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The impact and interplay of long and short branches on phylogenetic
information content
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H I G H L I G H T S

c Long genetic sequences are needed to infer an evolutionary tree with certain branch lengths.
c We study how much data is needed when a long (L) branch is incident with a short (l) branch.
c Extending recent work, we establish lower a bound of the form expðcLÞ=l2.
c But a molecular clock, or rate variation across sites, can have a significant impact.
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a b s t r a c t

In molecular systematics, evolutionary trees are reconstructed from sequences at the tips under simple

models of site substitution. A central question is how much sequence data is required to reconstruct a

tree accurately? The answer depends on the lengths of the branches (edges) of the tree, with very short

and very long edges requiring long sequences for accurate tree inference, particularly when these

branch lengths are arranged in certain ways. For four-taxon trees, the sequence length question has

been investigated for the case of a rapid speciation event in the distant past. Here, we generalize results

from this earlier study, and show that the same sequence length requirement holds even when the

speciation event is recent, provided that at least one of the four taxa is distantly related to the others.

However, this equivalence disappears if a molecular clock applies, since the length of the long outgroup

edge becomes largely irrelevant in the estimation of the tree topology for a recent divergence. We also

discuss briefly some extensions of these results to models in which substitution rates vary across sites

and to settings where more than four taxa are involved.

& 2012 Elsevier Ltd. All rights reserved.

1. Background

Phylogenetic methods are founded on the notion that evolu-
tionary relationships can be inferred from sequences that have
evolved along with the taxa. It is usually supposed that such
sequences evolve according to some continuous-time reversible
Markov process, or a mixture of such processes (for further
background on phylogenetic inference, the reader is referred to
Felsenstein, 2004). Here, we are interested in the question of
the sequence length required to accurately estimate a discrete
and fundamental parameter of evolutionary history, namely the
topology of the underlying evolutionary tree. This question has
long been of interest in molecular systematics (see, for example,

Saitou and Nei, 1986; Churchill et al., 1992; Lecointre et al., 1994;
Goldman, 1998) and a variety of mathematical approaches
have been explored in order to quantify how much ‘phylo-
genetic information’ sequence data contains (Shpak and Churchill,
2000; Mossel and Steel, 2005; Townsend, 2007; Townsend and
Leuenberger, 2011; Townsend et al., 2012). Although the underlying
tree topology is rooted, phylogenetic models are generally time-
reversible, and so methods based on these models produce trees that
are unrooted; accordingly, we will say that a method correctly
reconstructs the tree topology if it does so up to the placement of
the root.

Amongst unrooted trees, the simplest phylogenetic problem
involves a set of four taxa, for which there are just three resolved
binary tree topologies and one ‘star tree’. Fischer and Steel (2009)
investigated the sequence length required to accurately recon-
struct a binary four-taxon phylogenetic tree with four long
pendant branches, and a short interior edge (Fig. 1(a), ða0Þ). This
special case is motivated by the scenario in evolutionary biology
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in which a rapid speciation event in the distant past results in all
taxa sitting on ‘long branches’ around a short interior edge of
length l0. The authors found that the length of sequence needed to
reconstruct the correct four-taxon tree with probability 1�E
grows at the rate CebL=l20, where C and b are positive constants
and L is the length of the long pendant edges. Notice the impact
on the required sequence length of a long branch length (i.e.
ebL-1 as L-1) and of a short interior branch (i.e. 1=l20-1 as
l0-0), and that these combine multiplicatively in this lower
bound (thus, the cumulative effect of a short branch beside a
long one becomes compounded much more than if the interaction
was, say, additive). This formally justifies the informal notion that
a very short interior edge surrounded by long branches is a
particularly challenging phylogenetic problem.

2. Summary of results

In this paper, we wish to compare the scenario we have just
described (Fig. 1(a)) with another that is at least as common in
evolutionary biology, namely the setting in which only one of the
taxa is distantly related to the others, being a distant ‘outgroup’
taxon (see, for example, Fig. 1(b)). In particular, we ask whether
the sequence length requirements for accurate tree reconstruc-
tion are less severe if just one pendant edge is long, rather than
all four.

We show analytically that essentially the same bound (of the
form CebL=l20) applies in general for accurate tree reconstruction.
Thus, the exponential growth dependence of the sequence length
on the longest pendant edge remains, even if just one pendant

edge is long, and it is compounded by the multiplicative factor
(1=l20Þ involving the short interior branch. This result holds for any
continuous-time irreducible Markov process on a finite state
space (for an infinite state model the multiplicative factor (1=l20Þ

is replaced by 1=l0).
However, a curious situation develops if one imposes a

molecular clock. Doing so does not affect the exponential depend-
ing on L of the sequence length requirements for reconstructing
the tree in Fig. 1ða0Þ. However, in the case of just one distant
outgroup taxon (Fig. 1ðb0Þ), the exponential dependence on L (the
long branch) disappears entirely.

A second interesting feature can arise for the trees in Fig. 1 (a0)
and (b0) when one allows rates to vary across sites, as is
commonly assumed in molecular systematics. In contrast to the
constant-rate scenario we find that it is possible for the expo-
nential dependence of the sequence length on long pendant
branches to be replaced by just a polynomial dependence.

A third surprising feature is that accurate tree reconstruction
can sometimes require exponentially (or even doubly exponen-
tial) longer sequence lengths than if we include extra taxa (to
make the tree more ‘balanced’) build a tree for the enlarged set
of taxa, and then prune the resulting tree to exclude these
additional taxa.

Finally, we indicate how our results might extend when the
four lineages are replaced by four monophyletic groups of taxa.

3. Preliminaries

We first recall some terminology from phylogenetics. Let
X ¼ f1,2,3,4g be a set of four taxa, and let T1,T2 and T3 be the
three possible unrooted binary trees that have X as their leaf set.

Suppose we have a continuous, stationary, and time-reversible
Markov process on a state space G that acts at various intensities
on the edge of one of these trees. The length of an edge will refer
to the expected number of substitutions on that edge. This is the
substitution rate on that edge, multiplied by the temporal dura-
tion of that edge. In the case where the substitution rate is
constant across the tree, we will say that a molecular clock applies,
but we do not assume this unless otherwise stated. Throughout
this paper we will let l0 be the branch length of the interior edge
of any four-taxon tree.

Let S¼ GX be the set of possible assignments of elements of the
state space G to the leaf set X; we will refer to an element of S as a
site pattern. Now, suppose we generate k site patterns indepen-
dently according to the same Markov process to form sequences
of length k (one sequence for each taxon). It is well known that for
any set of (positive) branch lengths on Ti, that one can recover the
topology Ti from these sequences with a probability of at least
1�E for sufficiently large values of k by applying a statistically
consistent tree reconstruction method such as maximum like-
lihood estimation (for details, see Felsenstein, 2004). Here ‘suffi-
ciently large’ depends not just on E but also on the tree and its
associated branch lengths.

As in Fischer and Steel (2009), our arguments rely on the
properties of the Hellinger distance (dH), which is defined as
follows: Given a finite set U, the Hellinger distance dHðp,qÞ between
two probability distributions p and q on U is defined by the
equation

d2
Hðp,qÞ ¼

X
uAU

ð
ffiffiffiffiffi
pu

p
�

ffiffiffiffiffi
qu

p
Þ
2
¼ 2 1�

X
uAU

ffiffiffiffiffiffiffiffiffiffi
puqu

p
 !

: ð1Þ

Although its definition may seem rather unusual, Hellinger
distance behaves well under independent sampling, and it relates
nicely to other distance measures on probability distributions
(see, for example DasGupta, 2011; Lehmann and Romano, 2005).

Fig. 1. In tree (a), two short interior edges are incident with four long pendant

edges, representing a rapid radiation event deep in the past; tree ða0Þ shows the

associated unrooted tree in which the two short interior edges combine to form a

single edge of length l0 ¼ l00þ l000. Tree (b) shows a more recent rapid radiation event

in which only one of the four incident edges is long, as it joins a distant outgroup.

Tree ðb0Þ shows the associated unrooted tree with a pendant edge of length

L¼ L1þL2.
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As a result, Hellinger distances are useful to quantify the amount
of data required to accurately identify a discrete parameter in a
stochastic model, and we will describe this below (Lemma 3.1) in
a general setting, not specific to phylogenetics.

3.1. Hellinger distance bounds on required sequence length

Let A and U be finite sets, and suppose that each element aAA

defines a probability distribution pa on U. We will denote the
Hellinger distance between pa and pb by dHða,bÞ, and, by slight
abuse of terminology, refer to it as the ‘Hellinger distance
between a and b.

Suppose an element x of A is selected according to some
discrete non-zero probability distribution on A. Conditional on
x¼ a, consider a sequence of k samples of U generated indepen-
dently in U according to the probability distribution pa. Let
M : Uk-A be some method for estimating the element aAA from
a sequence ðu1,u2, . . . ,ukÞAUk (here M may be a deterministic
function from Uk to A or a process that selects an element of
A from each element of Uk according to some probability
distribution—the latter case allows ties to be broken randomly).

Let rðM,kÞ
a denote the probability that the method M correctly

identifies the element a that generates the sequence ðu1,u2, . . . ,
ukÞAUk under the probability distribution pa. In other words

rðM,kÞ
a ¼PðMðu1,u2, . . . ,ukÞ ¼ a9x¼ aÞ:

The following lemma is from Steel and Székely (2002) (Theorem
3.1 and (2.7)).

Lemma 3.1. Given finite sets U and A, suppose that elements of U

are generated i.i.d. by an unknown element xAA selected according

to any non-zero probability distribution on A. Then for any estima-

tion method M that satisfies rðM,kÞ
a Z1�E, for all aAA, we must have

kZ
CE

d2
,

where CE ¼
1
4ð1�ð9A9=9A9�1ÞEÞ2, and d¼minfdHða,a0Þ : a,a0AA; aaa0g.

In our setting, A will consist of a set of phylogenetic trees on
the leaf set X ¼ f1,2,3,4g and U will be the set S of assignments of
states of the elements of X. We will use the lemma to prove a
lower bound on k in the following section.

4. A general lower bound on the required sequence length

We now present a lower bound for the necessary sequence
length k required to reconstruct a tree of the type shown in
Fig. 1(b). This lower bound is essentially of the same form as that
which applies when all four pendant branches are long—namely,
it grows exponentially with the length L of the long branch and in
inverse proportion to the square of the short interior branch, and
these factors combine multiplicatively.

Theorem 4.1. Consider the three-leaf star tree on the taxon set

f1,2,3g with corresponding branch lengths l1,l2,l3Zd40. Suppose

that a fourth taxon is attached by a branch of length L40 to one of

the three branches at a distance l0Að0,dÞ from the interior node.

Generate k i.i.d. site patterns at the tips of the resulting four-taxon

tree under a continuous-time irreducible Markov process on a finite

state space. Then, any method that is able to correctly identify with

probability at least 1�E which branch the fourth branch is grafted

onto requires

kZCebL=l20 , ð2Þ

where C is a constant (independent of l0 and L) that depends on E,d
and the rate parameters of the Markov process, and b depends just on

the rate parameters of the Markov process.

Moreover, some methods achieve this accuracy using sequences

with a length that is no more than a constant times ebL=l20 for all

l0Að0,dÞ and L40.

Proof. To establish Inequality (2) as a lower bound, we first
derive an upper bound for the Hellinger distance between T1 and
the tree Tn, formed by grafting the fourth branch directly onto
vertex u of the three-taxon star tree, as shown in Fig. 2. By the
triangle inequality, we have

dHðT1,T2ÞrdHðT1,Tn
ÞþdHðT

n,T2Þ: ð3Þ

Most of the proof is devoted to establishing the following
inequality (for a constant B¼ BðdÞ):

d2
HðT1,Tn

ÞrBl20e�bL: ð4Þ

To establish Inequality (4), let ps and pn
s denote the probability

of generating the site pattern s on T1 and Tn, respectively. Let N

denote the total number of mutations occurring along the edge

Fig. 2. The three-taxon and four-taxon trees described in the statement and proof of Theorem 4.1.
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between u and v (the interior edge of T1), which can take any non-

negative integer value. For example, if the state at u is A and this

changes somewhere along this path to C and then back to A at v

then N¼0 in this case. Let t¼PðN40Þ. Further, let Qs (respec-

tively Qn

s ) denote the conditional probability of generating pattern

s on T1 (respectively, on Tn) given that N¼0. Similarly, let Ps

(respectively Pn

s ) denote the conditional probability of generating

pattern s on T1 (respectively, on Tn) given N40. Then, by the law

of total probability, we can write ps and pn
s as

ps ¼ ð1�tÞ � Qsþt � Ps,

pn

s ¼ ð1�tÞ � Q
n

s þt � P
n

s : ð5Þ

Let Ds ¼ Ps�Pn

s . Then, since Qs ¼ Qn

s , we have

ps�pn

s ¼ tðPs�Pn

s Þ ¼ tDs: ð6Þ

Now, from Eq. (1), the Hellinger distance between T1 and Tn (on

site patterns) is

d2
HðT1,Tn

Þ ¼ 2 1�
X
sAS

ffiffiffiffiffiffiffiffiffiffi
psp

n
s

p !
: ð7Þ

Following the approach of Fischer and Steel (2009) (Lemma 5.1),

substituting pn
s ¼ ps�tDs (from Eq. (6)) into (7) gives:

d2
HðT1,Tn

Þ ¼ 2 1�
X
sAS

ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

tDs

ps

s !
:

Then the application of the following inequality1:ffiffiffiffiffiffiffiffiffiffiffi
1þy

p
Z1þy=2�y2=2 for yZ�1 ð8Þ

leads (on substituting y¼ tDs=ps) to the following inequality:

d2
HðT1,Tn

Þrt2 �
X
sAS

D2
s

ps

: ð9Þ

Now, t¼PðN40ÞrEðNÞ, so we have tr l0, and thus we can

replace t in (9) by l0 to obtain

d2
HðT1,Tn

Þr l20 �
X
sA S

D2
s

ps

: ð10Þ

Referring again to Fig. 2, let wu be the state at vertex u, let wv be

the state at vertex v, and let w1, . . . ,w4 be the respective states on

the leaf set {1, 2, 3, 4}, and for states g0,g00AG, let pðg0,g00Þ denote

the conditional probability Pðwu ¼ g0,wv ¼ g009N40Þ.

Then we have

Ps ¼
X

g0 ,g00AG

pðg0,g00ÞPðw1 ¼ g19g0ÞPðw2 ¼ g29g0ÞPðw3 ¼ g39g00ÞPðw4 ¼ g49g00Þ,

and

Pn

s ¼
X

g0 ,g00AG

pðg0,g00ÞPðw1 ¼ g19g0ÞPðw2 ¼ g29g0ÞPðw3 ¼ g39g00ÞPðw4 ¼ g49g0Þ,

where Pðwi ¼ gi9xÞ (for x¼ g0 or g00) is the probability of generating

leaf state gi at leaf i conditional on state xAG at the vertex of the

tree adjacent to leaf i.

Thus, 9Ds9¼ 9Ps�Pn

s 9 is bounded above as follows:

9Ds9r
X

g0 ,g00AG

pðg0,g00ÞPðw1 ¼ g19g0ÞPðw2 ¼ g29g0ÞPðw3 ¼ g39g00Þ

�9ðPðw4 ¼ g49g00Þ�Pðw4 ¼ g49g0ÞÞ9: ð11Þ

We now invoke the property that any irreducible Markov

process on state space G converges to its stationary distribution

at an exponential rate regardless of its starting state (cf. Theorem

8.3 of Rozanov, 1969). Specifically, if Yt is the state of such a

process when it is run for duration t then, for any state gAG with

the equilibrium frequency pðgÞ, and any second state a, we have

9PðYt ¼ g9Y0 ¼ aÞ�pðgÞ9rAe�at , ð12Þ

where A and a depend only on the rate parameters of the Markov

process. Using the triangle inequality, Inequality (12) gives

9Pðw4 ¼ g49g0Þ�Pðw4 ¼ g49g00Þ9r2Ae�aL: ð13Þ

Substituting Eq. (13) into Eq. (11), we obtain

D2
s

ps

r
4A2e�2aL

ps

X
g0 ,g00AG

pðg0,g00ÞPðw1 ¼ g19g0ÞPðw2 ¼ g29g0ÞPðw3 ¼ g39g00Þ

 !2

,

ð14Þ

and since the term in brackets is bounded above by 1ð ¼
P

g0 ,g00AG

pðg0,g00ÞÞ, we obtain

D2
s

ps

r
4A2e�2aL

ps

: ð15Þ

Note also that, since l1,l2,l3Zd40 and L40, and the Markov

process is irreducible, and G is finite, there is some positive

r¼ rðdÞ such that psZr. We can thus further reduce Inequality

(14) to

D2
s

ps

r
4A2e�2aL

r : ð16Þ

Substituting Eq. (16) into Eq. (10) now furnishes the promised

justification of Eq. (4), upon taking b¼ 2a and B¼ BðdÞ ¼ 4A2=rðdÞ.
By symmetry, Eq. (4) gives us the same upper bound on d2

HðT2,Tn
Þ

as for d2
HðT1,Tn

Þ. We then have, by the triangle inequality

d2
HðT1,T2Þr ðdHðT1,Tn

ÞþdHðT
n,T2ÞÞ

2o4Bl20e�bL: ð17Þ

The first part of Theorem 4.1 follows from Lemma 3.1 by taking

A¼ fT1,T2g (so that CE ¼
1
4ð1�2EÞ2) and then setting C ¼ CE=4BðdÞ.

Finally, the last claim in Theorem 4.1 (that ebL=l20 is an upper

bound on the required sequence length, up to a constant multi-

plicative factor) is provided by Theorem 14 of Erdös et al. (1999),

which analyzed tree reconstruction from log-determinant dis-

tance values, using a simple ‘four point method’. &

Remark. The proof of Theorem 4.1 relies on the state space G

being finite. This raises the question of whether Inequality (2)
holds for infinite state models such as the ‘‘infinite alleles model’’
of Crow and Kimura (1964). In this model, a mutation always
gives rise to a new state (cf. Mossel and Steel, 2005, Section 14.5).
It turns out that Inequality (2) no longer holds for this model, as
the proof of Proposition 4.3 of Fischer and Steel (2009) shows that
the trees in Fig. 1(a0) and (b0) can be accurately reconstructed with
sequences of length just CebL=l0 for all l0A ð0,dÞ and L40 (notice
the inverse rather than inverse-square dependence on l0) for
suitable constants b and C. Moreover, it can also be shown that
the exponential dependence of the sequence length on L is still
necessary under this model.

1 To obtain Inequality (8) set z¼
ffiffiffiffiffiffiffiffiffiffiffi
1þy

p
. Then (8) is equivalent to the

polynomial inequality zpðzÞZ0 for zZ0, where pðzÞ ¼ 2�3zþz3. Now, pð0Þ40

and p0ðzÞ ¼ 0 has a unique solution in the range zZ0, namely at z¼1, where

pð1Þ ¼ 0; moreover since p00ðzÞ40 for all z40 it follows that p(z) (and thus zp(z)) is

non-negative for all zZ0.
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4.1. Imposing a (relaxed) molecular clock

When a molecular clock is imposed, there is an interesting
shift in the sequence length requirements for accurate tree
reconstruction. Although we have seen that the two scenarios
in Fig. 1 lead to the same type of lower-bound dependence of
sequence length on l0 and L, namely expðcLÞ=l20, if we impose a
molecular clock, then this equivalence disappears. More precisely,
it is clear (from Fischer and Steel, 2009) that the term expðcLÞ=l20
remains for the deep divergence set-up of our Fig. 1(a), but for the
recent divergence event shown in Fig. 1(b) we will show that the
length of the long edge L is largely irrelevant.

We need to stress here how this result should be interpreted.
We are not claiming that if a clock applies in the tree that
generates the data, then every consistent model-based method,
such as maximum likelihood, will be immune to the effect of a
long branch to an outgroup. It will not be so immune if, in the
model assumed in the maximum likelihood analysis, a molecular
clock is not imposed. We are merely claiming that certain
methods (such as agglomerative clustering, or MLE with a clock)
can be immune to a long branch if a clock assumption applies.

We formalize this by a result, in which the full strength of the
molecular clock condition can be relaxed slightly. Note that for
the tree in Fig. 1(b), then under a molecular clock the branch
lengths (as indicated in Fig. 2) must satisfy

l1 ¼ l2; l3 ¼ l1þ l0rL:

We relax this slightly by requiring only that

minfl3,LgZmaxfl1,l2gþ l0: ð18Þ

Theorem 4.2. Consider the tree in Fig. 1(b) and suppose that the

branch lengths (as indicated in Fig. 2) satisfy the relaxed clock

condition described in (18). Let k sites evolve i.i.d. along this tree

under a finite-state, stationary and reversible Markov process. Then

the placement of the branch leading to taxon 4 can be determined

correctly with probability at least 1�E provided that

kZB=ð1�e�ll0 Þ
2, ð19Þ

where B depends just on l1, the model and E, and where l is a constant

determined by the model. In particular, this bound is independent of

the length L of the long branch to the outgroup taxon 4.

Proof. Consider the following simple reconstruction method. Let
sðx,yÞ denote the proportion of sequence sites for which taxa x and y

have the same state. Select the two taxa that maximize sðx,yÞ and
return the (unrooted) quartet tree in which x and y form a cherry.
Let eðx,yÞ be the expected value of sðx,yÞ. If Yt ðtZ0Þ, denotes the
Markov process described in the statement of Theorem 4.2 then
we have

eðx,yÞ ¼ E½sðx,yÞ� ¼
X

i

piPðYt ¼ i9Y0 ¼ iÞ,

where in this equation that value t¼ txy refers to the branch length
distance between taxon x and y, and pi is the equilibrium frequency
of state i. By the spectral representation of reversible continuous-
time Markov processes (see e.g. Chapter 3, Eq. (40) of Aldous and
Fill, 2010) we have, for any state i

PðYt ¼ i9Y0 ¼ iÞ ¼ piþ
X

mZ2

u2
ime�lmt ,

where lmZ0 are the eigenvalues of the rate matrix multiplied by
�1, and the ujm values are real coefficients related to the eigen-
values of the rate matrix. The lm values can be ordered 0¼
l1ol2rl3r � � �. Consequently, eðx,yÞ ¼

P
ip2

i þ
P

mZ2cm e�lmt ,

where cm ¼
P

ipiu
2
im40, and so

eðx,yÞ�eðx0,y0Þ ¼
X

mZ2

cmðe
�lmtxy�e�lmtx0y0 Þ:

Since the coefficient c2 is strictly positive, if tx0y0�txyZ l0 we can write

eðx,yÞ�eðx0,y0ÞZc2e�ltxy ð1�e�ll0 Þ40, ð20Þ

where, for convenience, we let l denote l2. Notice that t12 ¼ l1þ l2,
and t13 ¼ l1þ l3 and t23 ¼ l2þ l3 and so, by the relaxed clock condition
(18) we have t23�t12Z l0 and t13�t12Z l0. Thus (20) holds for
ðx,yÞ ¼ ð1,2Þ and ðx0,y0Þ ¼ ð1,3Þ,ð2,3Þ.

Next, if we set X12;3 ¼ sð1,2Þ�sð1,3Þ, then observe that

Pðsð1,2Þosð1,3ÞÞ ¼PðX12;3o0Þ ¼PðX12;3�E½X12;3�o�E½X12;3�Þ: ð21Þ

In order to exhibit an upper bound on this probability, we will apply

Hoeffding’s inequality (Hoeffding, 1963). First, observe that we can

express sð1,2Þ�sð1,3Þ as a sum of k independent random variables

(one for each site), each taking a value of þ1=k,0 or �1/k, and this

sum has the property that changing any one of these variables

(while keeping the others fixed) alters sð1,2Þ�sð1,3Þ by an additive

factor whose absolute value is at most 2/k. Applying Hoeffding’s

inequality, noting that: eð1,2Þ�eð1,3ÞZc2e�lt12 ð1�e�ll0 Þ from

Inequality (20), we obtain, from Eq. (21) that

Pðsð1,2Þosð1,3ÞÞrexpð�kc2
2e�2lt12 ð1�e�ll0 Þ

2=2Þ,

and this can be made less or equal to E=5 whenever Inequality (19) is

satisfied for B¼ 2 lnð5=EÞ=c2
2e�2lt12 . By symmetry, Pðsð1,2Þosð2,3ÞÞ

is also less or equal to E=5 for this value of k. Moreover, by the relaxed

clock condition, we also have

Pðsð1,2Þosðx,4ÞÞrE=5 for x¼ 1,2,3:

Thus, with probability at least 1�E, the pair f1,2g will have the

strictly largest s-value; consequently, the correct tree topology will be

recovered by the method described with probability at least 1�E. &

5. Further extensions and concluding comments

5.1. Rates across sites

When sites evolve i.i.d. the sequence length required to recon-
struct the tree in Fig. 1(a) accurately grows exponentially with the
length of L of the long exterior branches; the same holds also
for the tree in Fig. 1(b) in the absence of any molecular-clock
assumption (Theorem 4.1). We point out that these conclusions
need not hold when the sites evolve independently but not
identically under a model that allows substitution rates to vary
across sites, provided this rate distribution allows arbitrarily small
rates, and with appropriate density. Suppose, for example, that site
i has rate ri ¼ 1=i for i¼ 1,2, . . . : Let T 0 be either an alternative
binary tree to T1 or the unresolved tree (i.e. T 0 ¼ T2 or Tn), and let
D2

HðT1,T 0Þ be the Hellinger distance between sequences of length k

generated by T1 and T 0 in which the rates at site i of the Markov
process is ri. We claim that for a sequence length that grows at the
(polynomial) rate L5, the value D2

HðT1,T 0Þ converges to 2 as L tends
to infinity. We first establish this claim and then explain why
it implies that one can reconstruct the generating tree (T1) in
Fig. 1ða0Þ or ðb0Þ from sequences of a length that is polynomial in L.

By a standard equality relating Hellinger distance of sequences
of independent samples to the Hellinger distances at each
sequence site (easily derived from Eq. (1)) we have

D2
HðT1,T 0Þ ¼ 2 1�

Yk

i ¼ 1

1�
1

2
d2

i

� � !
, ð22Þ
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where di is the Hellinger distance between the probability
distributions on patterns at site i (and rate ri) generated by tree
T1 and generated by T 0. This applies in either the setting of
Fig. 1(a) (four long pendant edges) or Fig. 1(b) (one long pendant
edge). Moreover, by definition,

d2
i Zð

ffiffiffiffi
pi

p
�

ffiffiffiffi
p0i

q
Þ
2, ð23Þ

where pi here refers to the probability of generating a site pattern
with leaves 1, 2 in one state (say A) and leaves 3, 4 in a different
state (say B) on T1 at substitution rate ri, while p0i is the
corresponding probability for this same site pattern when T1 is
replaced by T 0. Notice that this site pattern can be generated by a
state change on just one edge of T (the central edge), while on T 0

at least two pendant edges require state changes. Thus, for
suitable constants c,c0, for the tree in Fig. 1(a) we have: piZc=i

and p0irc0ðL=iÞ2; while for the tree in Fig. 1(b) we have piZc=i and
p0irc0ðL=iÞð1=iÞ. Thus, in either case, provided i is sufficiently large,
Inequality (23) gives

d2
i Z

ffiffiffi
c
p ffiffi

i
p �

ffiffiffiffi
c0
p

L

i

� �2

Z
d

i
ð1�oð1ÞÞ, ð24Þ

for a positive constant d, and where oð1Þ denotes a term that
converges to 0 with increasing i. Then, by combining Eq. (22) and
(24), we have

2ZD2
HðT1,T 0ÞZ2 1�

YL5

i ¼ L4

1�
1

2
d2

i

� �0
@

1
AZ2 1�

YL5

i ¼ L4

1�
dð1�oð1ÞÞ

2i

� �0
@

1
A,

ð25Þ

and straightforward asymptotic analysis of the last term reveals
that D2

HðT1,T 0Þ-2 as L-1.
Finally, we invoke an inequality (Theorem 3.2) from Steel and

Székely (2002). If M¼MLE (maximum likelihood estimation) then
for A¼ fT1,T 0g, the probability that MLE correctly reconstructs the
generating tree from A is at least 1

2DHðT1,T 0Þ and this converges to
1 as L grows (with k growing at the rate L5).

5.2. Breaking up long edges by adding more taxa

Based on simulation studies and qualitative understanding, it
is received wisdom that long branches are untrustworthy due to
the long branch being able to ‘go anywhere’. Hence biologists seek
to break up this branch either with more characters or more taxa
(see, for example, Felsenstein, 2004 or Graybeal, 1998). One could
then reconstruct a phylogenetic tree for this ‘extended’ set of taxa
and then ignore all but the few taxa one is interested in.

However, as we add more taxa, the number of possible phylo-
genetic trees grows exponentially, and more data are required to
reconstruct a larger tree correctly (this can easily be seen by a
purely counting argument). Thus it is not immediately clear
whether this strategy has any formal basis for improving accuracy.
Here, we show that the sequence length requirements for resolving
a four-taxon tree that has one long branch can be exponentially (or
even double-exponentially) greater than those of the large tree in
certain ideal situations.

To see this, suppose we have one of the types of trees shown in
Fig. 1, with one or more long pendant edges of length L. Suppose
one can find a set S of N additional taxa so that each edge in the
resulting tree has a branch length that lies between fixed values,
say l and l0 (with lr l0r l0). Reconstructing this larger tree
accurately requires just some constant times logðNÞ=l2 sites under
a two-state symmetric model (see Daskalakis et al., 2011) provided
l0 lies below a critical transition value, while reconstructing the
four-taxon tree involves a term (ecL) that grows exponentially with
the length L of any long edge (by Theorem 4.1).

The significance of this result hinges on the following ques-
tion: how does logðNÞ compare with ecL? If very short branches
are attached at equally spaced intervals along the long pendant
branch (or branches), then N grows in a linear relationship with L.
In this case, the sequence length required to reconstruct the four-
taxon tree is doubly exponential in the sequence length required to
reconstruct the much larger tree, as L grows (moreover, this does
not require the strong technical result from Daskalakis et al., 2011
but a weaker result from Erdös et al., 1999).

However, it would be more realistic to constrain the branch
lengths in the tree to be approximately clocklike. In that case, N

need only be of order 2dL for some constant d; logðNÞ would then
be proportional to L and the sequence length required to recon-
struct the four-taxon tree would be exponential in the sequence
length required to reconstruct the much larger tree as L grows.

In this analysis we are, of course, assuming the most ideal
situation, where the taxa are distributed as favorably as possible
to allow the large tree to be reconstructed; still, it is interesting
to note that this route – constructing a large tree accurately,
then ignoring the majority of taxa to consider just the induced

phylogenetic relationship between four taxa – can require much
shorter sequences lengths to achieve the same accuracy (and this
holds for statistically consistent tree reconstruction methods,
not just for inconsistent methods that can be ‘misled’ by long
branches).

Notice also that we are concerned here with aligned DNA
sequence sites rather than raw sequence data before it has been
aligned. In the latter case, if we include raw sequences from
additional taxa this may alter the original alignment and thereby
the length of the aligned sequences for the original subset of taxa.
The effect this might have on the above arguments will depend on
the details of the insertion–deletion–substitution model, and is
beyond the scope of this paper.

5.3. Extension of Theorem 1 to trees with more taxa

Finally, we discuss what happens to our main results concern-
ing four-taxon trees if we replace one or more of the four leaves of
the tree by subtrees. Firstly, the lower bound on k given by
Theorem 4.1 still applies if the li values refer to the lengths of the
central three edges. This is because the sequences at the root of
the four subtrees screens off the states of the leaves from the
random variable that is the topology T of the central part of
the tree (by the Markov property). More formally, consider the
following two data sets:

� the sequences Z at the leaves of the tree;
� the sequences Y at the roots of the four subtrees;

Since T-Y-Z is a Markov chain, the ‘data processing inequality’
(cf. Cover and Thomas, 1991, Chapter 2.8) ensures that IðT; ZÞr
IðT;YÞ, where I refers to mutual information. In other words, the
information that the leaves of the tree tell us about T (the
topology of the central part of tree) cannot exceed the informa-
tion that the ancestral sequences at the roots of those subtrees
provide about T (were these known; recall that we only observe
sequences at the leaves of the tree). Thus we obtain a conserva-
tive lower bound on the required sequence length with these
considerations.

However, a tighter bound would presumably take into account
how much uncertainty there is in the state at the root of one of
the four subtrees, given the states we observe at the leaves of
that tree.

To simplify the discussion here, consider just the symmetric
two-state model of site substitution. In this case, let pi denote the
probability of accurately inferring the root state of a subtree that
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stands in place of taxon i from the states at the leaves under
maximum likelihood (we assume that the topology and branch
lengths of the subtree are known). If li is the length of the central
branch of T that is incident with the root of this subtree, then the
probability of a substitution across the endpoints of this edge is
p0i ¼

1
2ð1�e�2li Þ.

This suggests the possibility of approximating the sequence
length required to resolve a polytomy in a large tree by replacing
each of the four incident subtrees by a single taxon, with a net
probability of substitution across branch i being set to pi � p

0
i. Thus

we have replaced a phylogenetic tree with four subtrees by a
four-taxon tree, in which the central edge is of the same length
but the pendant edges have been ‘lengthened’ to allow for the loss
of information that the leaves provide concerning the root state of
each subtree. A natural candidate for this ‘effective branch length’
of branch i would be a value of l for which pi � p

0
i ¼

1
2ð1�e�2lÞ; this

has the solution: l¼ liþ
1
2 logð1=ð1�2piÞÞ: It may be interesting to

explore this approach further since the computation and behavior
of the expected root-state reconstruction probability (pi) have
been analyzed already by a number of authors (e.g. Evans et al.,
2000; Ma and Zhang, 2011).
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