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Methods such as maximum parsimony (MP) are frequently criticized as being statistically unsound and not being
based on any ‘‘model.’’ On the other hand, advocates of MP claim that maximum likelihood (ML) has some
fundamental problems. Here, we explore the connection between the different versions of MP and ML methods,
particularly in light of recent theoretical results. We describe links between the two methods—for example, we
describe how MP can be regarded as an ML method when there is no common mechanism between sites (such as
might occur with morphological data and certain forms of molecular data). In the process, we clarify certain
historical points of disagreement between proponents of the two methodologies, including a discussion of several
forms of the ML optimality criterion. We also describe some additional results that shed light on how much needs
to be assumed about underling models of sequence evolution in order to successfully reconstruct evolutionary trees.

Introduction

Maximum parsimony (MP) is a popular technique
for phylogeny reconstruction. However, MP is often crit-
icized as being a statistically unsound method and one
that fails to make explicit an underlying ‘‘model’’ of
evolution. Discussion is further clouded by claims that
MP variously is, or is not, a form of maximum likeli-
hood (ML) and the promotion of ‘‘zones’’ within which
either method performs worse than the other in recov-
ering the true tree. There is little agreement on how, or
even whether, MP should be justified. According to Ed-
wards (1996), who prefers to call MP the ‘‘method of
minimum evolution,’’ the method was introduced by
himself and Cavalli-Sforza in 1963 (in the context of
continuous characters) merely as a computational ap-
proximation for ML, and not as a method of choice in
its own right.

However, others (e.g., Farris, Kluge, and Eckardt
1970; Sober 1988) claim that MP is the preferred meth-
od of tree reconstruction. Advocates of this viewpoint
sometimes appeal to Willi Hennig’s writings on phylo-
genetic inference or, alternatively, to the Principle of
Parsimony. The latter is a minimalist principle, some-
times also referred to as ‘‘Ockham’s razor,’’ and states
that one should prefer simpler explanations (requiring
fewer assumptions) over more complex, ad hoc ones. In
phylogeny reconstruction, this principle has been ap-
plied in two ways. One emphasizes the feature that MP
favors the tree requiring the fewest evolutionary events
(such as mutations) to explain the observed data and
thus is, in some sense, the ‘‘simplest,’’ or an ‘‘optimal’’
description of the data. A second appeal to the Principle
of Parsimony is to assume as little as possible about any
underlying model or mechanism for evolution. Actually,
we will see that this second application of the Principle
of Parsimony can also be used, instead, as an argument
in favor of the more usual forms of ML.
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Some authors (e.g., Farris 1973; Sober 1985, 1988)
have also presented explicit statistical arguments in fa-
vor of MP based on underlying evolutionary models.
Still others have undertaken the more modest task of
providing a statistical framework for using MP (Cav-
ender 1978, 1981; Kishino and Hasegawa 1989; Mad-
dison and Slatkin 1991; Steel, Hendy, and Penny 1992;
Archie and Felsenstein 1993).

The simplicity of a method like MP (and its em-
bellishments that allow weightings on characters and
transition types), together with its apparent lack of as-
sumption involving underlying models, made it popular
in phylogeny, particularly in the 1970s and the 1980s.
Furthermore, it is possible to state sufficient conditions
on the process by which characters evolve so that MP
will recover the true tree. Essentially, these conditions
amount to requiring that convergent evolution and re-
versals occur in (sufficiently) low numbers in compari-
son with the characters that identify edges of the tree (a
more precise formulation is given by the lemma given
in section (a) of the appendix). The main problem with
such simple criteria is that they are very unlikely to be
satisfied for most real data sets, and even when they are,
it may be impossible to tell this directly from the data
(without knowing in advance the true tree).

MP is still widely used, but model-based approach-
es have come to rival, and even dominate, phylogenetic
methodology, particularly over the last decade. While
ML is the leading alternative, other approaches include
distance-based methods that use transformed or inferred
distances, for example, logdet/paralinear distances (see
Swofford et al. [1996] for a review of distance methods
which are outside the scope of this overview of parsi-
mony and likelihood). One justification for model-based
approaches was the classic and much-cited statistical in-
consistency of MP due to Felsenstein’s paper (1978),
which demonstrated that if sequence sites evolved under
certain models and combinations of rates, then MP
would favor an incorrect tree. Furthermore, the proba-
bility of selecting an incorrect tree would tend to 1 as
the sequence length grew (this phenomenon of statistical
inconsistency will be discussed further inWhen Is MP
Statistically Consistent? below). The conditions that
Felsenstein used—a particular combination of short and
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long branches—have become the deliciously sinister-
sounding ‘‘ Felsenstein Zone.’’

Both Felsenstein (1973) and Yang (1994) infor-
mally claimed that the nonexistence of any such zone
within which ML would be statistically inconsistent (al-
though this assertion was questioned by Sober [1988,
chapter 5]). Indeed, the statistical consistency for ML
(when the underlying model had no rate distribution
across sites and this same model was then also used in
the ML method to reconstruct the tree) was rigorously
established only recently by Chang (1996a) (and, for
more special types of models, by Rogers [1997]). Note
that the use of the ‘‘ correct’’ model (the same as the
model used to generate the data) is essential to the proof
that ML is consistent. For the biologist, this is a mixed
blessing: although one may seldom know the correct
model of evolution, the more one knows about the evo-
lutionary process, the better we would expect the chanc-
es to be of avoiding a zone of inconsistency by analyz-
ing the data correctly.

Nevertheless, ML methodology enjoys far from
universal acceptance. Objections to ML include the fol-
lowing: Concern about the validity and exact form
of any underlying stochastic model (e.g., there is con-
cern as to the choice of underlying parameters/distri-
butions and as to the idea that by selecting the appro-
priate model, perhaps one could reconstruct any favored
tree);

The concern that ML estimation of a tree (and sta-
tistical tests between different trees) that involves opti-
mizing ‘‘ nuisance (supplementary) parameters’’ is sta-
tistically problematic.

Suggestions that the Felsenstein Zone rarely, if
ever, arises for real data.

The existence of a ‘‘ Farris Zone,’’ where MP out-
performs ML.

The analysis of new types of genome data, e.g.,
gene order and short interspersed nuclear elements (SI-
NEs), for which MP may be more appropriate.

Concern about the computational complexity of
ML. Even on a given tree, optimizing the likelihood can
be problematic (unlike with MP, for which Fitch’s
[1971b] algorithm provides a linear time algorithm for
computing the parsimony score).

In this paper we will explore most of these objec-
tions and survey some recent theoretical results that
shed light on the interplay between the two methodol-
ogies and on the limits of what one can hope to achieve
in phylogeny reconstruction.

Before proceeding, it is necessary to clarify some
terminology. We have already pointed out that the Prin-
ciple of Parsimony (Ockham’s razor) has two general
applications, one as justification for an attempt to ana-
lyze data without reference to an underlying model, the
other as a tree selection process (MP) to minimize mu-
tations. However, this latter usage combines the two as-
pects of selecting a tree with a minimal number of mu-
tations and using only observed data (not corrected for
any multiple changes). However, these are independent
concepts and can be used in different combinations. For
example, minimization of the number of mutations can

be applied after correction for multiple changes (cor-
rected parsimony; Penny et al. 1996); also, distance
methods (such as neighbor joining) can be used on the
observed (uncorrected) distances. This separates the op-
timality criterion for selecting a tree from assumptions
about the mechanisms of sequence evolution. Some
forms of weighted parsimony make certain assumptions
about the mechanism of evolution, for example, giving
transversions more weight than transitions (see Swof-
ford et al. 1996).

In general, we prefer to treat a ‘‘ method’’ for in-
ferring evolutionary trees as being composed of three
largely independent parts: the choice of optimality cri-
terion, the search strategy over the space of trees, and
assumptions about the model of evolution. It is useful
to make a three-way division of the model of evolution.
This consists of a tree T (or, more generally, a graph,
when median networks or splits graphs are considered),
a stochastic mechanism of evolution (such as whether
or not it is neutral, Kimura 3ST, whether it exhibits rate
heterogeneity), and the initial conditions (e.g., interspe-
ciation times or rates on each edge [branch] of the tree).

An additional factor is that the researcher may be
hoping to recover different aspects of the model. Most
frequently, perhaps it is just the unweighted tree, re-
gardless of the amount of mutation on each edge of the
tree. In addition, the tree will usually be unrooted unless
an outgroup or an assumption about a molecular clock
is used. Frequently, however, the rates of mutation will
be required in order to estimate times of divergence.
Others will also wish to estimate the character states at
the internal nodes. It is thus too simple just to compare
‘‘ parsimony’’ and ‘‘ likelihood.’’ Indeed, likelihood itself
comes in many flavors, and these will be discussed next.
The usual form of ML is ‘‘ maximum average likeli-
hood,’’ an example of ‘‘ maximum relative likelihood.’’
These and other distinctions we discuss below have also
been noted by others, in particular, Goldman (1990),
Felsenstein (1973), and Barry and Hartigan (1987).

What Is ML, and What Does it Maximize?

The likelihood of the hypothesis H, given data D
and a specific model, is proportional to P(D � H), the
conditional probability of observing D given that H is
correct (Edwards 1972). An ML method of inference
selects the hypothesis H that maximizes the likelihood
function for the data D (given the specified mechanism).

In the context of phylogeny reconstruction from se-
quences, D typically counts the number of ‘‘ site pat-
terns’’ that occur in a collection of aligned sequences.
The order in which these patterns occur (and the phy-
logenetic information that this might convey) is usually
discarded, although some authors have explicitly incor-
porated this into their analysis (e.g., Felsenstein and
Churchill 1996; Thorne, Goldman, and Jones 1996;
Yang 1996b; Halpern and Bruno 1998). The hypothesis
H is usually the discrete phylogeny (unweighted tree) T,
and the model is some stochastic process for site sub-
stitution (or, more generally, genome transformation, if
insertions and deletions are allowed).
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Unfortunately, P(D � T), and hence the likelihood of
T, requires more information to specify it, since the
probability of evolving D depends on further parame-
ters, sometimes referred to as ‘‘ nuisance parameters.’’ In
order to talk about P(D � T), we need to either specify
these parameters or place some prior distribution on
them. The word ‘‘ nuisance’’ is a little misleading. It
does not imply that these parameters are of no interest,
but rather that they need to be considered even if all one
wants to know about is the tree T. Examples of such
parameters in molecular phylogenetics are the edge
lengths (interspeciation times and rates of mutation on
the edges), parameters associated with the substitution
matrix (e.g., transition/transversion bias), and parame-
ters that describe how rates vary across sites.

Nuisance parameters (and the associated problems
they cause) arise widely in many statistical settings.
They have been discussed in the phylogeny setting by
several authors, perhaps most lucidly by Goldman
(1990). Nuisance parameters may further be classified
into ‘‘ structural’’ and ‘‘ incidental’’ parameters. Structur-
al parameters influence all (or nearly all) of the sites,
while incidental parameters influence only one or a few.
Structural parameters typically correspond to the edge
(branch) lengths and parameters that constrain the sub-
stitution process (e.g., the transition/transversion bias).
Typically, such parameters are either selected to maxi-
mize the likelihood or estimated directly from the data.
Incidental nuisance parameters arise (1) if we wish to
hypothesize a particular choice of sequences to appear
at internal vertices of the tree, in which case we need
to specify states for each site, or (2) if the process varies
from site to site. We will discuss both these situations
below. In any case, for a model of sequence evolution,
we will represent nuisance parameters collectively by �.

Two frequent assumptions concerning substitution
models are that aligned sites evolve independently and
according to identical processes—the so-called ‘‘ i.i.d.’’
assumption. Note that the i.i.d. assumption still allows
sites to evolve at different rates by regarding the rate of
a site as being randomly and independently selected
from an appropriate distribution (such as a gamma dis-
tribution). Of course, in real sequences, there is cluster-
ing of ‘‘ conserved’’ and ‘‘ hypervariable’’ sites (so the
real process is definitely not i.i.d. across sites), but when
one passes to the frequencies of site patterns (i.e., the
data D), the process can be modeled by an i.i.d. process.
Similarly, certain covarion-style mechanisms (where
sites can alternate between invariable and variable dur-
ing evolution) can be modeled using an i.i.d. process
(Tuffley and Steel 1997b), even though the original cov-
arion model (e.g., Fitch 1971a) implied explicit depen-
dency between sites.

The i.i.d. assumption allows one to readily compute
P(D � T, �) by identifying this with the product of the
probabilities of evolving each particular site. Occasion-
ally, more intricate models have been proposed and an-
alyzed. These include models that allow a limited degree
of nonindependence between sites (e.g., pairwise inter-
actions in stem regions; Schöniger and von Haeseler
1994) and models that work with nonaligned sequences

and explicitly model the insertion-deletion process as
well as the site substitution process (Thorne, Kishino,
and Felsenstein 1992).

Maximum Integrated Likelihood Versus Maximum
Relative Likelihood

If the nuisance parameters � and the phylogeny T
are generated according to some known prior distribu-
tion (e.g., a Yule pure-birth process) one can formally
integrate out these nuisance parameters, and thereby
take P(D � T) to be this average value. That is, if �(� � T)
denotes the distribution function of the nuisance param-
eters conditional on the underlying tree T, then

P(D � T) � P(D � T, �) d�(� � T).�
This approach is sometimes referred to as ‘‘ inte-

grated likelihood,’’ and we will refer to a tree T that
maximizes P(D � T) as a maximum integrated likelihood
(MIL) tree. MIL, and, more generally, the assignment
of posterior probabilities to trees based on sequence data
(using Markov chain Monte Carlo techniques to ap-
proximate the integral in the above equation), has been
independently developed by several authors recently, in
particular, Yang and Rannala (1997) and Mau, Newton,
and Larget (1999).

Assume for the moment that one possesses such a
prior distribution (e.g., based on a Yule process). A nat-
ural question arises: namely, in what sense is maximum
integrated likelihood an optimal method for selecting a
tree? In particular, is it the method that is most likely
(on average) to return us the true tree? In order to for-
malize this question, suppose we have a tree reconstruc-
tion method, and we apply it to sequences that have
been generated by a model with underlying parameters
T and �. The reconstruction probability, denoted �(M, T,
�), is the probability that the sequences so generated
return the correct tree T when method M is applied.
Since we have a distribution on trees and the nuisance
parameters, let �(M) denote the expected reconstruction
probability of method M, obtained by integrating �(M,
T, �) over the joint parameter space. That is,

�(M) � E[�(M, T, �)] � p(T) �(M, T, �) d�(� � T),� �
T

where p(T) is the probability of the tree T under the prior
distribution (we will assume that only binary trees have
positive probability). The following theorem precisely
describes the method that maximizes the expected re-
construction probability (for a proof of this, see Székely
and Steel 1999).

THEOREM 1. Under the conditions described, the
method M that maximizes the expected reconstruction
probability �(M) is precisely that method that selects,
for any data D, the tree(s) T that maximizes p(T)P(D � T).

This tree(s) that maximizes p(T)P(D � T) is some-
times referred to as the maximum a posterior probability
(MAP) estimate. It is precisely the MIL tree(s) whenever
the prior distribution on binary trees is uniform (i.e.,
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FIG. 1.—Schematic representations of three forms of maximum
likelihood. a, Maximum average likelihood (MavL), where all possible
sequences at the internal vertices contribute to the likelihood. b, Most-
parsimonious likelihood, in which sequences are placed at the internal
vertices to maximize the likelihood. c, Evolutionary pathway likeli-
hood, in which sequences are placed at each position throughout the
tree to maximize the likelihood.

when all binary trees are equally likely). Consequently,
assuming that the prior distribution assigns equal prob-
abilities to all binary trees, MIL maximizes one’s aver-
age chance of recovering the correct tree. However, if
the distribution on binary trees is not uniform—for ex-
ample, if it is described by a Yule process—then the
optimal selection criteria are slightly different. In any
case, an obvious question is that of how to agree upon
a biologically reasonable distribution on trees and
parameters.

The alternative approach, which is more widely
adopted, is sometimes called maximum relative likeli-
hood (MRL). One simply assumes that the nuisance pa-
rameters take values that, simultaneously with an opti-
mal tree T, maximize P(D � T, �). Usually, one then dis-
cards � and outputs just the tree(s) T. Such an approach
can be problematic in general statistical settings where
D depends on both continuous (nuisance) parameters
and a discrete parameter x of interest. In this situation,
there may be one ‘‘ unlikely’’ value of � that, for x �
x1, gives a higher P(D � x, �) value that max�P(D � x2, �),
yet for most ‘‘ likely’’ values of �, the probability
P(D � x1, �) is less than P(D � x2, �). This property means
that MRL may make selections different from those of
MIL, and this seems to have been a fundamental issue
in the exchange between Felsenstein and Sober (1986)
on the relative merits of MP and ML. Moreover, in the
phylogenetic setting, MRL may select different trees
from the MIL method described above, even when all
binary trees are equally likely (at least for certain dis-
tributions on the edge parameters of the tree). An ex-
ample of this is described at the end of Can MP Out-
perform MavL? below.

For the remainder of this paper, we will generally
assume there is no prior distribution given for trees and
edge parameters, and so all forms of ML involve MRL.
With this in mind, we review some further distinctions.

Maximum Average Likelihood, Most-Parsimonious
Likelihood, and Evolutionary Pathway Likelihood

In fitting sequence data to a tree, the sequences at
the leaves (tips) of the tree are given, but those at the
internal vertices (speciation or branching points) of the
tree are not. In the usual implementation of MRL in
molecular phylogenetics, one effectively averages over
all possible assignments of sequences to these internal
vertices. Following Barry and Hartigan (1987), we call
this maximum average likelihood, and we denote it as
MavL.

However, one could also assign sequences to the
internal vertices (along with the other parameters) so as
to maximize the likelihood. Such an approach was ex-
plicitly suggested by Barry and Hartigan (1987), who
called it ‘‘ most-parsimonious likelihood’’ to distinguish
it from maximum average likelihood (see fig. 1a and b).
They remarked that most-parsimonious likelihood ‘‘ is
therefore similar to the maximum parsimony fitting
technique.’’ However, it differs from MP in that the oth-
er parameters (e,g., edge lengths) must be fixed across
all the characters. Likelihood calculations that place se-

quences at the internal vertices of a fixed tree have also
been explored by other authors (Yang, Kumar, and Nei
1995; Koshi and Goldstein 1996; Pagel 1999) for whom
the interest has been primarily in reconstructing, say,
ancestral sequences of proteins (or other characters) on
a given tree, rather than in selecting an optimal tree.

We pause here to note that Goldman (1990) has
already noted one link between MP and most-parsimo-
nious likelihood. He showed that under a symmetric
two-state mutation model, if one imposed the rather ar-
tificial constraint that the mutation probability associated
with each edge of any binary tree is set equal to some
value p, then the MP tree(s) were exactly the most- par-
simonious likelihood trees. This result applies either
with p fixed or allowing p to be optimized.

Given the most-parsimonious likelihood approach,
one might ask, what is so special about the sequences
at the internal vertices of the tree? That is, perhaps one
might carry the approach further and select sequences
for each time interval right through the tree (jointly with
the other parameters) to maximize the probability of ob-
serving the given sequences at the leaves. Thus, one
would associate along each edge of the tree a series of
sequences, corresponding to their evolution at frequently
sampled time intervals (see fig. 1c).

Such an approach was suggested by Farris (1973),
and it was subsequently referred to as an ‘‘ evolutionary
pathway’’ approach, since it is a complete specification
of the sequences through time. Farris (1973) showed
that the tree(s) that maximizes the likelihood in this
sense is exactly the MP tree. Indeed, the argument is
straightforward and requires few assumptions regarding
the underlying model—in particular, it does not require
any assumption about mutations occurring at a slow rate
(only that they occur at a continuous rate) or edge
lengths that are constrained in any way. Also, the equiv-
alence with MP holds with the edge lengths either spec-
ified or allowed to be optimized. Of course, there will
generally be a huge (potentially infinite) choice of pos-
sible evolutionary pathways of maximal probability—
however, this is not a problem if the value of this max-
imal probability is all that is being used to select trees.
As noted by Felsenstein (1978) (see also Sober 1988, p.
160), the distinction between MavL and Farris’ evolu-
tionary pathway likelihood is crucial for reconciling the
apparent paradox between Felsenstein’s claim that ML
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(but not MP) is statistically consistent with Farris’ claim
that MP is an ML method. Both claims are correct; they
are simply referring to different forms of ML.

Does MP � MavL Under Some Model?

Most-parsimonious likelihood and evolutionary
pathway likelihood both entail the specification of a
choice of sequences to points inside the tree. Although
a particular selection of sequences may be the most
probable, the attraction of MavL is that it effectively al-
lows all possible assignments of sequences to the inte-
rior of the tree. These are weighted according to their
probability and then summed up to give the marginal
probability of evolving the sequences observed at the
leaves. The question arises then as to whether MP can
be regarded as a MavL method under some model.

Suppose we take the simplest type of substitution
model at a particular site, a Poisson model in which each
of the possible substitutions at that site occurs with
equal probability. This model, sometimes called the
Neyman model (or the Jukes-Cantor model, when deal-
ing with exactly four states) will be referred to here
simply as the Poisson model. Now suppose the rates of
evolution on each branch of the tree can vary freely
from site to site. In this case, we have some constraints
on the underlying type of substitution model (i.e., Jukes-
Cantor type) but no constraints on the edge parameters
from site to site. We refer to this as ‘‘ no common mech-
anism.’’ This is even more general than the type of ap-
proach considered by Olsen (see Swofford et al. 1996,
p. 443) in which the rate at which a site evolves can
vary freely from site to site, but the ratios of the edge
lengths are equal across the sites. For the Poisson model
with no common mechanism (not even the same rates
for different characters) the following result applies.

THEOREM 2. Under the model described (with no
common mechanism), the maximum average likelihood
tree(s) is precisely the maximum parsimony tree(s).

This result, by Tuffley and Steel (1997a), general-
izes an earlier special case by Penny et al. (1994) . The
significance of this theorem should not be taken as any
special justification for MP over usual implementations
of ML, nor does it imply that MP trees are the same as
those that ML would produce under the ‘‘ usual’’ models
(e.g., Jukes-Cantor with fixed edge lengths). Rather, the
significance of the theorem is of a more philosophical
nature, as it describes a model in which MP can be
regarded as an ML method in the usual ‘‘ average’’ ML
setting (i.e., where one does not select particular se-
quences for the internal vertices as part of the optimi-
zation step).

The argument used to establish Theorem 2 also
shows that, under a Poisson model, if we are given just
a tree and a single character (and no information as to
the edge lengths), the ML estimate of the state at any
internal vertex of the tree (given the states at the leaves
of the tree) is precisely the MP estimate. For a further
link between ML and MP, suppose we take any sequence
data and add a sufficiently large number of unvaried
sites. Then, under a Poisson model, the ML tree of this

extended data set is always an MP tree. For details and
justification of these last two results see Tuffley and
Steel (1997a).

Of course, this type of underlying model (in The-
orem 2) is almost certainly too flexible, since it allows
many new parameters for each edge. It might be re-
garded as the model one might start with if one knew
virtually nothing about any common underlying mech-
anism linking the evolution of different characters on a
tree (e.g., as with some morphological characters).

For processes like nucleotide substitution, as one
learns more about the common mechanisms involved, it
would seem desirable to use this information. This
would lead to the more usual implementations of MavL
where the model parameters (such as edge lengths) are
constant across sites. Indeed, advocates of Ockham’s ra-
zor (the Principle of Parsimony) might well invoke the
principle at this point, as illustrated by the following
example. Consider sequences of a pseudogene, with
each sequence being over 10,000 nt long (Miyamoto et
al. 1988). As a first approximation, there is no selection
at any of the sites, and therefore it is more ‘‘ parsimo-
nious’’ to assume one common mechanism for all sites
rather than 10,000 different mechanisms, one for each
site. In such a case, the Principle of Parsimony would
support the usual MavL over using data uncorrected for
multiple changes.

Again, this conclusion must be taken with care.
Such a model may not apply to other sequence data and
would not often apply to morphological data (e.g.,
where the evolution of numbers of legs may differ from
that of wing color). It is clear that we still need to learn
more about the processes leading to different types of
insertion and deletion events in sequence data to pos-
tulate a common mechanism.

In summary, this subsection suggests two ironies:
first, that the parsimonious approach suggested by Ock-
ham’s razor can, given information of a common mech-
anism, support the usual forms of ML over MP for se-
quence data. Second, by Theorem 2, when we generalize
traditional substitution models (like Jukes-Cantor) suf-
ficiently far—namely, to allow different edge parameters
at different sites—the usual ML approach arrives back
at MP.

When is MP Statistically Consistent?

Given a model of site substitution, a tree recon-
struction method is said to be statistically consistent if
the probability of its reconstructing the true tree con-
verges to certainty as the sequence length tends to in-
finity, regardless of what value the structural nuisance
parameters take. Note that the reconstructed tree is con-
sidered correct if it matches the generating tree up to
the position of any root vertex in the latter tree, since
the root generally cannot be determined without addi-
tional assumptions (e,g., a molecular clock). The con-
cept of statistical consistency is always relative to the
model in question, and methods that are consistent for
one class of models may be inconsistent for others
(Chang 1996b).
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Statistical consistency is often seen as a desirable,
if not essential, property of an estimator in most statis-
tical settings. However this viewpoint is sometimes
questioned in phylogenetics (e.g., by Sober 1985, 1988),
where sequences are of a pregiven finite length, and so
the concept of collecting more data may not be appli-
cable. Some methods (e.g., linear invariant methods)
that are statistically consistent can perform very poorly
on realistic-length sequences compared with methods
that can be statistically inconsistent. Thus, more recent
studies (e.g., Charleston, Hendy, and Penny 1994; Hillis
1996; Kim 1996; Rice and Warnow 1997) have instead
tended to concentrate on the comparison of different
methods and their corresponding reconstruction proba-
bilities (the probability that the method reconstructs the
true tree from sequences of a given length that evolve
according to the model) or the related probabilities of
reconstructing the true tree up to a given measure of
accuracy.

Nevertheless, the issue of consistency has tended
to dominate much of the discussion concerning the rel-
ative merits of ML over MP, particularly since Felsen-
stein’s (1978) classic paper showing that MP (and the
related maximum-compatibility method) can be incon-
sistent. However, distance methods applied to uncor-
rected data can also be inconsistent; indeed, under the
symmetric two-state model, the conditions for inconsis-
tency of some standard distance methods (applied to un-
corrected distances) are identical to those for MP on
four-taxon trees (Penny, Hendy, and Steel 1991).

A seductive, but erroneous, belief is that if the mu-
tation probabilities on the edges are all sufficiently
small, then MP is statistically consistent under simple
models. However, Felsenstein’s (1978) counterexample
allows arbitrarily low mutation probabilities. Neverthe-
less, if one fixes the relative branch lengths on any tree,
one can easily show that if the rate of substitution is
sufficiently small, then MP is statistically consistent. For
four sequences, it is possible to say exactly when MP
will be statistically consistent (in terms of the edge pa-
rameters), at least for simple models such as the sym-
metric two-state model (Penny, Hendy, and Steel 1991).
An explicit sufficient condition for the statistical consis-
tency of MP under a Poisson model with any number
of states, and for general numbers of sequences, is de-
scribed by Steel (1999).

If the branch lengths satisfy a molecular clock, then
the Felsenstein Zone disappears for four-taxon trees, at
least for symmetric models like the Kimura 3ST and
Jukes-Cantor models (see Hendy and Penny 1989; Steel,
Hendy, and Penny 1998). Unfortunately, the molecular
clock does not rescue MP, since it can fail on five-taxon
trees and, more dramatically, on six-taxon trees (in this
latter case, the edge lengths can be made arbitrarily
small), as shown by Hendy and Penny (1989).

A curious consequence of these results arises when
a molecular clock applies. If one uses MP on the entire
data set, the method may be statistically inconsistent,
yet if one had used MP to reconstruct trees on quartets
of taxa and then combined these quartet trees, the meth-
od would be statistically consistent. Note that, just as

with distances, it is possible for some models (e.g., the
Kimura 3ST model) to transform sequence data so that
MP applied to this new data will always be consistent
(this approach, called ‘‘ corrected parsimony,’’ is de-
scribed in Steel, Penny, and Hendy [1993] and Penny et
al. [1996]).

Felsenstein’s (1978) original demonstration of the
statistical inconsistency of MP involved the interplay of
long and short edges, where the edge ‘‘ length’’ refers to
the expected number of mutations on the edge (i.e., the
product, for each edge, of the mutation rate with the
corresponding timescale). However, one can also con-
struct zones of inconsistency for MP for other reasons—
for example, when the process of substitution exhibits
nonstationarity across the tree (Lockhart et al. 1994). In
this case, the mutation rates may be constant and low
across the tree. Of course such nonstationarity may also
be a problem for ML if the model used in the ML anal-
ysis is stationary across the tree.

An unresolved issue is to what extent such incon-
sistency occurs with biological (as distinct from com-
puter-simulated) sequence data. Suggested examples of
tree-building inconsistency arising from the use of in-
appropriate analysis models include those of Lockhart
et al. (1996), Van de Peer et al. (1996), Penny and Has-
egawa (1997), and Huelsenbeck (1998).

A further relevant factor is the size of the state
space of characters. With site substitutions, one gener-
ally has a state space of size 2 (purines/pyrimidines) or,
more usually, 4 (the 4 nt), while for amino acid and
codon data, the state space has size 20 or 64, respec-
tively. With other types of genomic data—for example,
gene order (Blanchette, Kunisawa, and Sankoff 1999),
SINEs (Nikaido, Rooney, and Okada 1999)—there is a
much larger state space. In this case, if the states evolve
by a simple Markov model, then one might expect MP
(and related methods like maximum compatibility) to
behave better, since there is less likelihood of returning
to the same state that was present earlier in the tree. We
formalize this as follows.

Suppose, for example, we generate characters in-
dependently and by an identical process according to a
tree-based Markov model, in which there are r states
that evolve on a tree T with n leaves. We will suppose
that the probability of a mutation on an edge e of the
tree, conditional on there having been any given number
of mutations earlier in the tree, lies strictly between a
and b, where 0 � a � b � 1. We will also suppose that,
conditional on (1) a mutation occurring on edge e � (u,
v) and (2) given the state at u, the probability that the
state at v is any one of the particular r � 1 alternative
states is at most c/(r � 1) for some constant c. For
example, in a Poisson model, where each of the r � 1
different states is equally likely to be selected if a mu-
tation occurs, we have c � 1. This model allows some
transition events to have very low (or zero) probability,
since we only require c/(r � 1) to be an upper bound
to these conditional transition probabilities.

We summarize the relevant constraints on this mod-
el by the quadruple (n, a, b, c), although other param-
eters may also be involved in specifying the model. We
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have the following result, proved in section (a) of the
appendix.

THEOREM 3. If the number of states (r) is large
enough (relative to the other constraints n, a, b, c), then
MP is statistically consistent for all binary trees with n
leaves.

Thus, for simple mutation models with bounded
mutation probabilities, if the state space is large enough,
then there is hope of escaping the Felsenstein Zone.
However, this claim needs qualifying: it does not imply
that any simple enlargement of the state space will au-
tomatically make MP statistically consistent. For ex-
ample, suppose one enlarges the state space by consid-
ering pairs (2-tuples) or triples (3-tuples) or, more gen-
erally, k-tuples of sites (in which case the size of the
state space r is 4k if we have four-state sites). We sup-
pose that changing one k-tuple of states into a different
pair of states costs 1 unit regardless of the number of
site changes involved. Note that MP applied to pairs (or,
more generally, to k-tuples) of sites may lead to different
trees than MP applied to single sites, even for four se-
quences. Nevertheless, for four sequences, MP will be
consistent when applied to pairs of sites if and only if
it is statistically consistent on the original single site
data. Formally we have:

THEOREM 3A. For four sequences and any i.i.d.
model of sequence evolution, MP is statistically consis-
tent on k-tuple–site data if and only if MP is statistically
consistent on single-site data.

A proof of Theorem 3a is given in section (b) of
the appendix. Note that Theorem 3a does not contradict
Theorem 3, since if we take k-tuples of sites, then the
effective mutation probability increases toward 1 as k
increases, so b is not fixed as r grows (i.e., as we put
the sites together, the effective rate of mutation increas-
es). We note in passing that a simple corollary of The-
orem 3 is the consistency of MP under the type of ‘‘ in-
finite-sites’’ model employed in population genetics.

Leaving MP briefly, one can also consider the con-
sequences of a molecular clock on tree reconstruction
methods that use uncorrected distances (i.e., the distance
between each pair of sequences is taken to be the pro-
portion of sites at which there is a substitution). In this
case, under most models, even those that allow an (un-
known!) distribution of rates across sites, the uncorrect-
ed distances will, in expectation, already be treelike.
Thus, there is no need to correct them, and to do so can
be problematic since (1) the correction depends on the
(unknown) distribution of rates across sites, and (2) the
corrected distances typically will have higher variance
(and be biased upward) compared with the uncorrected
distances. Formally stated (a proof is given in section
(c) of the appendix), we have the following result, where
by a ‘‘ standard’’ site substitution model we mean a mod-
el that satisfies two conditions, namely, that it is sta-
tionary (unvaried across the tree) and reversible (the
process appears the same whether viewed into the past
or into the future).

THEOREM 4. For standard site substitution models
with a distribution of rates across sites, the expected

uncorrected Hamming (observed) distances between
pairs of sequences are additive on the underlying tree.

Thus, if a molecular clock applies, then as far as
reconstructing the tree is concerned (without regard to
branch lengths), it may be preferable to work with un-
corrected distances. Once the tree is reconstructed, it is
clearly preferable for the estimation of the branch
lengths to use the corrected distances (or ML estimation)
instead of the uncorrected distances.

Can MP Outperform MavL?

It is easy to construct examples where MavL will
be inconsistent if the model used in the ML analysis
differs from the model that generated the sequences.
However, some investigators have noted that MP can
perform better than MavL, even when the underlying
model matches the generating model (Waddell 1996;
Yang 1996a; Huelsenbeck 1998; Siddall 1998).

To make this idea more precise, by the ‘‘ perfor-
mance’’ of a tree reconstruction method M (on sequence
data generated under a tree-indexed Markov model) we
again mean the reconstruction probability �(M, T, �) de-
scribed in What Is ML, and What Does it Maximize?
(the probability the method will correctly return the true
tree T). This quantity depends not just on M but also on
T and the parameters on the edges of the tree. Now, for
each tree T, there exist parameters for which MP will
have a higher probability of returning the ‘‘ true tree’’ T
than MavL. Of course, it is trivial to construct a method
that can have a higher reconstruction probability than
MavL for a given underlying tree: simply ignore the data,
and always output a fixed (favorite) tree. This ‘‘ method’’
performs splendidly if the favored tree is the true tree,
but otherwise it performs very badly. So why is the
construction we discuss here any less trivial? The crucial
difference is that MP has a higher reconstruction prob-
ability than MavL not just on one four-species tree, but
on any of the underlying trees (provided the other as-
sociated parameters are chosen appropriately)—and this
is something a trivial method like the one described
clearly cannot achieve.

Again, this should not be overinterpreted—it does
not mean that we should be using MP—it may well be
that on average (under some prior on trees and their
parameters) MavL outperforms MP, but it does not glob-
ally outperform (in the sense described above) MP.

In more detail, consider a fully resolved tree T on
four species—say, a, b, c, and d—with the topology
ab � cd and the simple symmetric two-state model with
mutation probability p(e) � � on the two edges incident
with leaves a, b, while p(e) � 0.5 � � on the other three
edges, where � is small but positive. Thus, three edges
involve long interspeciation times (and/or high mutation
rates) and so are near site saturation, while two sister
taxa are recently separated (and/or have low mutation
rates on their incident edges). Note that such a situation
is entirely possible under a molecular clock (see fig. 1a),
although we need not insist on this.

Suppose we evolve k sites independently on this
tree. Let P1(k) be the probability that MP recovers the
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true tree T, and let P2(k) be the probability that MavL
recovers T from the k sites.

THEOREM 5. As � converges to 0 (with the number
of sites k fixed),

k3 2
P (k) � 1 � ; P (k) � .1 2� �4 3

In particular, the probability that MP correctly re-
constructs T can be higher than the corresponding prob-
ability for MavL for any fixed sequence length k � 4.

A similar result was stated without proof in Székely
and Steel (1999); we outline a proof here in section (d)
of the appendix. Note that for � very small (but posi-
tive), MP will recover T with probability 0.99 with just
16 sites, yet MavL could potentially take 1010 sites to
achieve the same probability of correctly reconstructing
T (in which case, for realistic length sequences, other
effects, e.g., deviations from the model, might have
more effect on the reconstructed tree than the sequence
data). This is of course an extreme situation; neverthe-
less, it shows that there are situations in which we would
expect MavL to require much longer sequences than MP
needs to recover the true tree.

Note that we actually only require p(e) � 0.5 � �
on two of the three edges, but we have opted to allow
three edges to be near site saturation, since then the
example can arise under a molecular clock. In contrast,
the Felsenstein Zone cannot arise under a molecular
clock, yet, to be fair, if we want to impose a molecular
clock, we should implement ML with a molecular clock,
and if we did, ML would no longer behave as described
above.

Also, this example does not demonstrate any in-
consistency of MavL, since if the edge mutation proba-
bilities are fixed (and strictly between 0 and 0.5), then
MavL will eventually recover the true tree with proba-
bility converging to certainty as k tends to infinity.

This example can also be modified to demonstrate
that MavL can differ from maximum integrated likeli-
hood, even when all trees have equal prior probabilities
(provided the prior distribution on the edge lengths is
sufficiently contrived). Specifically, suppose that each of
the three binary trees on sequences a, b, c, and d has
equal probability and that the prior distribution on the
edge lengths allows all possible values for the mutation
probabilities, but with probability 1 � 	, we have p(e)
� � on two edges incident with two sister leaves and
p(e) � 0.5 � � on the other three edges. Then it can be
shown that for �, 	 sufficiently small (but positive), MIL
can select a different tree than MavL on certain data.

The Limits to Models: Recent Developments and
Future Directions

As models become increasingly sophisticated and
parameter-rich, one risks losing the ability to discrimi-
nate between different underlying trees (Yang, Goldman,
and Friday 1995). Essentially, this is because when the
parameters are twiddled appropriately, the data may be
able to be described perfectly by any underlying tree.
This is a real possibility for site substitution models that

allow a distribution of rates across sites, as demonstrated
in Steel, Székely, and Hendy (1994). This paper showed
that there are situations in which all trees could perfectly
describe the same data, provided one can select for each
tree a corresponding distribution of rates across sites.
The model we described earlier (no common mecha-
nism) in which MP can be regarded as a Mav method
clearly would also have this nonidentifiability problem.

Even if one knows the distribution of rates across
sites, nonstationarity can also lead to a similar noniden-
tifiability phenomenon, at least for pairwise compari-
sons, as Baake (1998) has shown. Baake’s example was
particularly simple—exactly half the sites are invariable,
while the other half evolve according to the same Mar-
kov process. It is an open question whether this noni-
dentifiability of the tree is also true if one simultaneous-
ly uses all the sequence information. There are other
related problems where reducing data to pairwise infor-
mation destroys information about the underlying struc-
tural parameters. For example, Chang (1996a) showed
that for a nonstationary model (and without rates across
sites), triplewise comparisons of sequences generally
suffice to determine all of the edge parameters (i.e., rel-
ative rates of substitution between the different nucleo-
tides), but pairwise comparisons generally do not. In-
dependently, Lake (1997) also described a triplewise
technique for reconstructing these edge parameters.

The question of phylogeny reconstruction can also
be viewed from an information-theoretic perspective.
One such approach (based on the concept of Fisher in-
formation) has been presented by Goldman (1998) and
developed as a tool for experimental design. In phylog-
eny reconstruction, it is helpful to regard each site as
containing some information concerning the underlying
tree and note that this signal depends on the other un-
derlying structural nuisance parameters, such as the edge
lengths. For example, very many sites will be required
in order to reliably recover a very short internal edge,
while a very long external edge (i.e., leading to a distant
outgroup sequence) will need very many sites in order
to be correctly placed in the tree. A fundamental ques-
tion in terms of these edge lengths and the number of
sequences is, how many sites are required to accurately
reconstruct the underlying tree? Recently, this question
has been shown to have a rather surprising answer.
Namely, for simple models, if the underlying structural
parameters are sufficiently constrained, then the se-
quence length required to reconstruct the true tree can
grow even slower than the number of sequences (even
though the number of possible trees grows exponentially
with the number of sequences) (for details, see Erdös et
al. 1999). These theoretical results are relevant to recent
simulation studies (and the surrounding controversy)
suggesting that trees on large numbers of sequences can
sometimes be reconstructed from surprisingly short se-
quences (Hillis 1996; Purvis and Quicke 1997; Yang
and Goldman 1997; Graybeal 1998). The theoretical re-
sults suggest that one should be able to reconstruct large
trees from short sequences, at least for some choices of
the underlying parameters.
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One of the useful tools in the theoretical analyses
has been explicit sufficient conditions for distance-based
methods to correctly reconstruct the underlying tree. For
example, suppose one’s estimate of the evolutionary dis-
tance between each pair of sequences comes within an
error bound of x of the true evolutionary distance. Pro-
vided each edge in the underlying (true) evolutionary
tree has an evolutionary distance of at least 2x, several
standard distance-based tree reconstruction methods will
correctly reconstruct the underling tree. This was estab-
lished recently for the neighbor- joining method by At-
teson (1997).

Of course, one may not know in advance that the
internal edges are sufficiently long to be recovered. An
alternative approach is to reconstruct an edge-weighted
tree and regard two such trees as ‘‘ close’’ if the differ-
ence in their edge lengths (both shared and missing edg-
es) is small (a metric on edge-weighted trees along these
lines was suggested by Robinson and Foulds [1979]).
From this perspective, a phylogeny reconstruction cor-
responds to a point in a continuous (rather than discrete)
tree space. Probabilistic bounds on the distance in con-
tinuous tree space between the reconstructed tree and
the underlying tree can then be stated in terms of the
sequence length and the diameter of the underlying tree.
This approach has been developed by Farach and Kan-
nan (1999). One limitation in such an approach is that
the short edges are often the ones of greatest phyloge-
netic interest, since they are generally the spots exhib-
iting the uncertainty concerning the exact order of
speciation.

Other recent approaches for displaying conflicting
or uncertain phylogenetic information have included the
construction of networks (rather than trees), such as me-
dian networks (Bandelt et al. 1995), the split decom-
position methodology (Dress, Huson, and Moulton
1996), stochastic networks (Strimmer and Moulton
2000; von Haeseler and Churchill 1993), and networks
that allow for genetic events such as recombination and
horizontal gene transfer (Hein 1993; Fitch 1997).

Another approach to this problem has been to con-
struct confidence sets of phylogenetic trees (analogous
to confidence intervals). One can then apply consensus
tree methods to obtain a semiresolved tree that repre-
sents a conservative single-tree summary of this confi-
dence set (alternatively, one might apply maximum
agreement subtree techniques to obtain a more resolved
tree on a subset of the species). A different strategy for
constructing a semiresolved tree that is based on statis-
tics (rather than combinatorics) is the minimum model-
based complexity approach (Tanaka et al. 1999), which
introduces additional edges into a tree only if this leads
to a simpler statistical description of the data.

In summary, a variety of techniques are likely to
be of use, particularly in analyzing new types of data.
Such techniques will include various forms of ML and
MP along with other methods. Clearly, one must be
careful in making special claims about the ‘special sta-
tus’ of either ML or MP. The latter method may be con-
sidered a type of ML and can be appropriate for certain
types of data. Conversely, the usual (average) form of

ML can in certain settings be justified by the parsimo-
nious arguments usually reserved for MP. Even under
simple models, neither model always outperforms the
other in terms of the probability of reconstructing the
correct tree. Although MP may fail to be statistically
consistent, more is now known about when this will
occur, although there still remain several unanswered
questions.
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APPENDIX

(a) Proof of Theorem 3

Suppose the state space S has size r. For a character
f taking values in S, let c(f) denote the number of states
that are actually mentioned by f. Thus, 1 � c(f) � r.
Now, for any tree T, the parsimony score of f on T,
which we will denote as l(f, T), is at least c(f) � 1. Let

i(f, T) denote the difference between l(f, T) and c(f) �
1. That is,

i(f, T) � l(f, T) � c(f) 
 1.

Note that i(f, T) � 0 precisely if f could have
evolved on T without any parallel or convergent muta-
tions, so i(f, T) is a measure of homoplasy of the char-
acter f with respect to T. For a collection F � f1, . . . ,
fk of characters, let

k

I(F, T) � i( f , T),� j
j�1

and for an internal edge e of T, let n(f, e) � 1 provided
c(f) � 2 and f can be extended to an assignment of states
to all the vertices of T by a single mutation on edge e;
otherwise, set n(f, e) � 0. Let nmin(F, T) be the minimal
value of �j n(fj, e) across all internal edges of T. Thus,
nmin(F, T) is the smallest number of two-state characters
from F that support some internal edge. We first estab-
lish the following:

LEMMA. If nmin(F, T) � I(F, T), then MP recon-
structs T from F.

PROOF. Let L(F, T1) denote the parsimony score of
F relative to a tree T1. Then,

k k

L(F, T ) � i( f , T ) 
 (c( f ) � 1),� �1 j 1 j
j�1 j�1

and if T1 differs from T, there is some edge e in T that
induces a bipartition of the taxa not found in T1. For this
edge e, let K � �j n(fj, e). Then, K � nmin(F, T) � I(F,
T) (by our assumption in the lemma). Now, for the K
characters with n(fj, e) � 1, we have i(fj, T1) � 1, and so

k

L(F, T ) � K 
 (c( f ) � 1)�1 j
j�1

k

� I(F, T) 
 (c( f ) � 1) � L(F, T),� j
j�1

which establishes the lemma.
By this lemma, MP is statistically consistent if for

each internal edge e, the expected value of n(f, e) is
larger than the expected value of i(f, T) for a character
f generated according to the model described. Let us
(totally) order the vertices of T as v0, v1, . . . , vt in any
way that respects ancestry in the tree—that is, if vj is a
descendant of vertex vi, then i � j. Note that T has t �
2 edges and that t � 2n � 2, where n is the number of
leaves of T (we are assuming T is binary). Suppose a
character evolves on the tree from vertex v0 according
to the model specified. The probability that there is one
mutation on any particular edge and no mutations on the
remaining t � 3 edges of T is at least a(1 � b)t�3 (by
the generalized product rule, and the restriction placed
on the model). Thus, since n(f, e) is a 0/1 random var-
iable,

t�3E[n(f, e)] � P[n(f, e) � 1] � a(1 � b) .

For j � 1, let Uj be the 0/1 random variable that
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takes the value 1 precisely when the state at vertex vj is
different from the state at its immediate ancestor vertex
but equals the state at some vertex vi with i � j. Thus,
Uj � 1 precisely if the mutation on the edge leading to
this vertex describes a return to an ‘earlier’ state. If f is
the resulting character at the leaves of the tree, we have
(by induction)

t

i( f, T) � U .� j
j�1

Consequently,

t t

E[i( f, T)] � E[U ] � P[U � 1].� �j j
j�1 j�1

Now, by the assumptions of the model,

P[U � 1] � c(j � 1)/(r � 1),j

and so

t

E[i( f, T)] � c( j � 1)/(r � 1)�
j�1

� ct(t � 1)/2(r � 1).

By selecting r sufficiently large, we have E[n(f, e)]
� E[i(f, T)], as required.

(b) Proof of Theorem 3a

Let p0 denote the probability of generating an un-
varied site pattern (type xxxx, for some nucleotide x).
Let us say a pattern is of type 1 if it has lower parsimony
score on the true tree than on the other trees (in which
case the difference in parsimony score between the trees
is exactly one mutation). Thus, the type 1 patterns are
precisely those of the form xxyy (for different nucleo-
tides x, y). The two site patterns xyxy and xyyx will be
called type 2 and type 3, respectively. Note that these
are the two types of patterns that favor the other two
binary trees with respect to parsimony score.

For i � 1, 2, 3, let pi denote the probability of
generating a type i site pattern. Thus, MP is statistically
consistent on single-site data precisely if p1 � max{p2,
p3}. Now, the only k-tuples of sites that distinguish be-
tween the possible trees as far as MP is concerned are
k-tuples that consist of at least one type i site and for
which any remaining sites that are not of type i are un-
varied. Once again, in this case, the difference in par-
simony scores between the true tree and an alternative
tree is 1. The probability of generating such a k-tuple
of sites is (pi 
 p0)k � . Thus, MP is statisticallykp0

consistent if and only if

k k(p 
 p ) � p1 0 0

k k k k� max{(p 
 p ) � p , (p 
 p ) � p }.2 0 0 3 0 0

However, this inequality applies if and only if p1
� max{p2, p3}, which was precisely the condition de-
scribed above for the statistical consistency of MP.

(c) Proof of Theorem 4
Suppose the underlying substitution process can be

described by a reversible, stationary Markov process
coupled with a distribution of rates across sites (this is
broad enough to encompass most of the models in cur-
rent use). In this case, the expected Hamming distance
dij between two sequences can be written as dij � �(Kij),
where Kij is the expected evolutionary distance (number
of mutations that occurred on the path in the tree con-
necting the sequences) and � is a monotone increasing
function (Tuffley and Steel 1997a, eq. 4). Now, if a mo-
lecular clock applies, then K � [Kij] satisfies the ultra-
metric criterion (i.e., Kij � max{Kij, Kil, Kjl} for all i, j,
k), and so does any montone increasing function of K,
in particular, d � [dij] satisfies the ultrametric criterion
and thus is additive on the true tree.

(d) Proof of Theorem 5
For k fixed, P1(k) and P2(k) are both continuous

functions of �. Consequently, their limiting values as �
converges to 0 are identical to their values if we put �
� 0, and we will assume � � 0 in the calculations that
follow. Then, the symmetric two-state model produces
just four (of the eight possible) types of patterns, each
with equal probability. If we order the taxa as abcd (and
recall that the tree groups a and b vs. c and d), these
four patterns are xxxx, xxxy, xxyx, and xxyy. Note that
only the last one contributes unequally to the parsimony
score of the three trees—it favors the true tree and pe-
nalizes the other two. Consequently, P1(k) is the prob-
ability that this pattern occurs at least once, which, by
the independence assumption between characters and el-
ementary probability, is simply 1 � (3/4)k.

Regarding P2(k), note that when � � 0, the xxxx,
xxxy, xxyx, and xxyy patterns occur at any site with equal
probability, namely, 1/4. On the true tree (ab � cd), and
for such randomly generated data D, let pa(D), pb(D),
pc(D), pd(D), and p5 denote an assignment of mutation
probabilities to the edges incident with taxa a, b, c, and
d and the central edge, respectively, so as to maximize
the probability of generating D. For any data D con-
sisting of just the four patterns described, pa(D) � pb(D)
� 0. Let E be the event that D, generated as described,
is such that max{pc(D), pd(D)} � 0.5 (note that these
probabilities are constrained to lie in the interval [0,
0.5]), and let p denote the probability of event E. Then
it can be shown that

p � 0.5.
Now, when E occurs, we could place appropriate

mutation probabilities on the edges of either of the two
alternative trees to obtain the same likelihood score, and
so our probability of recovering the true tree would be 1/
3 (assuming ties are broken randomly). So, when � � 0,

1 2
P (k) � (1 � p) 
 1 
 p 
 � ,2 3 3

since p � 0.5, as required.
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