 34 56 7 ees 2n2 2n
p o o

Fic. 3. A bicolored binary tree with a Fibonacci number of minimal colorations.

(iv) The average number of irreducible edges in trees chosen from
FJa,b) is fi(a,b)/f(a,b) which, by the previous theorem, is indepen-
dent of a and b for n = a + b fixed.

(v) A recursive Ext construction of T also allows, for example, an
immediate identification of those edges e of T for which every minimal
coloration of T according to y always colors the ends of e differently.
More significantly, one can also recursively count the number of minimal
colorations of 7.

ExamrLE. In general, a semilabelled tree can have several minimal
colorations according to a leaf coloration y, as an example by Rinsma
et al. [10] shows. Indeed the number of minimal colorations can grow
exponentially with 1(T"), even when r = 2 as the following example illus-
trates. Consider the semilabelled binary “caterpillar” tree J,, on 2n

leaves, labelled 1,...,2n, as in Fig. 3, and the leaf bicoloration y, where
. a, ifi=0,1(mod4
x(i) = -1 )
B, otherwise.

By Theorem 2 (and Lemma 1(1)) it is easily seen that 1(J,,, x) = n. Using
a recursive Ext construction it can be shown that the number F, of
minimal colorations of J,, with respect to y satisfies the recurrence
F,=F,_ ,+F,_,, n>1, and so, since F, = F; = 1, it follows that F, is
the nth Fibonacci number.

Finally, we show how the results developed in Section 2 allow the
classification of irreducible semilabelled binary trees when r = 3, leading
to their exact enumeration, and thereby providing an expression for

Forlke, k, k).

DerINITION. A rooted semilabelled binary tree T, subject to a leaf
3-coloration Y, is said to be 4-spread if T has four leaves and the shape of
the tree in Fig. 4(a), and y assigns a color, denoted f(T, x), to a pair of
leaves of T which are separated by four edges, and y assigns each of the
other two colors to each of the remaining leaves of T'.

o
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a/ﬁ\
Ps
]

Fic. 4. Tree representations for the proof of Lemma 7.

The following lemma shows that up to a permutation of the leaf set, all
semilabelled binary trees which are irreducible according to a leaf 3-col-
oration are obtained from a semilabelled tree on three differently colored
leaves by successively applying the type of transformation illustrated in
Fig. 4(c) (where the three colors a, 8,7y, may also be permuted in this
transformation).

Lemma 7. A semilabelled binary tree T is irreducible according to a leaf
3-coloration x if and only if either T has just three differently colored leaves
or T =[T,,T,], where T, is 4-spread, and [T,,{v}] is irreducible according
to x', where x'|r, = xl1,, x' W) = f(T, x|1,).

Proof. (only if) Since T is binary, T can be represented as T = [T}, T,],,
where T, either has three leaves or T, has four leaves and the shape
shown in Fig. 4(a). Suppose T is irreducible according to a leaf 3-colora-
tion x. As in Lemma 4, let M; = M(T}, x|7), S; = S(M,). Then by Lemma
4, [S,, T,] is irreducible. However by cons1dermg cases it can readily be
checked that this implies that |M,| = 2, M, = {a, B}, say, and that [S,, T,]
is the semilabelled tree with leaf 3-coloration as in Fig. 4(b), where «, B8,y
are the three colours in C. Thus 7, is 4-spread. This in.turn implies
M, = {a} and so [T}, S,] is a binary tree and irreducible according to the
induced leaf 3-coloration, y'.
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(if) From the “only if”’ direction, it follows by induction that if a tree T
is irreducible according to a leaf 3-coloration y then y must be 3-tight,
and hence if any non-leaf vertex v of T is distinguished as a root of T
then M(T, x) = {a, B,v). Thus if T = [T}, {v}] is irreducible according to
x', where x'(v) = a, say, we must have M(T}, x,) = {B, vy} by Theorem 1.

A second application of Lemma 4 now shows that if T, is a 4-spread

pendant subtree of T and with f(T,, xlr,) =, then T =[T,,T;] is
irreducible according to y.

TueoreM 4. Let I,(a,, a,, a;) be the number of irreducible trees in
F.(ay, ay, a3). Then,
2(p!)’(4p - 3)!
I(ay, a;,a3) = Gp-1! °
0, otherwise.

ifa,=a,=a;=p,k=2p

Proof. The restriction for which I,(a,, a,, a;) is nonzero follows from
the previous lemma. Thus let I(n) = I,,(k, k, k), n = 3k. Let d(v,0")
denote the number of edges in the path in T between vertices v and v'.
We say that a rooted semilabelled binary tree T having root r, is even
(resp. odd) if d(r,j) =0 (mod2) (resp. d(r,j) =1 (mod2)) for all
leaves j. For n > 1, let E, (resp. O,) denote the number of even (resp.
odd) rooted semilabelled binary trees on n leaves. Let

E x" o x"
E(x)= ¥ —— 0(x) =1L~

nx=1 ’ n>1

n!

Then by the standard rooted binary tree decomposition T = [T}, T,]" >
{T,, T,} we have

E(x) =10(x)* +x; O(x) = 1E(x)"

Thus E(x) = x(1 — $E(x)*)"! and so, by the Lagrange inversion formula
(see [8]), we have

On_1 TS DU
e 13EC = G

where [A”]f(1) denotes the coefficient of A” in f(A). Thus,

1 —(n—1)
X [/\"‘2]/\(1 - g)é) ,

(n - 2)!(4kk_"13)23—", it n = 3k,

0, otherwise.

0,_,=

n—

(3.8)

L3

»

Q
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Next, we say that a semilabelled binary tree T is even if d (i,j) =0
(mod 2) for all leaves i, j. Equivalently, T = [T,,{v}] is even if and only if
the rooted tree T, is odd (as defined earlier). Thus, if E(n) denotes the
number of even semilabelled binary trees on n leaves, then,

E(n) =0,_,. (3.9)

Let Q, denote the set of pairs (T, x), where x is an 3-coloration of type
(k, k, k) of 3k labelled leaves and T is an irreducible binary tree accord-
ing to y. Counting €, by first enumerating trees for each y, and then
summing over all choices of y gives

1Q,| = I(3k) X (36)!
| =1(3k) z;5?~

Conversely, we may first fix a semilabelled binary tree T, and count the
r-colorations of the leaves for which T is 3-tight, and then sum over all
choices for 7. Now, the even semilabelled binary trees have precisely the
same topology as the irreducible 3-colored trees, as can readily be shown
by the same type of inductive argument used to establish Lemma 7. In this
way, using Lemma 7,

10, = E(3k) x 3 x 272,

Combining the two expressions for [Q,], gives I(3k) in terms of E(n) and,
thus, by (3.8) and (3.9) the theorem follows.

THEOREM 5.

(x)’ b(n)
X b(n—-s+2)’

k
Fulleo k) = (k1)* I [64]2

st

where [x'10(x) = 2(4i — 3)W6i — 3)/(Bi — D! and n = 3k.

Proof. Suppose S = {ty,...,t,_,} is a set of semilabelled binary trees
having disjoint leaf sets. Let Ext(S) denote the set of semilabelled binary
trees which contain disjoint subtrees that are homeomorphically equiva-
lent to § (i.e., modulo vertices of degree 2). Clearly, Ext(S) is the disjoint
union of Ext(ty; F) over all forests F which can be constructed from
tyy...,t,_, by subdividing by a new (root) vertex an edge of each tree.
Thus by Result (3.1) in the proof of Theorem 3,

b k-1 '
|Ext(S)| = b(n——(’/z)+—2) X iljuei, where e, =| E(t,)].



22 . MICHAEL STEEL

For t;20,...,¢, >0, let S(t) denote the set of all collections § of
irreducible 3-colored semilabelled binary trees on disjoint leaf sets chosen
from 3k leaves and for which ¢; of the trees in S have 3i leaves. Thus if
s = |S| we have

s=2t, k=Yit. (3.10)

Let T(k) denote the set of 3-tight semilabelled binary trees on 3k leaves,
and let G(k) = {(t, T, S): § € S(t), T € Ext(S)}. Then the projection
¢:G(k) > T(k)
&o(t, S, T)=T

is a bijection, by Lemma 5. Thus, by the above expression for Ext(S),

faulk, k k) =|F(k)| =|G(k)|

; S b(n) s,
= El Zt:v(t) X i:l—III(EBz) X CETES)] X l]]l((n -3)",
(3.11)

where t ranges over all vectors, having non-negative integer components,
and satisfying (3.10), and v(t) is the number of ways of partitioning
k = X:_,it; labelled leaves of each of three colors into s blocks, where ¢;
of the blocks have size 3i, and with each block receiving the same number
of each color. Thus,

3
k!

1
v(t) = — X

[Tn | [1GD"
i=1 i=1

Substituting this into (3.11), together with the expressions for 7(3i) given
by Theorem 4, and then collecting terms, completes the proof.

ExampLe. To find f,(3,3,3) note that [x>[(Q(x)*/s!) consists of just
one product term for each s € {1, 2, 3}. Applying the theorem gives

£4(3,3,3) = 19,116.

An interesting remaining question is whether there is a simple and
constructive characterization of semilabelled binary trees which are irre-
ducible according to a leaf r-coloration for r = 4 or for other values of
r > 3 (analogous, perhaps, to Lemma 7, although respecting the additional

. o«
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(T)=9=n-a,

Fic. 5. An irreducible binary tree, which has no minimal coloration under which the
non-leaf vertices are monochromatic.

possibilities allowed by Lemma 3(2)). Note that, unlike the case r = 3,
irreducible r-colored binary trees can fail to be r-tight, as the example in
Fig. 5 illustrates.
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