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Stochastic models of nucleotide substitution are playing an increasingly important role in
phylogenetic reconstruction through such methods as maximum likelihood. Here, we exam-
ine the behaviour of a simple substitution model, and establish some links between the
methods of maximum parsimony and maximum likelihood under this model. © 1997
Society for Mathematical Biology

1. Introduction. Stochastic models for nucleotide substitution are becom-
ing increasingly important as a foundation for inferring phylogenetic trees
from genetic sequence data. Such modéls allow for tree reconstruction
through either maximum likelihood-based approaches or the fitting of
transformed functions of the data to trees (see Swofford et al. (1996) for a
recent survey). The models are also useful for analysing the performance of
other, more conventional tree reconstruction methods, which are not ex-
plicitly based on such models, such as the popular maximum parsimony
method (see, for example, Fitch (1971)). Such methods will indeed perform
well (be “statistically consistent”) for sequences that evolve under simple
models with certain constraints (see, for example, Hendy and Penny (1989)),
although without these constraints, the methods may be misled (Felsen-
stein, 1978). Thus, for certain data sets, maximum parsimony and maximum
likelihood will agree, and in other cases, they will disagree. In this paper,
we carry this analysis a little further for a simple model on any number of
states, in which the rate of substitution is the same between any two states.
In particular, we establish, for any tree and any number of states, an
inequality between the probability of a character at a site and a function of
the character’s parsimony score on the underlying tree (Theorem 1). This
bound becomes an cquality for certain choices of parameters in the
underlying model, and we completely characterise these choices when r
(the number of states) is 2 (Theorem 3).
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582 C. TUFFLEY AND M. STEEL

We then use these results in four applications to the theory of phyloge-
netic analysis in Section 6. We establish three further cases in which
maximum parsimony will agree with certain versions of maximum likeli-
hood in the selection of trees and the reconstruction of ancestral states on
a given tree. One of these results, Theorem 5, extends a result of Penny et
al. (1994) from 2 to r states; another offers insight into the observations in
Lockhart ef al. (1996). We also generalise the example of Steel (1994) to an
arbitrary number of species, and thereby show that the maximum likelihood
function can be maximised at many points in the underlying parameter
space.

2. Preliminaries.

Definitions 1 (Phylogenetic trees, characters). A phylogenetic tree is a tree
T = (V(T), E(T)) having no vertices of degree 2, and such that each leaf
(degree 1 vertex) is given a unique label from {1,...,n}, where n is the
number of leaves of T. We say that T is a tree on n leaves, and write [n]
for {1,...,n). Where convenient, we identify each leaf with its label. If every
internal (non-leaf) vertex of T has degree 3, we say that T is binary. In the
case of rooted trees, we allow the root to have degree 2.

A function x:[n]—%, where % is a set of r states, is an (r-state)
character. When r =2, x is said to be binary. A function V() »Sis
called a state function for T; if ¥ is such that ¥l =x (that is, y agrees
with x on the leaves of T), then ¥ is called an extension of x (on T).

With each character y and phylogenetic tree T on n leaves, we may
associate a non-negative integer (the “length” of x on T) as follows.

Definitions 2 (Length of x on T, minimal extensions). If % :V(T)—%,
then the changing number of %,ch( %), is the number of edges {u, v} such
that §(u)# x(v). We say that a change occurs across {u, v} under .

If y:[n]—, then the length of x on the phylogenetic tree T, I x,T), is
the minimum of ch( ) over all extensions § of x on T. An extension- of
minimal changing number is called a minimal extension of x (on T).

Figure 1 illustrates these definitions.

In practical applications, the length of a character on a given tree is
found using Fitch’s algorithm, which is an order n process for determining
I(x,T) and finding a minimal extension (Fitch (1971)). However, for
theoretical purposes, I( x,T) is usefully given in the two-state case by the
following corollary of Menger’s Theorem, a result that will be of use to us
later. Although this is an often-quoted result (for example, Erdss and
Székely (1993); Steel (1993b)), we include a proof as it does not follow
dircctly from Menger’s Theorem, and we believe a proof has yet to appcar
in the literature.
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Figure 1. To find I(x,T) for the tree and character shown with state set
= {a, B}, consider all possible assignments of states to the internal vertices.
Since T has two internal vertices, there are 22 = 4 such assignments. Edges on
which changes occur are shown in bold. The minimum value of ch( ) is 2, so
that /(x,T) = 2. There are two minimal extensions.

LEMMA 1. If x is a binary character, then W x,T) equals the maximum
number of edge-disjoint paths connecting leaves in different states.

Proof. Given disjoint sets X,Y c V(T), a cutset for X and Y is a subset
Z CE(T) such that any path in T joining a vertex in X to a vertex in Y
crosses at least one edge in Z. A variation of Menger’s Theorem (see
Harary (1969)) then states that the cardinality of a cutset of minimal size is
equal to the maximal size of sets of edge-disjoint paths joining vertices in X
to vertices in Y.

If #={a, B}, set X=x""({a]),Y=x"'(( B)) and let I be the maximum
number of edge-disjoint paths connecting leaves in different states. If X is
an extension of y on T, then the set of edges on which changes occur
under Y gives a cutset for X and Y, so by Menger’s Theorem, ch( §) >/,
and therefore I( y,T) > 1. .

Now, let Z be a cutset for X and Y of minimal size. Generate a state
function % for T by putting {(v) = x(i) if there is a path from v to lcaf i
that does not cross any edges in Z. We claim that this is well defined.,
Firstly, there cannot be two such paths to lcaves i and j such that
x (@) # x(}); otherwise, Z would not be a cutset for X and Y. Secondly,
there must be at least one such path. If not, let e be a nearest edge in Z tOJ
v. Since there is no path from v to a leaf that does not cross an edge in Z,
there can be no path P from a vertex in X to a vertex in Y such that e is
the only cdge in Z crossed by P. Thus, Z\{e} is a cutsct for X and Y,
contradicting the minimality of |Z|. It follows that X is indeed well defined.
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The cutset given by the edges on which changes occur under X is contained
in Z, so we have I( x,T) <ch( §) <|Z|=1 Putting the two inequalities
together gives /( x, T) =1, as required.

Although this result applies only. to binary characters, an extension to
r-state characters has been developed recently by Erdds and Székely (1994),
the principal difference being that the paths are permitted to intersect
provided certain conditions are met.

In biology, each vertex of a phylogenetic tree represents a species, with
the edges denoting (immediate) ancestor—descendant relationships. The
leaves represent extant species, the internal vertices ancestral species, and
in rooted trees, the root represents a common ancestral species from which
all other species on the tree are descended. Since we are primarily inter-
ested in speciation events, where the tree “branches,” we do not allow
vertices of degree 2, except possibly at the root.

Characters are obtained by gathering data such as DNA sequence
information from present day species. For example, given a set of n aligned
sequences, the rule “nucleotide at site i” gives a character with state set
%={A,G,C,T}. Each extension of a character is a way that it could have
evolved on the trec, and the changing number of an extension is the
number of changes or mutations it involves. The length of a character is
therefore the minimum number of mutations required for it to evolve on
the tree, and is used in methods such as maximum parsimony to estimate
the true phylogeny.

3. The Model. The model we will be considering is a generalisation to r
states of the Cavender—Farris (Cavender, 1978; Farris, 1973; two-state case)
and Jukes-Cantor (Jukes and Cantor, 1969; four-state case) models, and
appears in Neyman (1971). We will refer to it as the fully symmetric model
since it makes no distinction between any of the character states. Given a
rooted phylogenetic tree T and a mutation probability p, on each edge e of
T, the state at the root “evolves” down the tree, assigning a state to each
vertex of T and generating a state function § for T. We suppose that this
evolution takes place such that:

e there is an even distribution of states at the root p, that is,
' . 1
P[X(p)=a]=7 Va €% ¢))

o the probability of a net change of state occurring across an edge e (a
“mutation event”) is given by p,, and if a net change occurs, each of
the remaining r — 1 states is equally likely;

o mutation events on different edges are independent;

e p, satisfies 0 < p, < (r—1)/r (sce below).
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The probability of generating a given state function % will, in general,
depend on T and the vector p = (p,), ¢ zr, Of probabilities, and is given by

. 1 P.
PLIT,pl=— TI (-p) TI : 2)
e={u,v): e={u,v): r—1 '
x()=x(v) x()# x(v)

The probability of generating a character x under the model is found by
summing (2) over all extensions % of y, so that

PlxIT,pl= )Y PLgIT,pl (3)

X:¥m=x

Figure 2 shows a calculation of P[ x| T, p] for a simple tree and character.
This model may be formulated in terms of a continuous-time Markov

process with r X r rate matrix

1 —r 1 1
1 1—-r :
0= 1 , 4
1 1 1-—r
= |
B p d S‘{a'ﬂ}xu)lé Zz (;sL
i 2 3
a V,
/>a\ P[XIT,p] = (1 - p1)(1 = po)(1 — p3)
o o p ) V] 71 ) 2] P3)P4
AN
2N PRI = 3 - popes(t — po)
13 [ g
/g“\ PXIT, p] = pipa(1 — p3)py
a a B
u/;!>% + PRIT,pl = 3m1(1 — p2)ps(1 — py)

= PIT,p|
Figure 2. To calculate P[ x|T,p] for the tree and character shown, sum
PL Y1 T, plover all extensions ¢ of y. In the two-state case, each edge on which
a change occurs contributes a factor of p, to P[|T,pl all other edges
contribute a factor of 1 ~p,.
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whose ap-entry gives the rate at which a changes to B. With each edge e,
we associate a positive “length” 7,. The conditional probability of a change
from « to B across e given that the vertex closer to the root is in state « is
then given by the aB-cntry of the transition matrix

me = exp(7,Q). ‘ (5
Diagonalising Q, we obtain
© Pe Pe
1 — ves
Pe 71 r—1
Pe
r—1 1=p :
me = . ' P. (6)
. . r—1
Pe P.
1-
r—1 r—1 Pe

where, as in Neyman (1971),
r—1

r

P.= (1 —exp(—rt,)) . @)
and satisfies 0 < p, < (r — 1)/r. For simplicity, we include the endpoints of
this interval so that our set of possible mutation’ probability vectors is
compact. :

This Markov process with the initial distribution of states 7=
(1/r,...,1/r) has some additional properties (namely, stationarity (that is,
wQ = 0) and reversibility (m, Q.5 = M Qp, for all a, B)) that imply we may
re-root T at any vertex (for cxample, leaf 1), keeping the same distribution
of states at the new root and the same transition matrices on each edge.
The transition matrix m’ for any path P is then the product of the
matrices along the path, so that

m® =[] exp(7,Q) =exp( Y T,_,Q), (8)

esP eeP

and hence,

p,,=r—r1 (l—exp(-—rZ ‘r,));’ o 9

eeP

in terms of the mutation probabilities, this is

pP=r—1(1_n(l—r:1p¢)).' (10)

r eeP
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Since p, is a monotonically increasing function of 7,, we have also

Pp> maxp,, 1D
eepP
" an inequality that will be of use to us later.

4. Bounding P[x|T,p). Penny et al. (1994) have shown that in the
two-state case,

! max {P[ x| T, p]} =271 (12)
P

The proof made use of equation (10) and the set of edge-disjoint paths
given by Lemma 1 to establish 27%X7~! a5 an upper bound. This method
could not be readily generalised to r-states as the paths of an Erdds—Székcly
path system need not be edge-disjoint, which was an important requirement
of the method. We extend (12) here to r-states via a different method of
proof. A key step (Lemma 4) was originally proved using Erdds-Székely
path systems; however, a simpler proof has since been found, which we give
here.

THEOREM 1 (Upper bound for P{ x| T, p)). If x is an r-state character, then

max {P[ x| T,pl} =~ "xD-1 (13)
p

That is, for a given tree T, the maximum value of P x|T, pl over all valid
choices of p is r~xD-1,

Note that this thcorem applics only to a single character, and not to a sct
of characters. However, if X is a set of r-state characters that evolve
identically and independently according to the fully symmetric model,
Theorem 1 gives '

PLX| T,p](= [T Pyl T,p]) < FIED=IXI (14)

XeX

where I(X,T) = Liex I{ x,T). In contrast to (13), it will not, in general, be
possible to realise equality in (14).

As a corollary to the proof of Theorem 1, we obtain the following result.
With each extension y of a character y, wé may associate a subset E( {)
of the edges of T by taking the set of edges on which changes occur under
X- In general, for a given extension g, there may be another extension X
such that E(%)=E(Y); however, in the case of minimal extensions,
Theorem 2 says that this cannot occur.




588 C. TUFFLEY AND M. STEEL

THEOREM 2. A minimal extension % of an r-state character x on T is
uniquely determined by x and the set of edges on which changes occur under
%. That is, if x, and x, are minimal extensions of x and the set of edges on
which changes occur under x, equals the set of edges on which changes occur
under x,, then x, = X,. ’

The proof of Theorem 1 proceeds via a series of lemmas. We begin by
reducing to the case where, for every edge e of T,p, is either 0 or
(r — 1)/r. For notational convenience, we make the following definitions.

Definitions 3. Let
M(T) = {pel0,(r—1/r1*:p,e(0,(r=D/r) Ve €E(T)} (15)

be the set of mutation probability vectors with each component either 0 or
(r—1)/r, and for each p € M(T), define

E(p)={e€E(T):p,=(r=1/r}, (16)

the set of edges where p, = (r — 1)/r. For each state function y for T, let
E(g)= ({u,u} €E(T): x(u) # ,?(U)) an

be the set of edges on which changes occur under %.

Let x be an r-state character of length / on T. For the moment, we will
consider x and T to be fixed and write P( p) for P[ x| T, p], to emphasise
the view of P[ x17, p] as a function of p. Thus,

1 Pe
P(p)=—r- .Z 1(—[)‘ (1—p,)’_l(—l). — (18)
R fm=x Sy YR

Note that for each edge e of T, p, occurs in each term in the sum in (18)
exactly once. Let p €[0,(r— 1)/r}E™, Choosing e’ € E(T) and fixing p,
for e € E(T)\(e'} (so that we regard P(p) as a function of p,.), we
therefore obtain a polynomial of degree at most one in p,.. On a closed
interval, the extreme values of such a polynomial occur at the endpoints, so
there is a vector p’ of mutation probabilities such that

D. ife+e'

! = r—1 19
Pe=Yoor ife=e' (19)

and
P(p) <P(p'). ’ (20)
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Carrying out this process for each edge of T in turn, we eventually arrive at
a vector p” such that p” € M(T) and

P(p) <P(p"). Q1)

We have established the following lemma.
Lemma 2. max [P[ x| T,pl} is realised by some p € M(T).

Now, let p € M(T). Each extension ¥ of y contributes a term

1
PLeIT,pl=~ 1 (-p) TI p“l @

e={u,v): e={u,0y '~
() =x() xG0# ()

to P(p). If there is an edge e = {u, v} for which () # ¢(¢) and p, =0,
then a factor of zero occurs in the right-hand product in (22) and we have
P{ 1T, p]l=0. Hence, we need only sum over extensions X such that
E(R) CE(p). Further, if E(y)CE(p), then cach cdge e= {u, v} con-
tributes a factor

p. 1 o )
=— if x(u)+x()
r—1 r
i = 1 r—1
meuwiw) 1_pe=_r_ if (u) = %(v)and p, = - (23)
1-p,=1 if ¥(u)=x(v)and p,=0

to P[ 1T, p]. Thus, each edge for which p, = (r — 1)/r contributes a factor
of 1/r to P[ %IT, p), and all other edges a factor of 1, so we have the
following.

LeMMA 3. If p € M(T), then

(2: %1 =X, B CED)]. (24)

1
P =

By Lemma 3, to calculate P(p) for p € M(T), we must count the number
of extensions ¥ of y for which E( %) € E(p). With a view to proving
Theorem 1, we would like to show that

(% 1= x. E(R) cE(p)}| < r&e, (25)

with this bound attained by some p€ M(T). Since it may be the case that
there are no extensions with E( §) € E(p) (this will certainly be the case if
|E( p)l < 1), we make the following definition.
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Definitions 4 ( y-viable). § C E(T) is y-viable or viable for y on T if there
is an cxtension ¥ of y such that E( x)CS.

Let § be viable for y on T, § such that E( %) €S, and put k=|{S|.
Decleting S from T, denoted T\ S, will divide T into k& + 1 connected
components, and § must be constant on cach of these since E( x) €S. In
particular, if v is a vertex belonging to a component containing a leaf i of
T (an “cxternal” component), then we must have y(v) = x(i). However, on
components that do not contain a leaf of T (“internal” components), ¥
may take any of the r states in . Since y is completely determined by the
state of each connected component of T\ S, it follows that if there are A
internal components then there are precisely r* extensions of y such that
E( ) € §. The inequality (25) follows from these arguments and the follow-
ing lemma.

LEMMA 4. Let x be an r-state character of length | on 'T. If S is viable for x
on T and |S| =k, then T\S has at most k — | internal components.

Proof. We may regard T\ S as a tree Ty in a natural way by viewing the
connected components of T\ S as vertices, with two vertices of Tg con-
nected by an edge precisely if the corresponding components are joined by
an edge in S. Note, however, that the internal vertices of Ty do not
necessarily correspond to the internal components of T\ S.

Let T\ S have s internal components. Since § is viable for y on T, the
value of y on cach external component gives us a partial state function for
T, (see Fig. 3). Assigning a state to each of the remaining s vertices of T
(and thereby to each internal component of T\ §) will induce an extension
x of x on T having the same changing number as the assignment of states
to T;. Do this by rooting T arbitrarily at a vertex that has already been
assigned a state and directing all edges away from the root. If v has not yet

R

. (l) (i)

Figure 3. The tree T. (i) A tree T and character x with a set § of x-viable
edges (shown dotted) deleted. The connected components are circled. (ii) The
corresponding tree T with the partial state function induced by x. Note that
some of the internal vertices correspond to external components of T\ S.
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been assigned a state but its immediate ancestor u has, assign v the same
state as u so that there is no change on the edge {u,v}. Then, for each of
the 5 vertices not assigned a state by y, we get at least one edge on which
no change occurs, so that there are at most k — s changes. But ch( §,T) > I
so that k —5 >/, and hence s <k —/ as required.

Theorem 2 follows from an application of Lemma 4.

CoroLLARY 1 (Theorem 2). Let x,, x, be minimal extensions of an r-state
character x on T. Then the set of edges E( x,) on which changes occur under
X1 equals the set of edges E( x,) on which changes occur under x, if and only

ifX1=X2-

Proof. 1f x, is a minimal extension of y, then E( y,) is a y-viable set of
cardinality /( y,T). Then, by Lemma 4, T\ E( x,) has no internal compo-
nents so that there are exactly r”=1 extensions § of y such that
E(¥) cE( xy), namely, § = x,. Hence, if E( x,) =E( x,), then x, = x,.

Lemma 4 establishes the inequality (25), proving P[ x| T, p] < r~ixD=1,
To complete the proof of Theorem 1, we must exhibit a vector of probabili-
ties p such that P(p) =r~''. The vector p* defined by

r—1

if ¥(u) # y(v)
0 if y(u) = g(v)

p(g, v} = (26)

is easily seen to be such a vector whenever § is a minimal extension of X
and we have our result.

5. Realising the Upper Bound in the Two-State Case. Having found an
upper bound for P[ x| T, p], it is natural to ask under what circumstances
this bound is achicved. Here, we give a partial answer to this question,
answering it in the case r=2. If % is a minimal extension of y, then
PlxIT,p*]=r=""=1 where p* is as defined above, and for r = 2, this
turns out to be a complete characterisation of the vectors p maximising
PL x! T, p] provided the tree has no vertices of degree 2. Where the tree
does have a vertex of degree 2 (note that we only allow this to occur at the
root), the two edges incident with this vertex behave as a single edge with
the path mutation probability

p,,=%(1—(1—2p.)(1—2p2?) 27)

where p, and p, are the mutation probabilities on the two edges and P is
the path across them (see Fig. 4). The condition then becomes

. 3 if a change occurs across P under g
pi= , . (28)
0 if no change occurs across P under §.

ﬁm e eGon
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P P2 :
@ - 2

Figure 4. Two edges incident with a root p of degree 2 behave as a single edge
with the path mutation probability pp. The circles marked T}, T, denote rooted
subtrees.

In terms of the edge parameters, we have p,=0 if and only if both
py=p,=0,and p,=1/2if and only if at least one of p,, p, =1/2. Thus,
although we state the following result only for trees with no vertices of
degree 2, it still enables us to characterise the vectors p maximising
P[ x| T, pl in the case T has a root of degree 2.

TueoReM 3. If x is a binary character and T has no vertices of degree 2, then
p maximises P[ x| T,pl if and only if p =p* for some minimal extension ¥ of
X, where

if x(u) # x(v)

2
if 5 (u) = 3(V). (29

1
% 2
p()\{,v) = 0

Proof. The backward direction of Theorem '3 is already established; we
prove the forward direction in two stages, first establishing it for binary
trees, and then reducing the general case to that where T is binary.

The proof in the binary case is by induction on n, the number of leaves
of T. Consider n = 2, for which there are two possible characters y up to
permutation, x(1) = x(2) and x(1) # x(2). Clearly, P x| T, p] is maximised
in the first case only if p, =0, and in the second only if p, =1/2.

Suppose the result is true for binary trees on n — 1 leaves, where n > 3.
Let T be a binary tree on n leaves, x a character of length / on T, and
suppose that p is such that P{ x| T, p] is maximised. Since T is binary, it
has a pair of adjacent pendant edges, that is, a pair of edges {u,v} and
{u,v'}) such that v and v’ are leaves of T. We consider two cases:
x(v) = x(v") and x(v) # x(v").

Case 1. x(v) = x(v").

Without loss of generality, y(v) = x(v') = @. Let T’ be the tree on n — 1
leaves obtained by deleting {u,v) and {u,v’} from T, x, the character on
the leaves of T’ such that y, agrees with x on their common leaves and
X() = a, and define x; similarly. For convenience, put e ={u,v}, e’ =
{u,v’}, and let the vertex w and edge e” be as shown in Fig. 5.
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a B
(T,) XC!) (Tli Xﬁ)
Figure 5. The trees T, T’ and characters x,, xg. The circle denotes a rooted
subtree.
Then

Pl x| T, pl= (1 —p)(1 = pIPLx N T", pl+p.pP[ X\ T', P]. (30)

Now, if § is a minimal length extension of x on T, then x(u) = a; for if
#(w) = &, we get no changes on e, e’ and e¢” if ¥(w)= a, and one change
if %(w)=B, while if g(u)=p, we get two or three changes depending on

. whether §(w) equals a or B. It follows that x, has length / on T"'.

However, x, may have length less than /. For if ¥ is an extension of y
such that ¥(u) = B, then ¥ is not a minimal length extension of x, and so
has changing number at least [+ 1. But two of these changes occur on e
and e’, which are deleted in forming T' and xg, s0 that ch( x|l yqy) 21— 1
Hence, x; may have length less than /, but the decrease is by at most one.

By Theorem 1, Pl x, | T, pl < 27"Vand Pl x| T', pl < 27! so that

Pl xIT,pl<(1-p)(1-p )27 +p.p.2""
=2-"1((1 - p)(1 = p,) +2p.p.)
=271"Y(1=p, —p. +3p.p.)- (31)
Consider 1 = p, —p,. +3p,pe=1-p. +p.(3p. — 1). If p, =0, then
1—p, =P, +3p.po=1-p- <1, (32)
with equality if and only if p,. = 0. If p,>0 and 0<p, <1/3, then
p(3p, —1)<0s01=p, = p.+3p.pe < 1. Finally, if 1/3 <p, < 1/2, then
1—-p, <2/3 and p,(3p,. — 1) <1/4 s0 that
1—p,—p+3p.po<i+i=1<l (33)

Hence, 1 —p, —p,. +3p.p. < 1 with equality if and only if p, =p,. = 0.
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Since max (Pl x 17, pll =2 1=V and p maximises P x1 T, pl, we must
have p, =p,. = 0. By the induction hypothesis, Pl x, 1 77, p] = 277" if and
only if p=pi on T’ for a minimal cxtcnsion ¥, of x,. A minimal
extension of x, cxtends naturally to a minimal cxtension of y and
pe=pP.=0sothat p=p ¥ for a minimal extension ¥ of x on 7.

Case 2. x(1)+ x(v').

Without loss of generality, xy(¢) =a and x(v')=B. Let T', x, and x,
again be as in Fig. 5. If ¥ is a minimal cxtension of x, then x involves a
change on exactly one of e, e’ regardless of the state assigned to u, so that
ICx,, T, I x5, T") 2 1 — 1. Hence,

Pl xIT,pl = =p)pPLx T, pl+p.(1=pIP[ x5 T', p]
< 2-1((1 _pe)pe' +pe(1 —pe’))
=27""1(1-(1-2p)(1-2p,)). (34)

Since 1 — (1 — 2p, X1 — 2p,.) < 1 with equality if and only if at least one of
Doy P = 1/2, cither

L. b= 0; Pe = 1/2 and P[ Xa l T',[)] = 2~I;
2. p.=1/2, p.=0and P[ x;, 1 T', pl= 2-1

orif p,p,. # 0, then
3. Pl x, | T, pl =Pl x| T', pl=2"" and at least one of p,, p,- =1/2.

Under the induction hypothesis, 1) and 2) have p=p* for a minimal
extension ¥, so it remains to show that 3) cannot occur. By the induction
hypothesis, P{ x, | T, pl=Pl x5 | T', pl = 27! occurs if and only if E(p) =
E(},) = E(X,) for minimal extensions X. and x5 of x, and x,, respec-
tively. Let i be a leaf of 7' other than u, and without loss of generality,
assume y(i) = a. Consider the number of changes that occur on the path P
from i to u. Since %,(i) = %,(u), an even number of changes must take
place on this path under yx,; but %,(i) # §z(1) so that an odd number of
changes must take place under x,. Hence, E( x,) = E( %) is not possible,
so that 3) cannot occur and the theorem is proved for binary trees.

In order to reduce the general case to that where T is binary, we require
an auxiliary theorem.

Definitions 5 (Refinement). T, is said to refine T, (written T, < T,) if T,
may be obtained from T, by contracting a number of edges.

The order given by < is a partial order on the sct of phylogenetic trees
on n leaves, the maximal elements being the binary phylogenetic trees.

some Ol thE INICTTIAI VEIULED LUsaLop Ut v ~orson oo
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TueOREM 4. Let T be a tree and x a binary character. There is a binary tree
T’ refining T such that  x,T') =1 x,T). T' may be chosen in such a way
that the minimal extensions of x on T’ are in a natural bijective correspon-
dence with the minimal extensions of x on T.

Proof. Let & be a sct of [ =I( x, T) edge-disjoint paths joining Icaves in
different states, the existence of which is guaranteed by Lemma 1. Form
the sequence T=T, < T, < --- refining T inductively as follows. Given T,
choose v € V(T;) of degree greater than or equal to 4. If there is a path
P €2 passing through v, choose e, and e, incident with v and lying on P;
otherwise, choose e, and e, incident with v arbitrarily. Create T,,, by
inserting a new edge e separating e, and e, from thc remaining edges
incident with v. Then T,<T,,,, and no path in % lies on ¢ so that &
remains edge-disjoint in T}, , (see Fig. 6).

The new edge in T}, , splits v into two vertices, one of degree 3 and one
of degree 1 less than that of v, so this process must eventually terminate in
a binary tree 7,, = T'. & remains edge-disjoint in T', so by Lemma 1, we
have I( x,T') >1. If % is a minimal extension of y on T, then we may
obtain an extension ¥ of y on T’ by identifying each vertex of T’ with the
vertex of T it was created from during the refinement process and requir-
ing g and Y to agree under this identification. A change occurs across an
edge of T' if and only if it is an edge of T on which a change occurs under
X, so that ch(x) =ch( ) =1, implying I( x,T') <! and hence equality.

Futhermore, every minimal extension of xy on T arises in this way. Let
X be such an extension. Since each path in 2 joins leaves in different
states, there must be at least one change on each path. Moreover, & has
cardinality I( x,T"), so there is exactly one change on each path and no
changes on edges not on paths. Since none of the newly created edges lies
on any of the paths, ¥ must be constant on the set of vertices identified
with a given vertex v of T, and we obtain a minimal extension Y of y on T
by putting x(v) equal to this common state.

.

e P /e

I

Tiv1

Figure 6. The refinement process. Form 7;,; by inserting a new cdge ¢
separating ¢, and e, from the remaining edges incident with v. None of the
paths in & lies on ¢, so that & remains edge disjoint in 7;, . v splits into two
vertices, one of degree 3 and the other of degree 1 less than the degree of o,
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We now complete the proof of Theorem 3 in the general case.

Let T be a phylogenetic tree, x a binary. character and suppose p
maximises P[ x| T, p]. Let T’ be a binary tree refining T as constructed in
Theorem 4, and put p, = 0 if e is an edge of T" inserted during refinement,
and p,=p,_ if e is an edge of T. Then

PlxIT,pl=% ¥ IT a-p» 11 p. 35)

iRl = e={u,v): e={u,v):
B dm=x Sy $# 7(0)

On newly created edges of T”, p, = 0 so we need only sum over extensions
for which no changes occur on newly created edges. Such an extension
corresponds to an extension of y on T, and it follows that

PLIT, p'l=P[ x| T, p] =27 6D=1_2-1eT)-1_ (3

By the result proved for the binary tree case, p’ =p¥ for a minimal
extension y of y on 7, and it follows from the construction of T’ that
p =p* for a minimal extension § of y on T.

Theorem 3 does not extend to r> 3 as the following counter-examples
show. In part, this appears to be because r may be greater than or equal to
the maximum degree of the internal vertices of T, making it easy to create
an internal component from T\ E( ), ¥ a minimal extension of y, by
deleting a single additional edge. Since phylogenetic trees are assumed to
have no vertices of degree 2, this does not occur for binary characters.
However, if this requirement is dropped, then Theorem 3 no longer holds,
as evidenced by our need to treat a degree 2 root separately.

Example. A counter-example to the extension of Theorem 3 to r=3 is
illustrated by the star shaped tree in Fig. 7. We have I( x,T) =2 since

B ;
2
De
o
J
(T,x)

Figure 7. A counter-example to the extension of Theorem 3 to r = 3.
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ch( ¥) = 2 for all three possible extensions of X on T. With p as shown, we
have

P{ xIT,pl 1(1 )11'+p‘1 22 p‘ll 2
XILPI= 30 P53 7( 5)3+7§(‘§)

3
1 1 1 1
=E“'27P,+'52P¢+32P¢
_ L | (37)
27

so that P x| T, p] = 37"xD~! regardless of the value of p,.

This example generalises readily to a counter-example for any r >3 by
considering the star-shaped tree on r leaves. This is the tree with vertices
{0,1,...,r} and edges {{0,1}, {0,2},...,{0,r}}.

6. Applications to Phylogenetic Analysis.

6.1. Equivalence of maximum parsimony and maximum likelihood with no
common mechanism. Theorem 1 may be used to demonstrate the equiva-
lence of the inference methods of maximum parsimony and maximum
likelihood with no common mechanism under the fully symmetric model.
By “no common mechanism,” we mean that we may choose a different
vector of mutation probabilities for each character, rather than requiring
all of them to evolve according to a single vector of mutation probabilities,
as is usually the case. This approach has the drawback that it is not
necessarily statistically consistent; see below.

Penny et al. (1994) state this result for the r =2 case, and related results
-appear elsewhere (Goldman, 1990; Farris, 1973). For a discussion of various
methods of phylogenetic inference, see Swofford et al. (1996).

6.1.1. Maximum parsimony inference. There are many different methods
of parsimony; we consider here only the simplest, Fitch parsimony. This
method of inference may be stated as follows.

Given a set X ={x;} of k r-state characters, choose the unrooted tree or
trees T (the “maximum parsimony tree(s)”) minimising

k
X, T) =Y I x;,T). 4 (38)
i=1
Interpreting I( x;, T) as the minimum number of mutations required for ¥;
to evolve on T, (X, T) is the minimum total number of mutations required
for the y; to evolve on T. Thus, maximum parsimony chooses the trees on
which the y; may evolve with as few mutations as possible overall.
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6.1.2. Maximum likelihood inference.” Edwards (1972) defines liketihood
as follows. '

The likelihood, LLH | R), of the hypothesis H given data R and a specific modcl, is
proportional to P{R | H ], the constant of proportionality being arbitrary.

A maximum likelihood method of inference chooses the hypothesis H
maximising the likelihood function for the data R. For the fully symmetric
model, the hypothesis is the tree and mutation probability vector pair
(T, p). The maximum likelihood method is then as follows.

Given a set X ={ x;} of k r-state characters, choose the unrooted tree and
vector pair or pairs (T,p) maximising

k

LI(T,p) I X) = PIXIT,pl = [T Pl x;| T, pl. (39)

i=1

The tree inferred is the “maximum likelihood tree(s).” :

This is the usual form of maximum likelihood, and “maximum likelihood”
on its own will refer to this form unless stated otherwise. However, by
relaxing some assumptions, we may arrive at a number of variations. The
mutation probability vector is the part of the model that represents the
substitution process and selection mechanism operating at a given site. By
requiring this to be the same for each character, we arc asserting that an
equivalent mechanism is operating at each site, so the characters may be
said to evolve under a “common mechanism.” By allowing a different
vector p for each character, we are allowing different mechanisms to
operate at each site, and the characters may be said to evolve with “no
common mechanism.” In this case, the hypothesis becomes (T,{p,}), and
the method of maximum likelihood with no common mechanism is as
follows. ‘

Given a set X ={ x;} of k r-state characters, choose the unrooted tree and
vector set pair or pairs (T,{p;}) maximising

. ) _
L[(T,{(p) 1 X] = PIXIT, (p)] = r[1 PLx,IT,pl. " (40)

Olsen (see Swofford et al. (1996, p. 443)) considers a third variation lying
between these two, where the ratios of the underlying edge lengths 7, are
kept constant across characters, but the lengths themselves are scaled
between characters. In this version, the hypothesis becomes (T,7=
(1.)e e ecry (A)), and we seek to maximise

k
L(T, 7, (AD1X] = TTP[ x| T, p(x;7)]. (41

i=1
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Note that in these last two methods, the number of parameters bein
estimated grows lincarly with the number of characters, so the statistical
consistency of these two mecthods is not guaranteed by standard results,
Indecd, the former method can be provably statistically inconsistent, by
Theorem 5 (with Felsenstein (1978)). .

Under the fully symmetric model, we have the following resuli.

THEOREM 5. Maximum parsimony and maximum likelihood with no common
mechanism are equivalent in the sense that both choose the same tree or trees.

" Proof. The proof is the same as for the r = 2 casc since it follows dircctly
from Theorem 1. On any given tree T, we have max P x, | T, p] = r =D~
so that

k o
max L[(T, {p))1X] = [T r~/0eD=! = p Bt = 6D, (42)
Pi i=1

and therefore the maximum likelihood with no common mcchanism trecs
are precisely the maximum parsimony trees.

6.2. Reconstruction of ancestral states.  Given a character y and a trce T
on which y is assumed to have cvolved, a problem of interest is to
reconstruct character states at the internal vertices (sce, for cxample,
Maddison (1995) and references therein). Here, we consider a simpler
problem in which we seek to reconstruct only the state that occurred at a
given vertex v. By re-rooting T at v if necessary, we may assume that v is
the root p with no loss of generality. Under a parsimony approach, the
state at p may be estimated by the sct of states a for which there is a lcast
one minimal extension ¥ of y on T with ¥( p) = a. A maximum likelihood
method in which the edge parameters arc assumed unknown sceks to
maximise

LUg(p)=a,piT,x]1=Plxlx(p)=a,T,pl (43)

over a and p. We show that under the fully symmetric model, these two
approaches agree.

THEOREM 6. The maximum parsimony and maximuni likelihood estimates of
the root state agree under the fully symmetric model.

Proof. Let p be incident with the rooted subtrecs T, T, . ..,T,‘,'and form

the trees T}, T},...,T; by attaching an additional leaf labelled n + 1 to the
root of each T; (see Fig. 8). For each a €., let x!” be the restriction of x
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» n+l n+l . n+l
T T T T}

Figure 8. Decompose T into the trees T},..., T, by joining a leaf n + 1 to the
root of each of the rooted subtrees 7,...,T, of T

p

to the leaves of T;, with x’(n + 1) = . Then we have
ﬂ.[,\‘/(p)=a,p|T,X]=P[X|Q(P)=0,T,P]

- X II a-pp 1 =

Peil, =y €={u,0v): e={u,v): r—1
X Awm=x S £ % 5(0)

‘1|l T 1 oa-m 0O >

i=1 | V(s e={u,v): e=fu,o): T 1
%, rl]=X(i) Xilu)=z(v) k(W) # xdv)
k .
=[1rP[xP117,p9] (44)
i=1 i :

where p is the restriction of pto E(Th. By Theorem 1,

max rP[ x| T}, pO] =r T, 45)
p(l') .
so that
max L[ ¥(p) =a, p|T, y] =r T lx®1, « (46)
P i
But
k .
YK X, 1Y =min{ch(g): 5(p) =a) > x,T), 47

i=1

and hence max, L[ (p) = a, pI T, x] <r~"¢"™), with equality if and only if
there is a minimal extension % of x on T such that %( p) = @. The result
follows.
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6.3. The maximum likelihood point is not unique. Maximum likelihood
algorithms using a hill-climbing method to maximise over the edge parame-
ters on a given tree are effective in locating a maximal point of the
likelihood function. The-question then arises as to whether the maximal
point found is a global or only a local maximum. Fukami and Tateno (1989)
claimed to have answered this question for one-parameter models of
substitution by showing that, under a certain condition, the likelihood
function has a unique maximal point. Steel (1994) gave a simple counter-
example to this claim, using a tree on four leaves for which the likelihood
function had two extrema at widely separated points. More recently, Tillier
(1994) claimed to give a sufficient condition for a multi-parameter model to
have a single maximum. However, this condition is satisfied by the fully
symmetric model, so Steel’s counter-example applies in this case also. The
results in this paper may be used to construct further counter-examples.

We have seen that p ¥ as defined in equation (26) maximises P[ x!T,pl
whenever y is a minimal extension of y. By Theorem 2, these vectors are
distinct, so that there are at least as many vectors maximising P[ x| T, p] as
there are minimal extensions of y on T (by Theorem 3, exactly as many
when r=2). Since a character may have many minimal extensions on a
given tree (Steel (1993a) constructs a tree and character pair on 2n leaves
having a number of minimal extensions equal to the nth Fibonacci number,
so that the number of minimal extensions may, in fact, grow exponentially
with n), data consisting only of many copies of such a character will also
have multiple optima on that tree,

6.4. Many constant characters implies maximum likelihood equals maxi-
mum parsimony. In this section, we demonstrate a further connection
between the methods of maximum parsimony and maximum likelihood
under the fully symmetric model. It has recently been suggested that the
existence, in some sequences, of large numbers of sites which are invariant
(unable to undergo a mutation that will fix in the population) for functional
or structural reasons can mislead phylogeny reconstruction using maximum
likelihood; see Lockhart et al. (1996). In particular, Lockhart et al. and
Chang (1996) showed that, for a tree on four species, applying the maxi-
mum likelihood method to all sites (under the incorrect assumption that
they were equally free to undergo mutation) could select the (incorrect)
maximum parsimony tree. Here, we show that this will always happen for
any input on any number of taxa—that is, if one adjoins a number k of
constant sites to any data, and applies the maximum likelihood method
under the assumption that the sites are independent and identically dis-
tributed according to the fully symmetric model, then one will necessarily
select a maximum parsimony tree if k is sufficiently large (dependent on
the input data and n). It follows that maximum likelihood under this model
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and assuming all sites are free to vary will sclect an incorrect tree on any
dataset for which maximum parsimony selects an incorrect tree if the
dataset contains a sufficiently large number of invariant sites.

Intuitively, we may understand this result as follows. Adding constant
characters will lower the maximum likelihood estimates of the mutation
probabilitics, and, as has been argued elsewhere (for example, Felsenstein
(1981)), the contributions from minimal extensions become the dominant
terms in P[ x| 7, p] as the mutation probabilities tend to zero with their
ratios bounded.

Given data X ={ x;} consisting of r-state characters, for each non-con-
stant character x, let 2, be the number of times x occurs in X, and let n,
be the number of constant characters in X (we do not distinguish between
the r different constant characters). For a given tree T and mutation
probability vector p, let f =fT,p)=Plx|T,p] for each x:[n]-5,
and let f, =f(T, p) =Pl x isconstant | T, p] = rP[ x(i) = a Vi €[]I T, p].
Then the likelihood of (T, p) given the data X can be written

LI(T, p) 1 X =fge H fix (48)
where we have used 0 to denote the constant characters. Now let
O(p, k) = —1n( o T ) (49)

that is, ® is the minus log-likelihood of (T, p) given X with k additional
constant characters. Then we have the following.

LeEMMA 5. If p,=1/kVe € E(T), then
O(p, k)

kh_r}:o ™ = g nxl( x,T)=1(X,T). (50)
Proof. We have
O(p,k)=—(ny+k)Infy— ¥ nlnf,. (51)
x*0

If ¥ is a minimal length extension of y on T, then
[,=PLXIT,pl

1 1 ( 1 )IE(T)HI(X,T)

r((r= DR

k
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1 1 (l l )1[(7"
>.____..__._—-—— ——

F((r=DR™TU

1 1

>—_ (52)
2r ((r _ 1)k)'(X;T)
for k sufficiently large that (1 — 1/k) > 1/2. Also,
1 1 1 |E(T)—ch( %)
ST (CES V1 Kl
1 1
<s- XY ——7H
" gsigex (7= DR
s S (53)
((r= DR
so that for k sufficiently large,
c ¢
1 2 (54)

((r_ l)k)l(x,T) <f;\’< ((r__ 1)k)l(x,T)

for constants c,,c, dependent only on r,n and [V(T)I.
Now, if S is the event that every vertex of T is in the same state, then
1>f,>PISIT, pl=(— 1/k)*7, By Taylor’s Theorem,

(1-x)5=1-Ex+iE(E- 1)1 =) 222 (55)

for some ¢ between 0 and x, so that

. E '
1——1-(—<ng1. (56)
Again, by Taylor’s Theorem,
, 1 -
In(1-x) = —x— ——x? (57
2(1-¢)

for some ¢ between 0 and x, so for k > 2|E(T)|, we have

|E(T)|  2|E(T))?
0<—Infy<——+—7 (58)
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Since

) ’ C.
- nin——————= Y n I(x,T)Ink— n In—-—
Xgo =)D T Xgo T (r=p'*?
=I(X,T)Ink+C, (59)

we have, from (51), (54), (58) and (59),

I(X,T)Ink+C,

|E(T)  21E(T)?
k + k2 ’

SP(p, k) <UX,T)Ink+C,+(n,+k) 60)

and on dividing by In k and letting k — o, we obtain the result.

Now, let p* = p*(k,T) be the vector of mutation probabilities minimising
®(p, k), and therefore maximising the likelihood of T given X with k
additional constant characters. Then we have the following.

LEMMA 6.
O (p*, k)

lim ——— =1(X,T). (61)
k— o Ink

Proof. In view of Lemma 5, it suffices to show that

O(p*, k)
lim ——" S (X, T). (62)
koo In k

Let p(k) = max, ., p¥. Arguing as in Lemma 5, for y # 0, we have

1 p(k) ch( g) 19
* . -
fx(p)s,-_hz (r—l)
[ X:X“”:X
1 pk) "
< 7 . E (r— | )
Xkl =x
iy, T)
= pV(DI-n-1t (p_(kl) 63)
r—1

Also,
folp*) <1-p(k) (64)
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since if leaves i and j are separatea by an edge e, for which P = p(k),

then by inequality (11), the event E that leaves i and j are in the same

state has probability less than or equal to 1 —p,, and f,(p*) < PIEL
Thus

. k Wy, T)
B p* k) > — (g + ) (1 —p(k)) — T 1, ln(r,m,,_"_,(p( )) )

x+0 r—1
> kp(k) =1(X,T)In p(k) +¢ ‘ (65)

where we have used —In(1 —p) > p,ny+k >k, and ¢ does not depend on
k or p(k). Now, minimise h = kp — I(X,T)In p as a function of p. Setting

ap p

dh (X, T
( )=0 (66)

we obtain p =X, T)/k, and the second derivative condition 9%h/dp* =
I(X,T)/p? > 0 shows that this is a minimum. Hence,

O(p*, k) > UX,T) ~I(X,T)Inl(X,T)+ (X, T)Ink +c, 67

and so
. ®(p*, k) .
lim — o > I(X,T) (68)
k- Ink
as claimed.
We are now in a position to prove the following.

TuEOREM 7. For data containing enough constant characters, the maximum
likelihood tree under the fully symmetric model is a maximum parsimony tree.

Proof. Write X, for data X with an-additional k constant characters,
and put

@, (k) = —InL[(T, p*(k, T 1 X,]. (69)

By Lemma 6, there is K such that for k > K and all trees T,

(k) 1 '
— —UX,T)| <5 , (70)

It follows that whenever k> K and I(X,T) <I(X,T,), then (k)<
@, (k), so that maximum likelihood given data X with K or more addi-
tional constant characters will choose a maximum parsimony tree.
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7. Summary. Wc have demonstrated a rclationship (Theorem 1) between
the maximal probability of generating any given character on a trec T
under a simple model, and the parsimony score of that character on 7. In
addition, we have characterised (Theorem 3) when this maximal probability
will be realised in terms of the underlying edge parametets in the case of
two states. We then derived some new results involving the maximum
likelihood and maximum parsimony methods in phylogenetic analysis.

Possible future work would include a complete classification of the
vectors which maximise P{ y| T, p] for r-states (thereby generalising Theo-
rem 3), although, clearly, such a classification must allow for the extra
complication of a continuum of solutions, as the example at the end of
Section 5 shows. Regarding the non-uniqueness of the maximum likelihood
point, it would be interesting to construct multiple local optima strictly
within the interior of the space of edge paramcicers.

It would also be useful to sec if Theorem 7 could be extended so that the
number of constant sites that need to be added to a set of characters in
order to force maximum likelihood to return the same tree as maximum
parsimony can be bounded above by a polynomial in n and |X| (the
number of characters). If so, it would follow that finding a maximum
likelihood tree for character data, under the model described here, is an
NP-hard problem.

Thanks go to Péter Erdds and LészI6 Székely for suggesting a simpler proof
of Lemma 4, and to David Penny for conjecturing Theorem 7 while at the
“Moir of Ord,” Arthur’s Pass. We also thank Joe Felsenstein for his helpful
comments. .
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