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Abstract Phylogenetic inference aims to reconstruct the evolutionary relationships
of different species based on genetic (or other) data. Discrete characters are a partic-
ular type of data, which contain information on how the species should be grouped
together. However, it has long been known that some characters contain more infor-
mation than others. For instance, a character that assigns the same state to each species
groups all of them together and so provides no insight into the relationships of the
species considered. At the other extreme, a character that assigns a different state to
each species also conveys no phylogenetic signal. In this manuscript, we study a nat-
ural combinatorial measure of the information content of an individual character and
analyse properties of characters that provide the maximum phylogenetic information,
particularly, the number of states such a character uses and how the different states
have to be distributed among the species or taxa of the phylogenetic tree.
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1 Introduction

The evolutionary history of a set of species (or, more generally, taxa) is usually
described by a phylogenetic tree. Such trees can range from small trees on a clade of
closely related species, through to large-scale phylogenies acrossmany genera [such as
the Tree of Life project (Maddison et al. 2007)]. Phylogenetic trees are usually derived
from genetic data, such as aligned DNA, RNA or protein sequences, genetic markers
(SINEs, SNPs etc), gene order on chromosomes and the presence and absence patterns
of genes across species. These types of data generally consist of discrete characters,
each of which assigns a state from some discrete set to each species.

In order to derive a tree from character data, we require a measure of how well the
characters ‘fit’ onto each possible tree in order to choose the tree which gives the best
fit. One such simple measure is the notion of a character being homoplasy-free on the
tree, which means that the evolution of the character can be explained by assuming
that each state has evolved only once.1 It turns out out that this is equivalent to a
more combinatorial condition of requiring the character to be ‘convex’ on the tree.
This notion is defined formally in the next section, but, briefly and roughly speaking,
it says that when all species (at the leaves of the tree) that are in the same state
are connected to one another, the resulting subtrees do not intersect. This concept is
illustrated in Fig. 1.

In practice, biologists generally build a tree by using a large number of characters.
However, it has been shown that for any binary tree T (involving any number of leaves)
just four characters (on a large enough number of states) suffice to ensure that T is
the only tree on which those four characters are convex (Huber et al. 2005; Bordewich
et al. 2006). Moreover, even a single character already contains some information
concerning which of the species should be grouped together.

Note that a character is often compatible with more than one tree—for instance, if
you have six species (say 1, 2, . . . , 6), and the constant character χ that assigns each
species the state α, then the induced partition is {1, 2, 3, 4, 5, 6}. This implies that all
species are grouped together and therefore no information concerning which species
is most closely related to another species can be obtained. This particular character
is convex on all possible phylogenetic trees on six species, so this character does not
provide any information on which tree should be chosen. At the other extreme, a
character for which each species is in a different state from any other species is convex
on every possible phylogenetic tree, and so it is also completely uninformative. The

1 This condition is weaker than the assumption that each state actually evolves only once, since the states at
the leaves may have evolved with homoplasy (reversals or convergent evolution) yet still be homoplasy-free
on the tree.
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On the information content of discrete phylogenetic… 529

Fig. 1 Character χ = ααβββγ is convex on tree T (left), but not on T ′ (right). The dotted lines represent
the minimum spanning tree connecting the leaves that are in state α, whereas the dashed lines represent the
minimum spanning tree connecting all leaves which are in state β. When a character that takes k ≥ 2 states
is convex on a tree, then at least k − 1 edges are not needed in any of the spanning trees, as shown for T by
the edges marked with an asterisk

same is true for a character in which some species are in one state, and each remaining
species has its own unique state.

However, if you have the character χ that assigns Species 1 and 2 state α, Species
3, 4 and 5 state β, and Species 6 state γ , then this character is convex on some
phylogenetic trees on six taxa, but not on all of them (cf. Fig. 1). Under the convexity
criterion, such a character would clearly favour some trees over others and thus it
contains some information about the trees it will fit on (namely, in this example,
all trees that group Species 1 and 2 together versus Species 3, 4 and 5, which will
form another group, and Species 6 will form a third group). Thus the number of states
employed by a character as well as the number of species that are assigned a given state
play an important role in deciding how much information is contained in a character.
Note that our definition of phylogenetic information is purely combinatorial, and thus
differs from some other approaches that are based on particular statistical models (see
e.g. Townsend 2007).

The aim of this paper is to characterize and analyse the characters that have the
highest information content in this sense (i.e. that are convex on relatively few trees
and thus have a preference for these few trees over all others), when the number of
states is either fixed or free to vary. Our first main result, Theorem 1, states that for a
fixed number of states, a most informative character will be one in which the subsets
(‘blocks’) of species in each state are roughly the same size; more specifically, their
sizes can only differ by at most 1. Moreover, we note that the optimal number of such
blocks in a character in order to make it convex on only a few trees cannot easily
be determined, as it does not grow uniformly with the number of species because
‘jumps’ appear in the growth function. We analyse these jumps and also provide an
approximation without such jumps, and explore the associated asymptotic estimate of
the rate of growth (with the number of leaves) of the optimal number of states.

2 Preliminaries

Wenow introduce some terminology and notation. Let X be a finite set of species. Such
a set is also often called a set of taxa. A phylogenetic X-tree T is an acyclic connected
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graph with no vertices of degree 2 in which the leaves are bijectively labelled by the
elements of X . Such a tree is called binary if all internal vertices have degree 3. We
will restrict our analyses on such trees (for reasons we will explain below) and will
therefore in the following refer to phylogenetic trees or just trees for short, even though
we mean binary phylogenetic X -trees.

Next, we need to define the type of data we are relating to phylogenetic trees. These
data are given as characters: A function χ : X → S , where S is a set of character
states, is called a character, and if |χ(X)| = r , we say that χ is an r-state character.

We may assume without loss of generality that X = {1, . . . , n}. Rather than explic-
itly writing χ(1) = c1, χ(2) = c2, . . . , χ(n) = cn for some states ci ∈ S , we
normally write χ = c1c2 . . . cn . The left-hand side of Fig. 1 depicts the character
χ = ααβββγ on six taxa on a tree T .

Note that an r -state character χ on X induces a partition π = π(χ) of the set X
of taxa into r non-empty and non-overlapping subsets X1, . . . , Xr of X , which can
also be called blocks. For instance, the character χ = ααβββγ induces the partition
π = {{1, 2}, {3, 4, 5}, {6}} (i.e. the blocks X1 = {1, 2}, X2 = {3, 4, 5} and X3 = {6}).
For our purposes, the partition induced by a character is usually more important than
the particular character itself. For instance, the characters χ1 = γ γαααβ and χ2 =
ββγ γ γα induce the same partitionπ = {{1, 2}, {3, 4, 5}, {6}} and are thus considered
to be equivalent.

Now that we have defined a structure (namely phylogenetic trees) and the partitions
associated with discrete character data, we can introduce a measure of how well these
data fit on a tree. A characterχ is called convex on a phylogenetic tree T , if theminimal
subtrees connecting taxa that are in the same block do not intersect. This means that
if you consider one state and colour the vertices on the paths from each taxon in this
state to all other taxa in the same state, and if you repeat this (with different colours)
for all other states, there will be no vertex that is assigned more than one colour. An
illustration of this idea is given in Fig. 1, where the character χ = ααβββγ is convex
on T but not on T ′. Note that if χ is convex on T and |χ(X)| > 1, this colouration
may leave some vertices uncoloured, and it may also assign different colours to the
endpoints of certain edges. The deletion of these edges would lead to monochromatic
subtrees, all of which are assigned a unique colour (i.e. all leaves in any given subtree
are in the same state). This can also be seen by considering tree T from Fig. 1, where
the dotted lines refer to the subtree spanning all taxa that are in state α and the dashed
lines span the taxa in state β. If we delete the edges indicated by the asterisks (*) in
T , all subtrees of T are monochromatic, either dotted or dashed, or an isolated leaf.
Thus a convex character induces a partition of X that can also be derived by deleting
some edges of T .

Recall that a character can be convex on more than one tree. Moreover, whenever a
character is convex on a non-binary tree T , it is automatically convex on all binary trees
which are compatiblewith this tree (i.e. all binary treeswhich can be derived from T by
resolving vertices of degree greater than three by introducing additional edges). This
is illustrated in Fig. 2, where the tree in the middle is non-binary and there are several
ways to add an additional edge in order to make it binary. These additions always lead
to trees on which the depicted character is still convex. Therefore, and because binary
trees are most relevant in biology (as speciation events are usually considered to split
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Fig. 2 Characterχ = ααββγ is convex on the non-binary tree in themiddle, but also on all binary trees that
are compatiblewith this tree. The dashed edge is the one that gives rise to the partitionπ = {{1, 2}, {3, 4, 5}},
which is also induced by χ . Therefore, χ is convex on all trees which contain this edge

one ancestral lineage into two descending lineages rather than more), we exclusively
consider binary trees in the following.

Let b(n) denote the number of binary phylogenetic trees on X = {1 . . . , n}. In total,
there are

b(n) = (2n − 5)!! = (2n − 5) · (2n − 7) · · · 3 · 1

such trees if n ≥ 3, and b(1) = b(2) = 1 (see Semple and Steel 2003). As explained
above, a character can be convex on more than one tree. However, if a character is
convex on all b(n) trees (for some n ∈ N), it is said to be non-informative. It is a
well-known result that all characters in which at least two states appear at least twice
are informative (see Bandelt and Fischer 2008); in other words, such characters are not
convex on all trees, but only on some. As an example, consider again χ = ααβββγ .
As explained above and as shown in Fig. 1, this character is convex only on some
trees, namely those that have an edge separating Species 1 and 2 from Species 3, 4
and 5; and this character uses two of its three character states, namely α and β, at least
twice (in this case, α is used twice and β three times).

However, the simple distinction between informative and non-informative charac-
ters is often not sufficient. In this paper, we want to analyse how much information
is contained in an informative character. This can be done by considering the fraction
of trees on which the character is convex. Therefore, we denote the number of trees
on which a character χ with induced partition π is convex by Nπ , and the fraction of
such trees by Pπ = Nπ

b(n)
.

Note that for a given r -state character χ on X = {1, . . . , n} with the induced
partition π = {X1, . . . , Xr }, the number Nπ can be explicitly calculated with the
following formula, which was first stated in (Carter et al. 1990, Theorem 2):

Nπ = b(n)

b(n − r + 2)
·

r∏

i=1

b(xi + 1), (1)
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where xi = |Xi | for all i = 1, . . . , r and b(n) denotes (as stated above) the number
of binary phylogenetic trees on X = {1, . . . , n}.

We are particularly interested in characters thatminimize Pπ , because they are only
convex on the smallest number of trees and therefore contain the most information
on which tree they fit ‘best’ (based on the convexity criterion). Thus, following Steel
and Penny (2005), we define the information content of a character χ with induced
partition π as follows:

Iπ = − ln Pπ = − ln

(
Nπ

b(n)

)
. (2)

Note that searching for a character with minimal Pπ (i.e. a minimal fraction of
trees on which it is convex), is equivalent to searching for a character with maximal
Iπ (i.e. a character with maximal information content). Notice also that, by Eq. (1),
we can write Iπ = ln(b(n− r + 2))−∑r

i=1 ln(b(xi + 1)), and since b(k) is a product
of consecutive odd natural numbers, we can further write Iπ as a sum of the form∑

j∈S a j ln j , where S is a finite set of odd natural numbers and a j is an integer for
each j ∈ S. We are now in the position to state our results concerning characters for
which Iπ is maximal.

3 Results

3.1 Maximizing Iπ

We now investigate the character partitions π of a set X of size n that maximize Iπ .
Consider an r -state character χ with the induced partition π = {X1, . . . , Xr } and let
xi = |Xi | (for all i = 1, . . . , r ) denote the block sizes. The main problem considered
in this manuscript, namely maximizing Iπ (or, equivalently, minimizing Pπ ), consists
of two combined problems, namely finding the optimal number r of states (i.e. the
optimal number of blocks in π ), as well as the optimal block sizes xi for i = 1, . . . , r
(i.e. the distribution of states on taxon set X ).

We first consider the latter problem for the case when n and r are fixed. Let n ≥ 3
and r ≤ n be natural numbers. Let N (n, r) denote the minimum value of Nπ over all
partitions π of X = {1, . . . , n} into r blocks. Formally stated:

N (n, r) = min
π={X1,...,Xr }:

|X1|+···+|Xr |=n

Nπ .

Let l = l(n, r) = r · � n
r � − n. It is easily shown that:

l
⌊n
r

⌋
+ (r − l)

⌈n
r

⌉
= n,

and so {1, . . . , n} can be partitioned into l sets of size ⌊ n
r

⌋
and r − l sets of size

⌈ n
r

⌉
.

The main result of this section is the following.
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Theorem 1 For n ≥ 3 and r ≤ n:

N (n, r) = b(n)

b(n − r + 2)
· b

(⌊n
r

⌋
+ 1

)l · b
(⌈n

r

⌉
+ 1

)r−l
,

where l = r · � n
r � − n.

Remark 1 Note that in the case where r is a divisor of n, the equation stated in
Theorem 1 reduces to N (n, r) = b(n)

b(n−r+2) · b( nr + 1)r , since � n
r � = n

r and thus
l = 0.

The proof of Theorem 1 requires the following technical lemma, which is proved
in the Appendix.

Lemma 1 Let m, s ∈ N, m ≥ 2 and s ≥ 2. We then have:

b(m + s) · b(m) > b(m + s − 1) · b(m + 1).

Lemma 1 immediately leads to the following corollary (also derived in Schütz
2016).

Corollary 1 If a character χ with induced partition π = {X1, . . . , Xr } and block
sizes x1, . . . , xr maximizes Iπ , then for xi and x j (i, j ∈ {1, . . . , r}, i 	= j ), we have:
|xi − x j | ≤ 1 (i.e. the block sizes differ by at most 1).

Proof Let χ be a character with the induced partition π = {X1, . . . , Xr } that max-
imizes Iπ (equivalently, which minimizes Nπ ). Let xi = |Xi | for all i = 1, . . . , r .
Assume that there exist i, j ∈ {1, . . . , r} such that |xi − x j | ≥ 2. Without loss of
generality, assume that xi > x j . Set m = x j + 1 and s = xi − x j . Both m and s
are then at least 2 (because x j ≥ 1 by definition of partition π and xi − x j ≥ 2 by
assumption). We apply Lemma 1 and find that

b(xi + 1) · b(x j + 1) = b(m + s) · b(m) > b(m + s − 1) · b(m + 1)

= b(xi ) · b(x j + 2).

Note that the contribution of Xi and X j to
r∏

i=1
b(xi + 1) in Nπ of Eq. (1) is b(xi + 1) ·

b(x j + 1). However, if we now modify χ so that we remove one element of Xi and
add it to X j , the contribution of this modified character is b(xi ) · b(x j + 2), which we
have shown to be smaller than the original contribution. This is a contradiction, as χ

was chosen as a minimizer of Nπ . Therefore, the assumption |xi − x j | ≥ 2 was wrong
and thus we have |xi − x j | ≤ 1. This completes the proof. 
�
We now use Lemma 1 and Corollary 1 to prove Theorem 1.

Proof (Theorem 1) Using Eq. (1), the only thing that remains to be shown is that:

r∏

i=1

b(xi + 1) = b
(⌊n

r

⌋
+ 1

)l · b
(⌈n

r

⌉
+ 1

)r−l
.
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Considering Remark 1, we do this by investigating the cases r | n and r � n separately.

1. Let r | n (i.e. n = k ·r for some k ∈ N). Let χ be a character with induced partition
π = X1, . . . , Xr such that Nπ = N (n, r) (i.e. π minimizes Nπ for given values
of n and r ). Now assume that not all block sizes are equal to n

r = k. There is then
an i ∈ {1, . . . , r} such that xi 	= k. If xi > k, then as x1 + . . .+ xr = n, there must
be a j ∈ {1, . . . , r} such that x j < k (or vice versa). Let us assume, without loss
of generality, that xi = k + ŝ and x j = k − s̃ for ŝ, s̃ ∈ N; in particular, ŝ, s̃ ≥ 1.
Then xi − x j = ŝ + s̃ ≥ 2. This is a contradiction because, by Corollary 1, xi and
x j can differ by at most 1 as χ minimizes Nπ . Thus in the case where n = k · r ,
we have xi = k = n

r for all i = 1, . . . , r and therefore
r∏

i=1
b(xi + 1) = b( nr + 1)r .

2. Next, consider the case where r � n. Using Corollary 1, a character χ with the
induced partition π = {X1, . . . , Xr } which minimizes Nπ can only lead to sets of
sizes xi , x j , which differ by at most 1. As we need r such sets in total, the only
way to achieve this is by allowing l sets of size � n

r  and r − l sets of size � n
r �

for some l ∈ N, l ≤ r (note that � n
r � − � n

r  = 1 as r � n). This has a unique
solution, as n = l · � n

r  + (r − l) · � n
r � leads to l = r · � n

r � − n. Moreover, this

leads to
r∏

i=1
b(xi + 1) = b(� n

r  + 1)l · b(� n
r � + 1)r−l , which, together with Eq.

(1), completes the proof. 
�

3.2 The number of states (rn) that maximizes Iπ

As we have seen in Corollary 1 and in the proof of Theorem 1, a character which has
maximal information content Iπ induces a partition π = {X1, . . . , Xr } of roughly
equal block sizes x1, . . . , xr . In the case where r divides n, all block sizes are equal
to n

r ; otherwise, there are l = r · � n
r � − n blocks of size � n

r , and all other r − l sets
have size � n

r �.
Recall that in order to find characters that maximize Iπ and thus minimize Nπ ,

we have to solve two problems: we have to find the optimal value of r as well as the
corresponding block sizes xi .

Let

I (n, r) = − ln

(
N (n, r)

b(n)

)
,

which is the maximal value of Iπ over all partitions of {1, . . . , n} into r blocks. Let rn
be the value of r that maximizes I (n, r).

Consider the special case where n is a multiple of r . In this case, we know that the
block sizes that maximize Iπ are exactly n

r . If we only look at this fixed distribution of
states, the two problems stated above—namely finding the optimal value of r and the
optimal block sizes xi—reduces to just the first problem, namely finding the optimal
value of r .
Note that when r = 1, we have k = n and |X | = n = x1, and thus by Eq. (1) we get:
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r

(a)
I
(n

,r
)

(b)

n

r n

n , rn= 120 = 24

Fig. 3 On the left-hand side, the case n = 120 is depicted, along with all values of r from 1 to n. It can
be seen that Iπ = − ln(Pπ ) is maximal when r = 24 is chosen. On the right hand side, the plot shows the
divisor r of n for which Iπ is maximal (where π is a partition into r blocks) for randomly chosen values
of n between 10 and 106. The primes in this interval do not allow for any other equal block sizes than one
block of size n or n blocks of size 1 (which have equal Iπ value of 0); the top (blue) line of dots shows this
value rn = n for the latter choice

Nπ = b(n)

b(n − 1 + 2)
· b(x1 + 1) = b(n)

b(n + 1)
· b(n + 1) = b(n).

In other words, in the case where a character χ only employs one character state (say
α) the resulting character χ = αα . . . α on X = {1, . . . , n} is convex on all b(n) trees
on the taxon set X , which means that Nπ is maximal and therefore Iπ = − ln Nπ

b(n)
=

− ln b(n)
b(n)

= 0, which is minimal. Similarly, if there are |X | = n different character
states employed by χ (i.e. if xi = k = 1 for all i = 1 . . . , r ) we get:

Nπ = b(n)

b(n − n + 2)
·

r∏

i=1

b(xi + 1) = b(n)

b(2)
·

r∏

i=1

b(1 + 1) = b(n) · b(2)r−1 = b(n).

Here, the last two equations use the fact that b(2) = 1. In particular, if a character
employs r = n character states, this character is also convex on all trees on taxon set
X = {1, . . . , n}, and thus Iπ = 0.
Therefore, if wewish tominimize Nπ and thus Pπ in order tomaximize Iπ , the number
rn of character states must lie strictly between 1 and n; otherwise, Nπ is maximal.
Between these boundary cases, it is not obvious how to find rn . For example, if we fix
n = 120 and exhaustively examine all possible values for r between 1 and n, then we
find that rn = 24. This scenario is depicted in the left-hand portion of Fig. 3.
Similarly,we randomly sampled values of n between 10 and 10000, and considered just
the divisors for each value of n in order to estimate the divisor r of n that maximizes
Iπ , where π is a partition into r blocks. The results are depicted in the right-hand
portion of Fig. 3. However, note that we discarded n whenever our random choice
of n was a prime number, because then it is clear that the only divisors are 1 and n,
which leads to the cases we analysed above for which we know that Nπ = b(n) and
thus Pπ = 1 and so Iπ = 0.
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Fig. 4 The values of rn for values of n between 1 and 360. Note that rn drops down at n = 9 (from rn = 4
at n = 8 to rn+1 = 3), as well as at n = 30, n = 104 and n = 345, as can also be seen in Table 1

3.3 Analysis of the growth of rn

3.3.1 The shape of Iπ and its consequences for rn

By exploiting Theorem 1, exhaustive searches for rn , given n, can be done more
efficiently. This is because for each value of r , we now know the optimal block sizes,
so we do not have to look at all possible partitions. Consequently, an exhaustive search
for rn by testing all possible values of r for a fixed value of n is easily possible up to
n = 10000 (and probably even higher than that).

In order to understand the growth of rn , we first explicitly searched for rn for each
value of n between 1 and 360 (cf. Fig. 4) and between 1 and 10,000 (cf. Table 1).
Although Fig. 4 shows that rn has an increasing trend as n grows as well as piecewise
linear growth, there are jumps back to a smaller number of blocks from time to time.
Clearly, the growth of rn is not uniform. It seems as if the size of the intervals between
the jumps increases roughly threefold. Table 1 gives the exact numbers for the jumps
for n ≤ 10000. Note that not only does the distance between the jumps increase,
but also the size of the jumps rn − rn+1. However, if we consider the size of the
jumps relative to rn , then the jump sizes actually decrease. The sequence of jumps
(9, 30, 104, 345, . . .) does not follow any obvious pattern and could not be matched
to any known series of numbers in the On-Line Encyclopedia of Integer Sequences
(Sloane 2010).

3.3.2 The shape of I (n, r)

We now investigate the shape of the function I (n, r) as r increases. For a fixed value
of n, a closer look at the graph of I (n, r) reveals the reason for the jumps in the block
sizes; namely, that the graph is not as smooth as it may seem at first glance. It is
instead a concatenation of several convex functions. This can already be guessed from
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Table 1 All jumps of rn for
n ≤ 10000

n rn
⌊ n
r
⌋ ⌈ n

r
⌉ − ln Pπ

8 4 2 2 4.654

9 3 3 3 5.953

29 9 3 4 41.016

30 8 3 4 43.151

103 25 4 5 242.696

104 21 4 5 245.854

344 68 5 6 1141.630

345 58 5 6 1145.770

1108 184 6 7 4756.330

1109 159 6 7 4761.460

3484 497 7 8 18376.200

3485 436 7 8 18382.300

Fig. 5 A simplified sketch of
the shape of Iπ as presented in
Fig. 3

I
(n

,r
)

r
rn

Fig. 3 (left-hand graph), but in order to make it a bit more obvious, we sketched the
plot again (enhancing the shape) in Fig. 5. Note that the value of rn jumps when the
maximum of I (n, r) shifts from one edge of a convex section to the other. Figure 6
shows an example for such a shift at n = 3485. Here, rn drops down from 497 to 436.
This means that the optimal partition for n = 3485 contains 61 fewer blocks than the
optimal partition for n = 3484. As can be seen in Fig. 6, the jump in rn is accompanied
by a shift of the maximum from being on the right-hand side of a convex segment
being on the left-hand side of the next convex segment.

Table 1 describes the values of r at which downward jumps in the value of rn occur.
Before the jump, most of the subsets in an optimal partition π are of size

⌊ n
r

⌋
, whereas

after adding one additional leaf, the optimal partition contains mostly subsets of size⌈ n
r

⌉
. As rn does not grow linearly, the block sizes

⌊
n
rn

⌋
and

⌈
n
rn

⌉
do not grow linearly

either. But contrary to rn , the block sizes only alternate by ±1.
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I
(n

,r
)

Fig. 6 The value rn jumps between n = 3484 and n = 3485 as the maximum switches from the right edge
of the convex section to the left edge

3.4 Approximating the rate of growth of rn with n

In this section, recall the notation∼ for asymptotic equivalence, in which f (n) ∼ g(n)

is shorthand for limn→∞ f (n)/g(n) = 1. We want to investigate the growth of rn
as n grows. Therefore, we need a differentiable approximation of Iπ , as Iπ is not
differentiable (its shape consists of piecewise-convex segments). From Theorem 1 we
have:

I (n, r) = − ln

(
N (n, r)

b(n)

)
= − ln

(
b(� n

r  + 1)l · b(� n
r � + 1)r−l

b(n − r + 2)

)
. (3)

Now b(n + 1) ∼ γ (n) for the real-valued function γ defined for x > 0 by γ (x) =
1√
2

( 2
e

)x
xx−1 (cf. McDiarmid et al. 2015). Let Iγ (n, r) denote the approximation to

I (n, r) obtained by first approximating � n
r � and � n

r  by n/r (these approximations
assume that n/r � 1), and then using γ (x) in place of b(x + 1) in the resulting
expression for I (n, r). Making these substitutions, the expression on the far right of
Eq. (3) becomes independent of l and we can write:

Iγ (n, r) = − ln

(
γ

( n
r

)r

γ (n − r + 1)

)
= −r ln

(
γ

(n
r

))
+ ln(γ (n − r + 1)).

Let r̃n denote a value of r that maximizes Iγ (n, r).Wewant to use r̃n as an estimator
for rn . Figure 7 shows the values of r̃n in comparison to rn as n ranges from 1 to 1000
(over this range there is a unique value for r that maximizes Iγ (n, r)). Here, it can be
seen that r̃n gives a reasonable approximation to rn over the range shown (note that
Iγ (n, r) deviates from I (n, r) for values of r close to n, however in this region I (n, r)
is far from its maximal value).

Theorem 2 The value(s) of r = r̃n at which Iγ (n, r) achieves its maximum value
satisfies the asymptotic equivalence r̃n ∼ n

ln(n)
as n → ∞.
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r̃n

rn

r

n

Fig. 7 A comparison of rn (broken curve segements) and r̃n (continuous curve) for n from 1 to 1000. It can
be seen that as opposed to rn , r̃n does not have any jumps back to a smaller value, but is instead increasing
uniformly

Proof Consider the graph of Iγ (n, r) against r . The behaviour of Iγ (n, r) is slightly
involved, and so our proof uses the following strategy. Let t denote the ratio r/n, and
so 0 ≤ t ≤ 1, and let θ > 0 be a parameter that will take different values in the cases
we consider (mostly we are concerned with the cases where 0 < θ < 1 and θ > 1).
For any δ ∈ (0, 0.5) and any choice of θ we show that for n sufficiently large, the
graph of Iγ has a gradient that is:

– greater than 1 for t up to θ
ln(n)

, provided that θ < 1;

– less than − 1 for t between θ
ln(n)

and δ, provided that θ > 1;
– less than − 1 for t between δ and 1 − δ;
– bounded by C ∼ 0.65 for t between 1 − δ and 1.

It follows that the (global) maximal value of Iγ is given asymptotically (as n grows)
by t ∼ 1

ln(n)
. Note that the global maximal value cannot occur asymptotically (with

n) at t = 1 since the gradient of Iγ is less or equal to − 1 for t over an interval of
length (asymptotically with n) at least 0.5, and the gradient is then bounded above by
C ∼ 0.65 for the remaining interval (i.e. between 1 − δ and 1) which has length less
than 0.5 (recall δ ∈ (0, 0.5)).

Next we differentiate Iγ (n, r) with respect to r . Writing

Iγ (n, r) = ln

(
γ (n − r + 1)

γ
( n
r

)r

)
,

and then replacing γ (n − r + 1) with 1√
2

( 2
e

)n−r+1
(n − r + 1)n−r and γ

( n
r

)
with

1√
2

( 2
e

) n
r
( n
r

) n
r −1 and simplifying, we get

Iγ (n, r) = (1 − r) ln

(√
2

e

)
+ (n − r) ln

(
r(n − r + 1)

n

)
.
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Differentiating Iγ (n, r) with respect to r gives:

d(Iγ (n, r))

dr
= y(r) − z(r), (4)

where

y(r) = ln

(
e√
2

· n

r(n + 1 − r)

)
and z(r) = (r − n)(n + 1 − 2r)

r(n + 1 − r)
.

Thus d(Iγ (n,r))
dr = 0 precisely at values of r for which y(r) − z(r) = 0. Note here

that for Iγ (n, r), the value r can take any real value, not just integer values. Let
t = tn = r/n. We may assume that 0 ≤ tn ≤ 1 for all n. We will show that any value
of tn that maximizes Iγ satisfies the asymptotic relationship tn ∼ 1/ ln(n) (in other

words, r̃n ∼ n/ ln(n)). Notice that if we let C = ln
(

e√
2

)
then we can write:

y(r) = C − ln(t) − ln(n) − ln

(
1 + 1

n
− t

)
. (5)

In addition,

z(r) =
(
1 − 1

t

)
· (1 + 1

n − 2t)

(1 + 1
n − t)

. (6)

We apply these equalities to firstly establish the following claims (which show that
r̃n = o(n)). Suppose that δ ∈ (0, 0.5). We claim that:

(i) If t ∈ [δ, 1− δ], then d Iγ (n,r)
dr ≤ h(n, δ), where h(n, δ) does not depend on t and

h(n, δ) < − 1 for all n sufficiently large.

(ii) If t ∈ [1− δ, 1] and n ≥ 1, then d Iγ (n,r)
dr ≤ Kδ, for a constant Kδ that converges

to C as δ → 0.

To establish Claim (i), Eq. (5) implies that y(r) ≤ C − ln(δ) − ln(n) − ln(δ + 1
n )

and from Eq. (6) with t ∈ [δ, 1 − δ] we have |z(r)| ≤ ( 1
δ

− 1
) ·

∣∣∣∣
1+ 1

n −2t

1+ 1
n −t

∣∣∣∣, the second
factor of which satisfies the inequality:

∣∣∣∣∣
1 + 1

n − 2t

1 + 1
n − t

∣∣∣∣∣ ≤ max

{
1,

| − 1 + 2δ + 1
n |

δ + 1
n

}
. (7)

Thus, |z(r)| <
( 1

δ
− 1

)
a(n, δ), where a(n, δ) is the bound on the right of Inequal-

ity (7), and so

y(r) − z(r) ≤ C − ln(δ) − ln(n) − ln

(
δ + 1

n

)
+

(
1

δ
− 1

)
a(n, δ). (8)

If we now let h(n, δ) denote the term on the (entire) right-hand side of Inequality (8)
then h(n, δ) → −∞ as n → ∞, which together with Eq. (4) establishes Claims (i).
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To establish Claim (ii) note that when t ∈ [1− δ, 1] we have y(r) ≤ C − ln(1− δ)

and the right-hand-side converges toC as δ → 0. Also,−z(r) = ( 1
t − 1

) · (1+ 1
n −2t)

(1+ 1
n −t)

is

less or equal to zero for any value of δ < 1
2 once n is sufficiently large. This establishes

Claim (ii).
We next establish the following two claims:

(iii) If t ∈ [0, θ
ln(n)

] and if θ < 1, then d Iγ (n,r)
dr ≥ h′(n, θ), where h′(n, θ) does not

depend on t , and h′(n, θ) > 1 for all n sufficiently large.

(iv) If t ∈ [ θ
ln(n)

, δ] and if θ > 1 and 0 < δ < 1
θ
, then d Iγ (n,r)

dr ≤ h′′(n, θ), where
h′′(n, θ) does not depend on t , and h′′(n, θ) < − 1 for all n sufficiently large.

To establish Claim (iii) observe that− ln(t) > 0 (since t < 1) and− ln
(
1 + 1

n − t
)

≥ − ln(2). Thus,
y(r) ≥ C ′ − ln(n), (9)

where C ′ = C − ln(2). Moreover, since 0 ≤ t ≤ θ
ln(n)

and since θ < 1 the second

factor in the expression for z(r) namely,
1+ 1

n −2t

1+ 1
n −t

is bounded above by 1− ε(n), where

ε(n) is a function only of n that converges to zero as n grows. Thus we can write

− z(r) ≥
(
ln(n)

θ
− 1

)
(1 − ε(n)). (10)

Combining Inequalities (9) and (10) gives d Iγ (n,r)
dr = y(r) − z(r) ≥ h′(n, θ), where

h′(n, θ) = C ′ − ln(n)

(
1 − 1

θ
(1 − ε(n))

)
− (1 − ε(n)).

Now h′(n, θ) → ∞ as n → ∞ (since 1 − 1
θ
(1 − ε(n)) < 0 for all n sufficiently

large), establishing Claim (iii).

To establish Claim (iv), note that y(r) ≤ C − ln
(

θ
ln(n)

)
− ln(n)− ln

(
1 + 1

n − 1
θ

)
.

Moreover, −z(r) ≤ ( 1
t − 1

) ≤
(
ln(n)

θ
− 1

)
, and so

y(r) − z(r) ≤ −
(
1 − 1

θ

)
ln(n) + ln

(
ln(n)

θ

)
+ C − 1.

If we take h′′(n, θ) to be the term on the right-hand side of this last inequality, we see
that h′′(n, θ) tends to −∞ as n → ∞, since

(
1 − 1

θ

)
> 0, thereby establishing Claim

(iv).
It now follows fromClaims (i)–(iv) that Iγ (n, r) attains its maximal value at a value

(or values) that can be written r = cn · n
ln(n)

where cn that converges to 1 as n → ∞.
This completes the proof. 
�
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3.5 Remarks and questions

For n = 120, Theorem 2 gives the value r̃n ≈ 25, which is close to the exact value of
rn = 24. Figure 7 shows that r̃n provides a reasonable approximation to rn except for
deviations near the ‘jumps’. Nevertheless it may well be that r̃n and rn are asymptoti-
cally equivalent (i.e. r̃nrn converges to 1 as n → ∞) and the main step in a proof would
be to first show that n − rn and rn both tend to infinity as n → ∞.

Also, we have observed that ‘jumps’ from rn to a smaller value rn+1 tend to occur
at values of n for which n

rn
is slightly greater than some integer (say k) while n+1

rn+1
is

slighly smaller than k + 1 (for example, for the jump at n = 3484, n
rn

= 7.01, while
n+1
rn+1

= 7.99). In that case:

n

rn
≈ n + 1

rn+1
− 1,

which rearranges to give the following estimate of the magnitude of a ‘jump’ when
rn > rn+1:

rn − rn+1 ≈ rn(rn+1 − 1)

n
.

This is a partly heuristic (non-rigorous) argument, nevertheless the approximation
provides a reasonable estimate of the jump sizes for the values reported in this paper.
For example, for the jump that occurs at n = 3484 where rn = 497, while rn+1 = 436,
we have

rn − rn+1 = 61 while
rn(rn+1 − 1)

n
≈ 62.05.

4 Discussion

In thismanuscript, we analysedwhich characters have the highest information content.
One of our main results is that in an optimal character with rn character states, all these
states have to appear roughly equally often, as such a character can only induce at most
two block sizes (which can differ by 1 at most). If r divides the number n of taxa,
every block has the same size, n

r .
Concerning the behavior of rn , the optimal number of states in order to maximize

Iπ , we found that although it has a generally increasing, partially linear trend, jumps
occur (i.e. there are values of n for which rn+1 < rn). We analysed the reasons for
these jumps, namely the shape of Iπ , which is a concatenation of convex segments.
Moreover, we presented an approximation for Iπ , for which n/r̃n ∼ ln(n). Note that
this does not directly imply that n/rn also tends to infinity, and formally establishing
such a result could be an interesting exercise for future work. All our theoretical
statements were underlined by explicit calculations for up to n = 10000. In order to
be able to perform exhaustive searches for such large values of n, we had to find a
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region on which we can restrict the search. This, too, was done with the help of our
approximation. Some questions for future research have been raised (see Sect. 3.5).
More generally, determining the location of jumps as well as the location of block size
changes (in terms of n) should lead to a deeper understanding of the most informative
characters.

Finally, as noted earlier, given any binary tree T (involving any number of leaves)
just four characters (on a large enough number of states) suffice to ensure that T is
the only tree on which those four characters are convex (Huber et al. 2005; Bordewich
et al. 2006). A natural question is whether these four characters are of the ‘maximally
informative’ form as described in this paper. It turns out that for certain trees they
divide up the leaf set [n] quite differently. In particular, for a caterpillar tree, two of
the characters described in Huber et al. (2005) partition the leaf set into (roughly) n/2
blocks of size 2 while the other two characters partition the leaf set into one block of
size (roughly) n/2 while the remaining leaf blocks are of size 1.
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5 Appendix

Proof of Lemma 1 We first consider the casem = 2. In this case, we have b(m+ s) =
b(2+s) andb(m) = b(2) = 1 aswell asb(m+s−1) = b(s+1) andb(m+1) = b(3) =
1. In total, we have b(m+ s) ·b(m) = b(s+2) > b(s+1) = b(m+1) ·b(m+ s−1),
which is true for all s ≥ 2.

We now consider the case m ≥ 3. As s ≥ 2, we have:

2m + 2s > 2m + 2

⇒ 2(m + s) − 5 > 2m − 3

⇒ (2(m + s) − 5) · (2(m + s) − 7)!! · (2m − 5)!!
> (2m − 3) · (2(m + s) − 7)!! · (2m − 5)!!

⇒ (2(m + s) − 5)!! · (2m − 5)!! > (2m − 3)!! · (2(m + s) − 7)!!
⇒ (2(m + s) − 5)!! · (2m − 5)!! > (2(m + 1) − 5)!! · (2(m + s − 1) − 5)!!
⇒ b(m + s) · b(m) > b(m + 1) · b(m + s − 1).

The last line uses the fact that b(m) = (2m − 5)!! for all m ≥ 3. This completes the
proof. 
�

Note that Lemma 1 is only stated for m ≥ 2. If m = 1, the lemma only holds for
s ≥ 3. To see this, consider the casem = 1 and s = 2. Then, b(m+ s) ·b(m) = b(1+
2)·b(1) = b(1+1)·b(1+2−1) = b(m+1)·b(m+s−1), as b(1) = b(2) = b(3) = 1.
Therefore the strict inequality stated in the lemma no longer holds.
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