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Phylogenetic trees and networks are leaf-labelled graphs that are used to describe evolution-
ary histories of species. The TREE CONTAINMENT problem asks whether a given phylogenetic
tree is embedded in a given phylogenetic network. Given a phylogenetic network and a
cluster of species, the CLUSTER CONTAINMENT problem asks whether the given cluster is a
cluster of some phylogenetic tree embedded in the network. Both problems are known to

be NP-complete in general. In this article, we consider the restriction of these problems

Keywords:

Algorithms

Computational complexity
Phylogenetic trees
Phylogenetic networks

to several well-studied classes of phylogenetic networks. We show that TREE CONTAINMENT
is polynomial-time solvable for normal networks, for binary tree-child networks, and for
level-k networks. On the other hand, we show that, even for tree-sibling, time-consistent,
regular networks, both TREE CONTAINMENT and CLUSTER CONTAINMENT remain NP-complete.
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1. Introduction

Rooted trees, and more generally digraphs, are widely
used to represent evolutionary relationships in biology [5,
6,10]. Such a digraph typically has a set X of labelled
leaves (vertices of outdegree 0) which corresponds to the
collection of present-day species under study. The arcs in
the digraph are directed away from a single ‘root’ vertex
which represents the evolutionary ancestor of the species
in X. The remaining vertices of the digraph are usually un-
labeled; they represent hypothetical ancestral species, and
an arc from u to v indicates that ancestral species u con-
tributes directly to the genetic makeup of v.

The simplest phylogenetic networks are trees, and these
have traditionally been used when evolution is described
purely by the formation of each new species from an ex-
isting one. However, processes of reticulate evolution (in
particular the formation of hybrid species, and lateral gene
transfer) mean that a new species can have genetic contri-

* Corresponding author.

E-mail addresses: 1.j.j.v.iersel@gmail.com (L. van lersel),
c.semple@math.canterbury.ac.nz (C. Semple),
m.steel@math.canterbury.ac.nz (M. Steel).

1 We thank the Allan Wilson Centre for Molecular Ecology and Evolu-
tion and the New Zealand Marsden Fund for funding.

0020-0190/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.07.027

butions from more than one ancestral species, which is the
reason digraphs are increasingly seen as a desirable model
in molecular systematics [4]. More precisely, if one con-
siders the evolution of a particular gene, its evolution will
generally be described by a tree, but reticulate processes
mean that different genes can have different evolutionary
tree structures, that can only be adequately reconciled by
fitting them into a phylogenetic network.

This raises a fundamental question in computational
phylogenetics: given a tree and a phylogenetic network,
both with leaf set X, is there an efficient algorithm to
determine whether the tree ‘fits inside’ the network (in a
sense we define precisely below)? In general this question
is NP-hard, even for certain restricted classes of phylo-
genetic networks. However, we show that, for particular
classes, there exist polynomial-time algorithms which also
provide a recipe for finding an explicit embedding of the
tree in the phylogenetic network. In addition, we consider
the computational complexity of deciding whether a sub-
set of X' is a cluster of some tree that sits inside a given
network.

The structure of this article is as follows. After giv-
ing formal definitions in the next section, we present
our polynomial-time algorithms for the ‘tree containment’
problem in Section 3, discuss the ‘cluster containment’
problem in Section 4, show the computational intractabil-
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Fig. 1. Left: A rooted phylogenetic network on X = {a, b, c, d, e}. This network is normal, but not binary and has one reticulation vertex. Middle: One of the
two rooted phylogenetic trees on X = {a, b, c,d, e} that are displayed by this network. Right: If we add either of the dashed edges, the resulting network
is no longer normal; adding the steeper, left-most arrow violates condition (R3) while adding the right-most arrow results in a network that violates the

tree-child property for the parent of b and c.

ity of both problems for certain classes of networks in
Section 5, and finish with an open problem in Section 6.

2. Definitions

Consider a set X’ of taxa. A rooted phylogenetic network
(network for short) on X is a directed acyclic (simple)
graph with a single root (vertex with indegree 0), leaves
(vertices with outdegree 0) bijectively labeled by X and
no vertices with indegree and outdegree one. We iden-
tify each leaf with its label and refer to the directed edges
(arcs) as edges.

A vertex is called a reticulation vertex (reticulation for
short) if it has indegree at least two and a tree-vertex
otherwise. An edge is called a tree-edge if it ends in a
tree-vertex and it is called a reticulation-edge otherwise.
A tree-path is a directed path that contains only tree-edges.
A network with no reticulations is said to be a rooted phy-
logenetic tree (tree for short). A network is said to be binary
if each reticulation has indegree two and outdegree one
and all of the vertices have outdegree at most two.

Given two vertices v1, vy (of some tree or network), we
use vq1 < vy to denote that there is a directed path from v
to vy. If vi < vy and vy # vy, we write vq < vy. For a
vertex v, we define cl(v) ={x e X: v <x}. If (u,v) is an
edge, then we say that u is a parent of v and v is a child
of u. If two vertices v, vy have a common parent, then
they are said to be siblings. An edge e of a network N is a
cut-edge if removal of e disconnects the undirected graph
underlying N. A cut-edge is trivial if it ends in a leaf.

Given a tree T and network N, we say that N displays T
if there is a subgraph T’ of N that is a subdivision of T
(i.e. T’ can be obtained from T by replacing edges by di-
rected paths). For a tree T on X and a subset X’ C X, we
use T|X’ to denote the tree on X’ that is displayed by T.

These concepts are illustrated in Fig. 1.

In the first part of this paper we consider the following
fundamental decision problem:

TREE CONTAINMENT

Instance: A set X of taxa, a rooted phylogenetic net-
work N on X and a rooted phylogenetic tree T
on X.

Question: Does N display T?

This problem is known to be NP-complete [8] for the
general class of rooted, binary phylogenetic networks. Here
we study the restriction of this problem to some estab-
lished classes of rooted phylogenetic networks. We then

consider the complexity of a related ‘cluster containment’
problem.

2.1. Classes of phylogenetic networks

A phylogenetic network N is said to be regular if for
any two distinct vertices u, v of N

(R1) cl(u) #cl(v).

(R2) u < v if and only if cl(u) D cl(v);

(R3) there is no edge (u, v) if there is also a directed path
from u to v of length greater than one.

A phylogenetic network N is said to be tree-child (see
e.g. [3]) if each vertex of N either is a leaf or has a child
that is a tree-vertex. It follows immediately that from each
vertex of a tree-child network there exists a tree-path to
a leaf. A network is said to be normal if it is tree-child,
has no vertices of outdegree 1, and in addition condition
(R3) above holds. It has been shown that any normal net-
work is regular, i.e. that automatically conditions (R1) and
(R2) hold [12]. Moreover, each regular network N on X
can be uniquely reconstructed from the set of all rooted
phylogenetic trees on X’ that are displayed by N, and by an
algorithm whose running time is polynomial in |X’| [11].

3. Polynomial-time algorithms

This section describes our main results, polynomial-
time algorithms for TREE CONTAINMENT restricted to normal
networks and to binary tree-child networks. We first give
an algorithm for normal networks in Section 3.1, because
this algorithm is simpler and will be used as a subroutine
for the algorithm for binary tree-child networks in Sec-
tion 3.2.

3.1. Normal networks

We show that, given a normal phylogenetic network N
and a phylogenetic tree T, one can decide in polynomial
time whether N displays T. We propose the following al-
gorithm. An example is in Fig. 2.

Algorithm. LocATENORMAL
For each reticulation r of N, do the following.

1. Find a leaf x, that can be reached from r by a tree-
path.
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Fig. 2. llustration of algorithm LocaTENORMAL for tree T in (a) and normal network N in (b). Dotted edges are removed from N; in (b) because a and b are
siblings in T|{a, b, c}, in (c) because ¢ and d are siblings in T|{a, c,d}, and in (d) because d and e are siblings in T|{d, e, f}.

2. Construct a set X’ consisting of x, and, for each par-
ent p of r, a leaf that can be reached from p by a
tree-path.

3. If x, does not have a sibling in T|X’, report that N
does not display T.

4. If x, has a unique sibling in T|X’, let x; be the sib-
ling and ps be the parent of r from which x; can be
reached by a tree-path. Delete all edges entering r ex-
cept for (ps,1).

5. If x, has more than one sibling in T|X’, report that N
does not display T.

When there are no reticulations left, the network has been
transformed into a phylogenetic tree T'. Check if T is a
subdivision of T. If it is, report that N displays T. Other-
wise, report that N does not display T.

Theorem 1. Given a normal phylogenetic network N on X and
a phylogenetic tree T on X, algorithm LOCATENORMAL decides
in polynomial time whether N displays T. Moreover, if N dis-
plays T, LocATENORMAL finds the unique subtree of N that is a
subdivision of T.

Proof. We first show that, for any reticulation r, the leaves
in the set X’ described by the algorithm (which exist by
the tree-child property) are always distinct. To show this,
assume that two such tree-paths end in the same leaf.
Since tree-paths cannot combine in a reticulation, the only
remaining possibility is that, for two parents pgq, pp of 1,
the tree-path from p, to a leaf passes through p,. How-
ever, this implies the existence of a directed path pg — r
of length greater than one, contradicting (R3), since there
is also an edge (pgq, 7).

We now prove that LOCATENORMAL reports that N dis-
plays T if and only if this is the case. If the algorithm
reports that N displays T, then it is clear that N indeed
displays T, since the algorithm checks if the constructed
subtree T" of N is a subdivision of T. Now suppose that N

displays T. Then there exists a subtree T’ of N that is a
subdivision of T. Take any reticulation r and X’ as in the
algorithm. Observe that the root of T’ is the root of N by
property (R1). Thus, by this observation and the fact that
there is a tree-path from r to a leaf, r and exactly one of
the edges entering r are included in T'. Let (p/,r) be the
edge entering r that is included in T’ and x’ the leaf in X’
that can be reached from p’ by a tree-path. Then X’ is a
sibling of x, in T’|X’ (which is isomorphic to T|X’) and
hence p’ = ps. If x, has more than one sibling in T'|X’,
then N does not display T; a contradiction. It follows that
LocAaTENORMAL deletes all reticulation-edges not included
in T’, thus reconstructing T’. Moreover, since there is no
choice which reticulation-edges to delete, the subtree T’ is
unique.

The running-time is clearly polynomial in the size of
the input. Moreover, the number of vertices of a normal
network grows at most quadratically with the number of
leaves [12]. Hence, the running-time is also polynomial in
the number of leaves. 0O

3.2. Tree-child networks

This subsection shows that, given a binary tree-child
phylogenetic network N and a phylogenetic tree T, one can
decide in polynomial time whether N displays T. We par-
tition the reticulations of N into four types.

Type L. There is no directed path between the parents of
the reticulation.

Type II. There is a directed path that is not a tree path
between the parents of the reticulation.

Type IIL. There is a single edge connecting the parents of
the reticulation.

Type IV. There is a tree-path between the parents of the
reticulation that contains a vertex that is the parent of two
tree-vertices.
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Type V. There is a tree-path between the parents of the
reticulation that contains at least one internal vertex but
no vertex that is the parent of two tree-vertices.

Note that in a normal network all reticulations are of
Type I, because of restriction (R3). Thus, the difficulty in
generalizing the algorithm for normal networks in Sec-
tion 3.1 is that the algorithm for tree-child networks below
also has to take reticulations of Types II, III, IV and (espe-
cially) V into account.

Algorithm. LocATETREECHILD

Repeat the following four steps until none is applicable.
Step 1. If there is a reticulation of Type I, proceed as for
normal networks.

Step 2. If there is a reticulation of Type II, do the following:

2.1 Let pg and pp be the parents of r such that p, < pp.
Let X, X5, and x, be leaves that can be reached from
T, Pa, and pp, respectively, by tree-paths.

2.2 If x, and x, are siblings in T|{xp,1, Xy}, remove the
edge (pg,r) from N.

2.3 If x; and x, are siblings in T|{xp,r, Xy}, remove the
edge (pp,r) from N.

2.4 Otherwise, report that N does not display T.

Step 3. If there is a reticulation of Type III, choose one of
its two incoming edges arbitrarily and remove it.

Step 4. If there is a reticulation r of Type 1V, do the follow-
ing:

4.1 Let p, and pp be the parents of r such that p, < pp.
Pick a vertex v that lies on the path from p, to pp and
is the parent of two tree-vertices. Let ¢ be the child
of v that does not lie on the path between the parents
of r. Let x;,x, and x. be leaves that can be reached
from r, pp and c respectively by tree-paths.

4.2 If x, and x, are siblings in T|{xp, X;, Xc}, remove the
edge (pg,r) from N.

43 If x, and x. are siblings in T|{xp, Xr, X}, remove the
edge (pp,r) from N.

4.4 Otherwise, report that N does not display T.

Step 5. If there is a reticulation of Type V, do the following.

5.1 If N contains a nontrivial cut-edge (u, v), let C be the
set of taxa reachable from v. Find a vertex v’ of T with
C = cl(v’) (if there is no such vertex, report that N
does not display T). Construct T, from T by delet-
ing all descendants of v/ and labeling v/ by a new
taxon x. ¢ X. Construct N. from N by deleting all de-
scendants of v and labeling v by x.. Construct N|C
by restricting N to the vertices and edges reachable
from v. Run the algorithm recursively for (N, T¢) and
(N|C, T|C). If N displays T. and N|C displays T|C, re-
port that N displays T. Otherwise, report that N does
not display T.

5.2 Contract all vertices with indegree and outdegree 1.
Find a leaf x that has a reticulation as sibling. Con-
struct a tree-path P as follows. Initialize P as x and,
as long as the first vertex v of P has a reticulation as
sibling, add the parent of v to P. Construct a set X’ by

including x and, for each reticulation that has a parent
on P, a leaf that can be reached from this reticulation
by a tree-path.

5.3 If x does not have a sibling in T|X’, report that N does
not display T.

5.4 If x does have a sibling x; in T|X’, let r’ be the retic-
ulation from which x; can be reached by a tree-path.
Let p; and p; be the parents of r’ such that p; < pj.
Remove the edge (p;,r’) from N.

When there are no more reticulations left, check if the
resulting phylogenetic tree T’ is a subdivision of T. If it
is, report that N displays T. Otherwise, report that N does
not display T.

Theorem 2. Given a binary tree-child phylogenetic network N
on X and a phylogenetic tree T on X, algorithm LOCATE-
TREECHILD decides in polynomial time whether N displays T.

Proof. If there exist reticulations of Type I or IV, it can be
shown analogously to the proof of Theorem 1 that Steps 1
and 4 of LocATETREECHILD either resolve these reticulations
in the only possible way, or conclude that N does not
display T. Consider reticulations of Type Il. As there is a
reticulation edge on the directed path from pq to pp, it
follows that x, and x;, are distinct. With this in hand, it
can again be shown analogous to the proof of Theorem 1
that Step 2 either resolves these reticulations in the only
possible way, or conclude that N does not display T. Fur-
thermore, it is clear that Step 3 correctly deals with retic-
ulations of Type IIl as N is binary and so, if (pg, pp) (resp.
(pp, pa)) is an edge, the tree-path from p, (resp. pp) to
a leaf includes pp (resp. pq). Also, Step 4.1 correctly deals
with nontrivial cut-edges. Thus, from now on, we assume
that all reticulations are of Type V and that there are no
nontrivial cut-edges.

We first show that a leaf x as described by Step 4.2 in-
deed exists, i.e. we show that there is a leaf that has a
sibling which is a reticulation. Consider a tree-path Q of
maximum length. Because Q is a tree-path, it ends in a
tree-vertex x, which must be a leaf because N is tree-child
and Q is of maximum length. The single parent of x is
a tree-vertex because, if it were a reticulation, Q would
consist of just x but, by the existence of a Type V reticu-
lation, there exists a tree-path of length at least two. Thus,
leaf x has a sibling, which has to be a reticulation because
otherwise it would be possible to extend Q to a longer
tree-path. Note that this sibling cannot be a leaf and a
tree-vertex, otherwise the edge directed into the parent of
x is a nontrivial cut-edge. This shows the existence of a
leaf x as described in Step 4.2.

We now show that the algorithm reports that N dis-
plays T precisely when this is the case. The algorithm
checks if the constructed subgraph T’ is a subdivision of T,
so it will clearly never report that N displays T if this is
not the case. So assume that N does display T. It remains
to show that the algorithm will construct some subdivi-
sion of T in N. Observe that, apart from x, all vertices on
the path P have two children: one reticulation and one
tree-vertex (which lies on P). Let R be the set of all retic-
ulations with a parent on P. Thus, X’ consists of x and, for



L. van lersel et al. / Information Processing Letters 110 (2010) 1037-1043 1041

Fig. 3. Illustration of the last case in the proof of Theorem 2. A subdivision
of the tree T in the network N is indicated by solid lines. Replacing edge
(pg. ") by (py.1’) gives another subdivision of T in N, because (pg,r’) is
the last edge leaving the path P (the vertical path) that is used by the
subdivision.

each reticulation in R, a leaf that can be reached from this
reticulation by a tree-path. By the choice of x, the path P
contains at least one other vertex, and so the set X’ con-
tains at least two leaves.

We claim that all parents of reticulations in R lie on P.
Assume that this is not the case. Then there is a reticula-
tion 7 with two parents pg, pp such that p, < p, and one
of pg, Pp is not on P while the other one is. Since P and
the path p, < pp both contain only tree-edges, we must
have that pq is on P while pj is not. However, then the
path p, — pp contains a vertex that is the parent of two
tree-vertices, which means that 7 is of Type IV. This is a
contradiction because the algorithm has already resolved
all reticulations of Type IV in Step 4.

Thus, apart from x, P consists precisely of the parents
of reticulations in R. Since N displays T, there exists a
subtree T’ of N that is a subdivision of T. We next claim
that x has a sibling in T’|X’. Let v, be the last vertex on
the path P for which the reticulation-edge leaving v is in-
cluded in T’ (such a vertex exists because one of the edges
entering the sibling of x is included in T’). Let x; be the
leaf in X’ that can be reached from the reticulation-child
of vs by a tree-path. Clearly, x; and x are siblings in T'|X’
(which is isomorphic to T|X’). Thus, the algorithm removes
the edge (p,,r’) from N, with r’ the reticulation-child of v;
and p;, equal to either v or the other parent of r’.

First suppose that p; is not equal to vs. Thus, vs = p;
and p;, is the other parent of r’. In this case, the algorithm
correctly removes the edge (p,,r’) that is not in T’ and we
are done.

Now assume that p, = v and thus that the algorithm
removes the edge (p,,r’) that is in T’. We replace in T’
the edge (py.r’) by the edge (pj.r’). The resulting sub-
graph of N is again a subdivision of T, because none of
the reticulation-edges leaving vertices below p, = vy were
included in T’ (by the choice of vg). See Fig. 3 for an
illustration. We conclude that the algorithm correctly con-
structs a subdivision of T in N.

The running-time is clearly polynomial in the size of
the input. Moreover, the number of reticulations in a tree-
child network is at most n = |X| and it can be shown
by induction on the number n, of reticulations that the
number of edges of a binary tree-child network is at
most 2n + 3n, — 2 < 5n — 2. Hence, the running-time is
also polynomial in the number of leaves. O

4. Cluster containment

A cluster is a strict subset of X'. There are two different
ways of seeing clusters in networks. Let v be a vertex of a
network N on X. The hardwired cluster of v, denoted cl(v),
is the set containing all taxa that can be reached from v.
A cluster is said to be a hardwired cluster of N if it is the
hardwired cluster of some vertex of N. A cluster C ¢ X
is said to be a softwired cluster of v if C equals the set of
all taxa that can be reached from v when, for each retic-
ulation r, exactly one incoming edge of r is “switched on”
and the other incoming edges of r are “switched off”. No-
tice that each vertex has exactly one hardwired cluster and
one or more softwired clusters. We say that C is a soft-
wired cluster of a network N if it is a softwired cluster of
some vertex of N. The softwired clusters of N can elegantly
be characterized as follows. A cluster C C X is a softwired
cluster of N if and only if there exists a tree T such that C
is a hardwired cluster of T and T is displayed by N. We
are interested in the following decision problem.

CLUSTER CONTAINMENT

Instance: A set X of taxa, a rooted phylogenetic net-
work N on X and a cluster C C X.

Question: Is C a softwired cluster of N?

This problem is known to be NP-complete [8] for
general binary phylogenetic networks. However, it has a
polynomial-time algorithmic solution if we restrict N to
tree-child networks [6]. We will show below (Theorem 3)
that, if we extend the class of normal networks to regular
networks, the problem CLUSTER CONTAINMENT becomes NP-
hard, even if we add further structural restrictions to this
class of networks. But first we describe yet another class
of networks for which both problems - TREE CONTAINMENT
and CLUSTER CONTAINMENT - have polynomial-time algo-
rithms.

4.1. Level-k networks

We finish this section by observing that both TREE CON-
TAINMENT and CLUSTER CONTAINMENT are polynomial-time
solvable for the class of binary level-k networks. A binary
network is biconnected if it contains no cut-edges. A bi-
connected subgraph B of a binary network N is said to
be a biconnected component if there is no biconnected sub-
graph B’ # B of N that contains B. A binary phylogenetic
network is a level-k network if each biconnected component
has at most k reticulations.

Observation 1. TREE CONTAINMENT and CLUSTER CONTAIN-
MENT are polynomial-time solvable when restricted to binary
level-k networks, for any fixed k.
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Fig. 4. How HANGLEAVES(v) modifies N and T. Vertices r and rr are the roots of N and T respectively.

Proof. We may assume that the network contains no non-
trivial cut-edges, because Step 4.1 of algorithm LOCATE-
TREECHILD can be applied until there are no nontrivial
cut-edges left. A level-k network with no nontrivial cut-
edges contains at most k reticulations. Thus, we can loop
through all 2¥ ways of selecting one incoming edge for
each of the k reticulations. For each of the resulting trees,
we check whether it is a subdivision of the input tree (in
case of the TREE CONTAINMENT problem) or check whether
the input cluster is a cluster of the obtained tree (in case
of the CLUSTER CONTAINMENT problem). 0O

5. NP-completeness for tree-sibling, time-consistent,
regular networks

A phylogenetic network is said to be tree-sibling (see
e.g. [2]) if each reticulation has a sibling that is a tree-
vertex. A phylogenetic network N is said to be time-
consistent (see e.g. [1,9]) if it is possible to assign each
vertex v of N a “time stamp” t(v) € RZ? such that for
each edge (u,v) of N:

(TC1) t(u) < t(v) if (u, v) is a tree-edge and
(TC2) t(u) =t(v) if (u, v) is a reticulation-edge.

Theorem 3. TREE CONTAINMENT and CLUSTER CONTAINMENT
are both NP-complete when restricted to tree-sibling, time-
consistent, regular phylogenetic networks.

Proof. We reduce from the TREE CONTAINMENT and CLUSTER
CONTAINMENT problems on general networks, which were
shown to be NP-complete by Kanj et al. [8].

Let X be a set of taxa, and let N and T be a net-
work and tree on X, respectively. We will modify N to
a tree-sibling, time-consistent, regular network N’ on a set
of taxa X’ O X and show that a cluster C C X is a soft-
wired cluster of N’ if and only if it is a softwired cluster
of N. Since this modification can be carried out in polyno-
mial time and the size of N’ is polynomial in the size of N,
this shows NP-hardness of CLUSTER CONTAINMENT on tree-
sibling, time-consistent, regular networks. Furthermore, we
will (in polynomial time) modify T to a tree T' on X’
and show that N’ displays T’ if and only if N displays T,
thus showing NP-hardness of TREE CONTAINMENT on this re-
stricted class of networks.

The construction of N’ and T’ relies on repeatedly
applying the following operation. For a vertex v of N,
define HANGLEAVES(v) as making the following changes
to N, T and X. We add two new taxa x,x to X. Let r
be the root of N. We add to N leaves x, x/, a new root r’,

an internal vertex p and edges (’,r), (", p), (p,X), (p, X)
and (v,x). Let rr be the root of T. We add to T the
leaves x,x’, a new root r/T, an internal vertex pr and
edges (%, r7), (7, p1), (p1, %) and (pr,x’). See Fig. 4.

We now describe how we transform N into a tree-
sibling, time-consistent, regular network by repeated appli-
cations of HANGLEAVES. First, we make the network regular
by doing the following for each pair u, v of distinct ver-
tices of N.

1. If cl(u) = cl(v), then apply HANGLEAVEs(u) and
HANGLEAVES(V).

2. If cl(u) D cl(v) but there is no directed path from u
to v, then apply HANGLEAVES(V).

3. If there exist two distinct directed paths from u to v,
one of which is an edge, then subdivide this edge with
a single vertex w and apply HANGLEAVES(w).

For any two vertices u, v of N, operations 1, 2 and 3 make
sure that properties (R1), (R2) and (R3) (respectively) of a
regular network are satisfied. Furthermore, by the defini-
tion of HANGLEAVES, these properties are also satisfied for
newly added vertices. It follows that the obtained network
is regular. Call this network N;.

The next step is to make the network time-consistent.
For each reticulation-edge (u, v) of N;, subdivide (u, v) by
a new vertex w and apply HANGLEAVES(w). Let Ny be the
resulting phylogenetic network.

We claim that N is time-consistent. Let t : V(N;) - N
be a labeling of the vertices of N, such that t(u) < t(v)
for each edge (u, v). This is possible because N, is acyclic.
We specify a label t’(v) (the time-stamp) for each vertex v
of Ny as follows. Each vertex of Ny that is also a ver-
tex of N, gets the same label as in N;, ie. t'(v) = t(v)
for all v € V(N;). Now consider a reticulation-edge (u, v)
of N;. Such an edge corresponds to two edges (u,w)
and (w, v) of Ny.. Now label vertex w the same as ver-
tex v, i.e. t'(w) =t'(v) = t(v). Observe that (w,v) is
a reticulation-edge and now satisfies restriction (TC2) of
time-consistency. Furthermore, we have t'(u) < t'(w) and
so (u, w), which is a tree-edge, satisfies restriction (TC1)
of time-consistency. It remains to label the vertices that
have been added by HANGLEAVES. This can easily be done
in such a way that the restrictions of time-consistency are
satisfied. Namely, we give x and p the same label as v,
give r’ any label that’s smaller than t’(r) and x’ any label
that is greater than t’'(p) (processing vertices in the same
order as in which they have been added by applications of
HANGLEAVES).

Finally, we make the network tree-sibling. For each
reticulation r of Ny, that has not been added by
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HANGLEAVES, we do the following. Observe that, as a re-
sult of the modifications that made N, time-consistent, r
has two siblings, both of which are reticulations added by
two different applications of HANGLEAVES. Pick any of the
two siblings and call it x. Let v be the common parent of x
and r. Subdivide edge (v, x) by a new vertex w and apply
HANGLEAVES(w). Reticulation r now has a sibling that is a
tree-vertex, namely w. Moreover, all reticulations x added
by applications of HANGLEAVES have a sibling x' that is a
tree-vertex. Hence, the resulting network is tree-sibling.
Let N’ be this resulting network and T’ the resulting tree.

We claim that N’ is not only tree-sibling, but also
still regular and time-consistent. To see that N’ is regu-
lar, observe that it has been obtained from the regular
network N, by repeatedly subdividing an edge by a new
vertex w and applying HANGLEAVES(w). It can easily be
checked that a regular network remains regular after such
a modification. To see that N’ is also time-consistent, ob-
serve that it has been constructed from time-consistent
network Ny by repeatedly subdividing an edge (v, x) by a
new vertex w and applying HANGLEAVES(w). Using that x
is a leaf added by HANGLEAVESs, it is easily checked that by
taking a time stamp t’ for Ny, setting t'(w) > t'(v), re-
setting t'(x) = t'(w), and appropriately time stamping the
remaining two “non-root” vertices of HANGLEAVES(w), N’ is
time-consistent. Thus, N’ is a tree-sibling, time-consistent,
regular network.

It remains to show that (i) a cluster C C X" is a soft-
wired cluster of N’ if and only if it is a softwired cluster
of N and (ii) N’ displays T’ if and only if N displays T. The
crux to showing these things is that N’ and T’ have been
obtained from N and T by subdividing edges and applying
HANGLEAVES. By this observation, (i) is clear.

To see (ii), let N*, T* and X* be the result of a single
application of HANGLEAVES(V) to N, T, X. We claim that N*
displays T* if and only if N displays T. First note that an
embedding of T in N can easily be extended to an em-
bedding of T* in N* by adding to the embedding all new
vertices, a path from r’ to the root of the embedding and
edges (', p), (p,X), (p,x). Now consider an embedding
of T* in N*. Since x and x' are siblings in T*, this em-
bedding necessarily contains the newly added vertices and
edges except for the edge (v, x). Thus, the restriction of the
embedding of T* in N* to an embedding of T in N* does
not contain any of the newly added vertices and edges and
is thus an embedding of T in N. Thus, N* displays T*
if and only if N displays T. By recursively applying this
argument, it follows that N’ displays T’ if and only if N
displays T. O

6. Open problem

For a vertex v and a leaf x of some phylogenetic net-
work, we say that v is a stable ancestor of x if all directed

paths from the root to x pass through v. A network is said
to be reticulation-visible if each reticulation is a stable an-
cestor of some leaf. Recently, it was shown that CLUSTER
CONTAINMENT is polynomial-time solvable for reticulation-
visible networks [6]. This class of networks contains, but is
more general than, the class of tree-child networks. Thus,
the tantalizing question remaining open after this work is
whether TREE CONTAINMENT is also polynomial-time solv-
able for reticulation-visible networks.

Note that TREE CONTAINMENT cannot simply be solved by
checking if each cluster of the input tree T is a softwired
cluster of the input network N (using an algorithm for
CLUSTER CONTAINMENT). This approach fails because, even
if all clusters of T are softwired clusters of N, and even
if N is reticulation-visible, it might be that N does not
display T, see [7]. Thus, there is no obvious reduction
from CLUSTER CONTAINMENT to TREE CONTAINMENT oOr Vice
versa.
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