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Abstract-we describe a simple transformation that allows for the fast recovery of a tree from 
the probabilities such a tree induces on the colourations of its leaves under a simple Markov process 
(with unknown parameters). This generalizes earlier results by not requiring the transition matrices 
associated with the edges of the tree to be of a particular form, or to be related by some fixed rate 
matrix, and by not insisting on a particular distribution of colours at the root of the tree. Applications 
to taxonomy are outlined briefly in three corollaries. 
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1. INTRODUCTION 

A fundamental problem in molecular biology is how to use DNA and RNA sequence data to 

reconstruct evolutionary relationships between the species concerned. Such relationships are 

generally described by a rooted tree, whose leaves represent the extant species, and are labelled 

1,. . . , n, and whose remaining vertices (representing ancestral species) are unlabelled and of 

degree at least 3, except, possibly, for the ancestor of the entire collection, which is regarded 

as a root vertex of the tree, and may have degree 2. Such trees are called rooted phylogenetic 

trees [l]. We will let p denote the root of T and let TWP denote the (phylogenetic) tree obtained 

from T as follows: if p has degree 2, delete p and identify its two incident edges, while if p has 

degree at least 3, simply regard p as an unlabelled (nondistinguished) vertex. 

Suppose there is a set of colours (or states) and that the colour assigned to each vertex w is 

a random variable, denoted x(w). In taxonomic applications, two colours might indicate the 

two “purine” bases, and the two “pyrimidine” bases; four colours the four nucleotide bases 

(A, C, G,T), and 20 colours the amino acids. We denote the probability that x(p) = x by T,. 

A simple model of nucleotide mutation assumes, roughly speaking, that starting from p these 

colours change randomly (and independently of changes on other edges) along the edges of T to 

give the present (observed) leaf colourations. More precisely, direct all the edges of T away from p, 

so that if e has ends ‘u and w, and v lies between w and p, we write e as the ordered pair (v, w). 

Given an event E of the form [x(wl), . . . , x(vs)] = [a~, . . ,cxs], where VE := (~1,. . . , wS} is a set 
of vertices of T, and an edge e = (w, w), denote by P,[x --+ y 1 E] the conditional probability that 
x(w) = y given that x(w) = x, and given E. We make the following independence assumption, 

in which a “descendent” vertex of e is any vertex w for which the path from w to p contains e: 

ASSUMPTION (Al). Pe[ x -+ y 1 E] does not depend on E if V, does not include any descendent 

vertex of e. 
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Thus, each edge e = (v,zu) of T has an associated transition matrix M(e), with M(e),.S = 
P[r 4 s 1 41. Thus each row of M(e) sums to 1. The matrices M(e) and the root values 7r, 
induce (assuming (Al)) a well-defined probability for every possible colouration x0 of the leaves. 
By (Al), this probability is: 

CrI TX(P) M(e),(,),(,)’ 
x e=(v,w) 

where x ranges over all colouration of the vertices of T, which extend x0. Here, we address the 
taxonomically relevant inverse problem of finding T-P given just the leaf colouration probabilities 
(in taxonomic applications, these probabilities can be estimated directly from DNA or RNA 
sequence data). Note that even with two colours, and M(e) symmetric for all e, it is not always 
possible to recover T-p; indeed, if we set the off-diagonal entries of M(e) to a common value z 
for all edges e, then if x = 0.5 or 5 = 0, evey tree induces the same distribution on the set of 
leaf bicolourations. Notice that for these two choices of 2, the determinant, det(M(e)), of the 
matrix M(e) equals 0 or 1, respectively. We show here that if, in addition to (Al), we make the 
following mild (and biologically reasonable) assumption: 

ASSUMPTION (A2). det(M(e)) # 0, fl for all edges e; 7r, # 0, for all colours 5, 

then T-P can be uniquely recovered. Note that (A2) does not require M(e) to be diagonalizable, 
nor to have all its eigenvalues real. For 2 x 2 symmetric transition matrices, the model described 
by (Al) and a stronger form of (A2), in which 1 > det(M(e)) > 0, is the model described by 
Cavender [2] (see also [3,4]) and, for this model, T-P can be uniquely recovered, for instance by 
spectral analysis relative to the group 22 (see [5]). H owever, even for this special model, the 
rooted tree T (as opposed to T-p) cannot be found without a further assumption, namely that 
xl # 7r2. We now describe an analytical result which allows T-P to be found easily and quickly 
(i.e., in polynomial time) in the general (nonsymmetric) case, with any number of colours, under 
Assumptions (Al) and (A2). 

Note that we do not make any assumption about the actual process occurring on an edge which 
produces net random transitions of states between its ends and, in particular, we do not assume 
any sort of fixed continuous-time process, let alone a “rate” matrix constant across edges of the 
tree (as in [6]). Also, we do not make any further assumption about the root distribution x or the 
structure on the family of transition matrices, apart from those properties prescribed by (A2). 
Our treatment is, therefore, valid for a much wider class of models than is usually considered in 
molecular taxonomy (see [6]). 

2. THE MAIN RESULT 

Given the above model, let fij(z, y) d enote the probability that leaf i is coloured z and leaf j is 
coloured y (this is a sum of the probabilities of a subset of leaf colourations). Hence, for example, 

C &(GY) is th e probability that leaves i and j are differently coloured. Also, note that: 
X#Y 

c fij(GY) = 1. (1) 

S!Y 

By indexing the colours, fij (2, y) forms a square matrix, Fij = [f~(z, y)] , thus, we can define 

&j := -In [I det(F,j)l]. (2) 

THEOREM. There is a unique (unrooted) phylogenetic tree, namely T-P, and a unique strictly 
positive valued function X* defined on the edges ofT-P such that, for all i, j, &j is the sum ofx*(e) 
over all edges e on the path in T-P joining i and j. Both T-P and X* can be reconstructed from 
the $ij values in polynomial time. 
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PROOF. For leaves i and j of T, let ~(i, j) denote the vertex of T, which is the last vertex common 
to the paths from p to i and from p to j (i.e., the “most recent” common ancestor of i and j). 
For a vertex ZI of T let 7rk(v) denote the probability that v is in state k (by (Al), this will be a 
function of 7r and the transition matrices on the path from the root to v). An inductive argument 
based on (A2) shows that 

Tk(V) # 0 for all w and all k, (3) 

for otherwise some column of one of the matrices M(e) would consist entirely of zeros, and this 
would imply det(M(e)) = 0. F or economy, we will write nk(i,j) to denote rk(v(i,j)). Let 

A(&_?) := n r/J%.& 
k 

and let 4(e) denote the absolute value of the determinant of M(e): 

4(e) := 1 det(M(e)) 1. 

Since the eigenvalues of a transition matrix have modulus at most 1, (A2) gives: 

0 < +4(e) < 1. (4) 

We claim that 

& = -In [A(i, j)] - c In [4(e)], (5) 
eEP(T;i,j) 

where, for vertices v, v’ in T, P(T; u, w’) denotes the path in T connecting v and v’. Note that 
the right hand side of (5) is real, and positive, by (3) and (4). Now, by (Al), 

fij(? Y) = c rk(v) pk,z Qk,w 
k 

(6) 

where P = [Pz,k] := n M(e); Q = [Q+] := n M(e), and where v := ~(i,j). Note 
eEP(T;v,i) eEP(T;v,j) 

that (6) can be rewritten as the matrix equation: 

Fij = P%Q, 

where Pt is the transpose of P, and II is the diagonal matrix with “k(‘u) as its kkth entry. Thus, 
det(Fij) = ynk(i,j) x det(P) x det(Q). 

Also, we have: 

1 det(P)j = n 4(e); 1 WQ)( = n 4(e), 
eEP(T;v,z) eEP(T;v,j) 

so that 

= nrk(i!d x n 4(e), 
k &P(T;i,j) 

which establishes the claim (5). 
We now define a function X on the edges of T and show that it is real, strictly positive, and 

“realises” $ij on T. Given such a X, we obtain a function X* on the edges of T-f’ which also has 
these properties by setting: 

x(e), if p has degree > 2, or if e is not incident with p 

x*(e) = %el) + A(@, if p has degree 2, with incident edges er, e2, and e 
is the edge of T-P obtained by identifying er and e2. 
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The rest of the theorem will then follow by the well-known existence and uniqueness results 

involving the four point condition and additive realisations of dissimilarity measures on unrooted 

phylogenetic trees (see, for instance, [l]). To define X, we proceed as follows: for any edge 

e = (v,w) of T, where w is a leaf, set 

x(e) = - In [4(e)] - 0.5 ln [n ,(?J)], 
k 

and for any edge e = (u, w) of T for which neither of II, w are leaves, set 

x(e) = - ln [$6(e)] - 0.5ln [n Q(w)] + 0.5ln [ nTrk(W)] . 
k k 

(7) 

Then, from (3) and (4), X( e is real, and for edges incident with a leaf X(e) > 0 by (3). Fur- ) 

thermore, it is easily checked from (5) that $Q = .Epg.i 3) x(e). Thus, it remains to check that 

’ ’ x(e) > O in (7). Let us first suppose M = [M,,] . 1s any r x T matrix with nonnegative entries 

and x is row vector of length r with nonnegative entries. We claim that 

To obtain this, note that the left hand side of (8) is just: 

(9) 

where the second summation is over all permutations (T of (1,2,. . . , T), and so this sum is at 

least ( det(M)(, since the permanent of a nonnegative matrix is never smaller than the absolute 

value of its determinant. Now, by (Al), [.rrl(w), . . . ,TT,.(w)] = [TV,. . . ,nT(w)] M(e), and so, 

applying (8) to the case M = M(e) and x = [rl(w), . . . , TT~(u)], and noting from (4), that 

det(M)2 < ( det(M)( = 4(e), we obtain 

nrk(W) > nrk(v) x $(e)2. 

k k 

Taking the natural logarithm of this inequality and multiplying by -4 shows that the expression 

in (7) is positive, as required. This completes the proof. 

COROLLARY 1. Each phylogenetic tree T, up to the placement of its root, is uniquely defined by 

the collection ofprobabilities of the leaf colourations it induces under Assumptions (Al) and (A2). 

In taxonomic applications, the probability of each leaf colouration is often estimated simply 
as the observed proportion of sites in a collection of aligned sequences which correspond to 
this colouration. Provided the sites in the sequence have evolved identically and independently 

(the i.i.d. model), these estimates will tend, with probability 1, to the true probability value as 

the length of the sequences increases. More generally, this statement holds if the sites evolve 

identically and with limits on the degree of pairwise correlation between states at different sites, 

as allowed by Bernstein’s Theorem (see [7]). I n either situation, we have the following result. 

COROLLARY 2. A computationally efficient and statistically consistent algorithm to reconstruct 

unrooted phylogenetic trees from aligned sequence data satisfying the iid. (or weaker) assump- 
tion described above (as well as (Al), (A2)) is the following procedure. 
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Step 1. For each pair i, j, and each x, y, estimate f~(x, y) by setting it equal to the propor- 

tion of sites in which i and j are in state x and y, respectively. 

Step 2. Using (2), calculate $ij for each pair i, j. 

Step 3. Use a suitable dissimilarity-based tree reconstruction method (e.g., Bandelt and 
Dress’s split decomposition method [S]), taking the +ij as the dissimilarity values. 

In the final corollary, we demonstrate the existence of “phylogenetic invariant? for the semi- 

group of transition matrices satisfying (A2). (Phylogenetic invariants for a semigroup G of tran- 

sition matrices are polynomial functions of the leaf colouration probabilities which, for at least 

one rooted phylogenetic tree, take the same value for any choice of the matrices M(e) from G). 

COROLLARY 3. Phylogenetic invariants exist for the semigroup G,(det M(e) # 0, *l) with arbi- 

trary root distribution (x, # 0). Specifically, for any subset of four leaves i, j, k, 1 from T, we 

have P(T; i, j) fl P(T; k, 1) = 4 if and only if: 

det(FikFjl) - det(FilFjk) = 0. 
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