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Abstract

Molecular evolutionary rate estimates have been shown to depend on the time period over which they are estimated. Factors
such as demographic processes, calibration errors, purifying selection, and the heterogeneity of substitution rates among sites
(RHAS) are known to affect the accuracy with which rates of evolution are estimated. We use mathematical modeling and
Bayesian analyses of simulated sequence alignments to explore how mutational hotspots can lead to time-dependent rate
estimates. Mathematical modeling shows that underestimation of molecular rates over increasing time scales is inevitable when
RHAS is ignored. Although a gamma distribution is commonly used to model RHAS, we show that when the actual RHAS
deviates from a gamma-like distribution, rates can either be under- or overestimated in a time-dependent manner. Simulations
performed under different scenarios of RHAS confirm the mathematical modeling and demonstrate the impacts of
time-dependent rates on estimates of divergence times. Most notably, erroneous rate estimates can have narrow credibility
intervals, leading to false confidence in biased estimates of rates, and node ages. Surprisingly, large errors in estimates of overall
molecular rate do not necessarily generate large errors in divergence time estimates. Finally, we illustrate the correlation between
time-dependent rate patterns and differential saturation between quickly and slowly evolving sites. Our results suggest that data
partitioning or simple nonparametric mixture models of RHAS significantly improve the accuracy with which node ages and
substitution rates can be estimated.
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Introduction
Increasingly large genetic datasets are becoming available to
estimate the pattern and timing of evolutionary divergences
among organisms. However, since the molecular clock hy-
pothesis was first proposed in the 1960s (Zuckerkandl and
Pauling 1962), numerous concerns have been raised about
the estimation of molecular rates (Kumar 2005; Pulquerio and
Nichols 2007). Considerable methodological improvements
have also been made, such as the implementation of more
biologically realistic yet computationally tractable models
that accommodate changes in substitution rates along line-
ages, also known as “relaxed clocks” (e.g., Thorne et al. 1998;
Huelsenbeck et al. 2000; Drummond et al. 2006).

In recent years, it has become apparent that substitution
rate estimates are strongly related to the timescale over which
they are measured and appear to vary systematically with the
time point(s) chosen to calibrate a phylogenetic analysis
(Parsons et al. 1997; Lambert et al. 2002; Howell et al. 2003;
Ho et al. 2005, 2011). For a given locus or taxon, rate estimates
for short time periods (e.g., within species) are typically far

higher than rate estimates for long time periods (e.g., between
species and higher taxa) (Ho and Larson 2006). This
time-dependent pattern (shown in fig. 1) has important con-
sequences for the estimation of evolutionary timescales using
molecular data. For example, the use of the human–chim-
panzee divergence date to calibrate estimates of the
time-scale of human dispersals has been shown to produce
underestimates of the molecular rate, leading to overesti-
mates of the age of migration events (Ho and Endicott
2008; Henn et al. 2009; Soares et al. 2009). Accordingly, it is
recommended that calibration points should be selected ac-
cording to the time-scale of interest (Ho et al. 2008) or that a
correction be applied to estimates of mutation rates (Soares
et al. 2009; Gignoux et al. 2011).

Several potential explanations have been suggested for
time-dependent rates. For example, purifying selection (Ho
et al. 2005; Woodhams 2006; Subramanian et al. 2009) and
demographic events (Henn et al. 2009; Balloux and Lehmann
2011) have both been shown to contribute to such a pattern,
but without individually being able to explain the full extent
of time-dependent rates. A recent review summarized a wide
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range of possible contributing factors to this phenomenon
including natural selection, calibration errors, model misspe-
cification, and a number of other artifacts (Ho et al. 2011).
The authors concluded that untangling all these factors con-
currently would be a complex exercise, and thus making it
difficult to correct explicitly for time-dependent rate esti-
mates. Therefore, specific studies are needed to characterize
and quantify the impact of each potential cause.

In this study, we analyse the effect of mutational hotspots,
and more generally the impact of strong rate heterogeneity
among sites (RHAS), on estimates of overall substitution rates
and divergence times. It is well known that some positions of
an alignment evolve at a substantially faster rate than others,
and the impact of this among-site rate variation on phyloge-
netic reconstruction have been clearly demonstrated (Yang
1996; Simon et al. 2006). For example, hotspot positions have
been described in the mitochondrial genome, which is one of
the most commonly used genetic markers, for a wide range of
organisms. Mitochondrial site-specific rates are well described
and exhibit up to 1,000-fold difference between the fastest
and slowest evolving positions (Galtier et al. 2006; Kjer and
Honeycutt 2007; Rosset et al. 2008; Song et al. 2010).
Interestingly, these mutational hotspots are distributed
throughout the mitochondrial genome (including protein-
coding genes, RNA genes, and noncoding regions) and are
not limited to the least constrained parts such as the D-loop
(Meyer and von Haeseler 2003). However, while RHAS has
been put forward as a potential explanation for the time
dependence of rates (Ho et al. 2005, 2007; Galtier et al.
2006; Henn et al. 2009), this has not been validated theoret-
ically and the effects on molecular estimates of divergence
times remain poorly explored.

The most common approach to account for RHAS while
performing phylogenetic inference is to model site-specific
rates using a gamma distribution. In such cases, the continu-
ous distribution of site-specific rates is discretized into a
predefined number of rate categories where the mean is set
to 1.0 and the variance characterizes the rate variability. The
probability of each site being associated with a rate category
and the shape parameter of the distribution are then

estimated from the data (Yang 1994). However, more general
mixture-models have recently been shown to outperform the
discrete gamma model, particularly when multi-modal het-
erogeneity is present (Lartillot and Philippe 2004; Pagel and
Meade 2004; Huelsenbeck and Suchard 2007). These mixture
models do not involve the use of a parametric framework,
which means that the estimated site-specific relative rates
and frequencies are not constrained by any prespecified dis-
tribution. For example, Huelsenbeck and Suchard (2007) pro-
posed the use of a Dirichlet process prior, which, unlike the
discrete gamma model, does not assume a fixed number and
distribution of rate classes.

Using theoretical arguments and Bayesian analyses of
simulated sequences, we demonstrate that among-site rate
heterogeneity by itself can produce a time-dependent pattern
in overall rate estimates. Furthermore, we describe the
consequences of such bias on age estimates obtained using
phylogenetic methods. We also demonstrate that, contrary to
expectations, increased mutational saturation does not in-
variably lead to increasingly biased estimates of divergence
times.

Materials and Methods

Mathematical Model

Mathematical analyses were performed to analyse the effects
of different models of among-site rate variation (e.g., a gamma
distribution or a single-rate model) on the estimation of over-
all substitution rates, when sequences evolve under a multi-
modal rate model that allows for “hotspots” and other rate
classes. The “equal input” substitution model has been
chosen for convenience. For four-state sequences (e.g., DNA
sequences), this model is termed the Felsenstein 1981 (or
Tajima-Nei) model (Felsenstein 1981). It is more general
than the Jukes-Cantor model (Jukes and Cantor 1969) be-
cause it allows base frequencies to be arbitrary (thus it has
three parameters for nucleotide data or 19 for amino acid
data), yet the model is simple enough to allow an exact
mathematical analysis.

Let �t denote the evolutionary distance (the expected
number of substitutions, per site) between the two sequences
that are separated by time t. If sites undergo substitution at a
rate that is constant with time (but possibly variable across
sites) then �t ¼ �t, where� is the average rate per site. More
generally, if the instantaneous substitution rate depends on
time, and if rðsÞ denotes the instantaneous substitution rate
(averaged across sites) at time s, then �t ¼

R t

0 rðsÞds. Thus, by
the fundamental theorem of calculus, the evolutionary rate
(averaged across sites) at any time is given by

rðtÞ ¼
d�t

dt
: ð1Þ

Consider the probability p that a site has different states in
the two sequences (i.e., the expected proportion of sites in
different states). If there is no variation of rates across sites
(though the rate may vary with time) the relationship be-
tween p and �t is given by
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FIG. 1. Plot showing the time-dependent pattern of molecular rates.
Rate estimates (in substitution per site per million year, s/s/My) decrease
proportionally to the time period over which they are estimated.
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p ¼ �½1� expð��t=�Þ�,

where � ¼ 1�
P

i �
2
i , for the frequencies� of the states (see

e.g., Semple and Steel 2003). For instance, for the Jukes-Cantor
model, for which �i ¼

1
4 for all four bases, we have � ¼ 3=4,

and p ¼ 3
4 ½1� expð� 4

3 �tÞ�.
Now, suppose that sites evolve at various rates (e.g., at one

extreme, each site might have its own intrinsic rate, or the
sites might fall into classes of given rates determined by se-
quence position, structure, or function). We refer to this as
the underlying “generating process” denoted by G. We
assume that the overall substitution rate of this generating
process does not vary with time (it only varies across sites)
and so for this process, (G) the function rðtÞ given by equation
(1) is constant. Let � denote the average substitution rate
across sites, 0 � r1 � � � � � rn denote relative substitution
rates (i.e., absolute rate divided by �), and �i > 0 denote the
proportion of sites that evolves at rate i. Thus, �i proportion

of sites evolves at absolute rate�ri, and
Pn
i¼1

�i ¼ 1 ¼
Pn
i¼1

�iri:

Under this mixture generating process, the expected pro-
portion p of sites in different states between the two se-
quences is given by p ¼ gðtÞ where

gðtÞ :¼
Xn

i¼1

�i�½1� expð��rit=�Þ�: ð2Þ

Notice that, for the generating process, the evolutionary
distance is just �t ¼ �t, and so we can rewrite equation (2) as

p ¼
Xn

i¼1

�i�½1� expð��tri=�Þ�: ð3Þ

Now, suppose sequences evolve under the generating pro-
cess (G), but we use the sequence dissimilarities to estimate
evolutionary distance by correcting them according to a
second model M. We will refer to M as the “correction
model.” We will assume that M is the same as G except for
the way rates across sites are distributed.

If we estimate the evolutionary distance �t between two
sequences by taking the proportion p̂ of sites at which those
two sequences differ and then correct p̂ according to some M,

then we will let �̂t denote this estimated evolutionary dis-
tance. We will mostly assume that the correction model is a
mixture of discrete rates, because implementations of contin-
uous distributions such as the Gamma distribution typically
treat this as a discrete (binned) distribution; however, the
results that follow have a parallel treatment in the continuous
case in which weighted sums are replaced by integrals with
respect to the distribution of rates across sites, as described
further in the Appendix.

In a discrete correction model, if r01, . . . , r0n0 denote the
relative rates and �0i > 0 their frequencies, then we can esti-
mate �̂t from p̂ by solving the equation:

p̂ ¼ f ð�̂tÞ :¼
Xn0

i¼1

�0i�½1� expð��̂tr
0
i=�Þ�: ð4Þ

Note that the number of classes in the correction model M
can differ from the generating process G. Also, the r0i values

are relative rates and so we have
Pn0
i¼1

�0i r
0 ¼ 1, as before for G.

Allowing r1 ¼ 0 or r01 ¼ 0 (or both) allows for a class of
invariable sites in the generating or correcting model,
respectively.

Now, suppose sequence data are generated by the original
generating process G. As the sequence length increases, the
observed proportion of sites at which two sequences differ p̂
will converge to its expected value p determined by equation
(3). Thus, from equation (4), the estimated evolutionary dis-
tance �̂t between any two sequences obtained by using the
correction model M will converge (as the sequence length
grows) to the solution of the equation:

f ð�̂tÞ ¼ gðtÞ: ð5Þ

We refer to the graph of r̂ðtÞ ¼ d�̂t

dt against t as the (esti-
mated) “rate curve.” By equation (1), r̂ðtÞ describes how the
instantaneous substitution rate must vary in the correction
model M in order for the expected sequence dissimilarities to
match their expected values under the process G that gener-
ated the sequences (and for which the substitution rate does
not change with time). Note that r̂ðtÞ differs from the asso-
ciated rate function for G, which is simply rðtÞ ¼ � (eq. 1),
because G and M have different distribution of rates across
sites. This difference will usually lead to a nonlinear depen-
dence of �̂t on t via equation (5), and thus a time-varying
derivative (i.e., r̂ðtÞ will vary with time, unlike rðtÞ).

In a discrete correction model, we have from equation (4):
f ðxÞ ¼

Pn0

i¼1 �
0
i�½1� expð�xr0i=�Þ�, which defines �̂t as a

function of t as the solution to the equation �̂t ¼ f�1½gðtÞ�
(provided this solution exists). Thus, the associated rate curve
is given by differentiating both sides of equation (5) to obtain
f 0ð�̂tÞ �

d�̂t

dt ¼ g0ðtÞ (where f 0ð�Þ denotes the derivative of f
with respect to *). Consequently, from equation (1), we have

r̂ðtÞ ¼
g0ðtÞ

f 0ð�̂tÞ
¼

g0ðtÞ

f 0ff�1½gðtÞ�g
: ð6Þ

This flexible mathematical framework allows exploration
of overall rates over time for a wide range of generating pro-
cesses (G) and correction models (M). For example, suppose
the correction model (M) assumes a single rate process. In this
case, we have f ðxÞ ¼ � 1� exp �x=�ð Þ½ �, f 0ðxÞ ¼ exp �x=�ð Þ

and f�1ðxÞ ¼ ��log 1� x=�ð Þ. Thus, f 0 f�1ðxÞ
� �

¼ 1� x=�
and so equation (6) becomes

r̂ðtÞ ¼
g0ðtÞ

1� gðtÞ=�
: ð7Þ

To specialize further, suppose that sites are generated
under a two-rate process (90% of sites at a “slow” rate 0:1
and 10% at a “fast” rate 1:0) but that the correction model
assumes a single rate process. The avarege substitution rate in
the generating process is � ¼ 0:9� 0:1+0:1� 1:0 ¼ 0:19,
and equation (7) gives

r̂ðtÞ ¼ � �
0:9r1expð��r1t=�Þ+0:1r2expð��r2t=�Þ

0:9expð��r1t=�Þ+0:1expð��r2t=�Þ
:
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In this formula, r1 and r2 are the relative rates
(r1 ¼ 0:1=0:19, r2 ¼ 1:0=0:19) and the rate curve starts at
� ¼ 0:19, but decays toward 0.1 as t grows. This rate curve is
shown in figure 2 (curve III); notice that the parameter � only
affects the scale of the time axis and not the shape, intercept
or asymptote of the rate curve.

Simulations

Simulated DNA datasets were used to explore the impact of
RHAS on inferred rates and node ages. Given the results from
the mathematical exploration and the potentially large pa-
rameter space, the proportion of fast sites was fixed at 10% for
the two main scenarios (table 1). The first scenario, Scenario 1,
has fast substitution rates overall (rates of 100 and 0.1 substi-
tutions/site/My) and a large ratio between fast and slow rates
(1,000:1). This extreme case of RHAS was chosen to exacer-
bate the phenomenon of interest, making the consequences
more readily quantifiable. Scenario 2 has slower substitution
rates overall and a smaller ratio between fast and slow rates
(1.0 and 0.01 substitutions/site/My; rate ratio of 100:1). This
second scenario represents more biologically realistic rate
heterogeneity, being similar to that observed in, for example,
mitochondrial sequences (supplementary material, Supple-
mentary Material online).

Nucleotide sequence evolution was simulated on known
trees using a strict molecular clock. First, 10-taxon trees were
simulated by sampling from a coalescent prior, with constant
population size of 100,000 individuals, using the program
BEAST v1.6 (Drummond and Rambaut 2007). The ages of
four nodes of interest were constrained to 5, 10, 20, and
50% of the total tree height (as shown in fig. 6B). The remain-
ing portion of each tree was generated randomly under the
coalescent.

Each tree was then rescaled to 15 different heights, with
root ages ranging from 1,000 years to 50 My (1, 2, 5, 10, 20, 50,
100, 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000, and 50,000
thousand years) for Scenario 1, and from 5,000 years to 200
My for Scenario 2. Scaling the same phylogenetic tree for each
of the 15 analyses enables us to evaluate directly the influence
of timescale on estimates of overall rates and node ages.
Setting the root of each tree at different depths allows us
to study the potential time dependence of these parameters.

Simulations from Scenario 1 and Scenario 2 were replicated
10 times (i.e., using 10 different trees). The constant-size co-
alescent prior, from which the starting trees were sampled,
models the evolutionary process at the population level. This
model is biologically relevant for relatively short time-scales,
but is less realistic over some of the longer time periods stud-
ied here. Therefore, we based an additional replicate on trees
generated using the Yule process, which offers a more realistic
model of the branching process at the species level (supple-
mentary material, Supplementary Material online). Consider-
ing the simplicity of the simulation scenarios (with only
fast- and slow-evolving sites with a large difference between
the two rates), we performed additional simulations that
included sites with an intermediate substitution rate
and a reduced rate ratio. In this particular scenario, 25% are

“fast” sites evolving at 1.0 substitutions/site/My, 25% are “in-
termediate” sites at 0.5 substitutions/site/My, and 50% are
slow sites at 0.1 substitutions/site/My (giving a fast:interme-
diate:slow rate ratio of 10:5:1).

We used Seq-Gen (Rambaut and Grassly 1997) to simulate
sequence evolution under the HKY85 model of nucleotide
substitution (Hasegawa et al. 1985) with a transition/trans-
version ratio of 1 (�= 2) and equal nucleotide frequencies.
Two subsets of data were simulated for each alignment, one
comprising 9,000 slow-evolving sites and another comprising
1,000 fast-evolving sites, using the substitution rates described
earlier for each scenario. The two subsets were concatenated
to produce alignments of 10,000 sites.

Sequence alignments were analysed using BEAST v1.6.
Based on the simulated values, we chose to place a strong
narrow prior on the root height to remove the effects of
calibration uncertainty. This was done by specifying a
normal prior centered on the simulated root height, with a
small standard deviation (0.1% of the mean). The substitution
model and the ratio of transitions to transversions were
chosen to match those used in the simulation process. Each
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FIG. 2. Mathematical exploration of the impact of various correction
models on inferred rates when the generating model considers a pro-
portion of fast sites of 10% and a fast:slow rate ratio of 1:0.1. Correction
using the true generating model leads to a constant rate curve (curve I).
However, correcting with a model that assumes only a single rate class
leads to a rate curve that declines toward the lowest of the two rates,
that is, 0.1 (curve III). Intermediate between these is the rate curve when
correcting using a continuous gamma distribution with shape param-
eter 1, leading to the “U-shaped” (curve II). Further decrease of the
gamma distribution shape parameter results in a curve that increases for
all t> 0. See text (and Appendix) for further details.

Table 1. Details about the Two Scenarios Used for Sequence
Simulation.

Rate (s/s/My) Rate Ratio

Fast Sites Slow Sites

Scenario 1 100 0.1 1000:1

Scenario 2 1 0.001 100:1
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analysis was performed with and without a model allowing
gamma-distributed rates among sites, with four discrete rate
categories. The length of the Markov chain Monte Carlo was
set to 100,000,000 steps, with samples drawn every 10,000
steps. The results were processed with Tracer v1.5
(Rambaut and Drummond 2007) to check that each sampled
parameter had an effective sample size over 100. The default
10% burn-in was adjusted by hand where necessary to ensure
sampling from the stationary distribution only.

To replicate the analysis performed with BEAST, we used
the software PhyTime (from the PhyML package, Guindon
2010), which implements a Bayesian approach to estimate
divergence times on a fixed tree topology. PhyTime was
applied for Scenario 1, both with and without gamma-
distributed rates among sites (supplementary material,
Supplementary Material online).

In addition, PhyTime allowed the implementation of a
mixture model in which the relative rates and the corre-
sponding class frequencies are directly estimated from the
data rather than being forced to conform to a parametric
distribution such as the discrete gamma. We term this model
the “FreeRate model,” and two classes of rate were defined a
priori to fit the simulation scenario. More precisely, when
taking a parametric approach by using a discrete gamma
distribution for modeling RHAS, values of the relative rates
and the corresponding frequencies are all determined by the
shape parameter of the gamma density. Hence, characterizing
the variability of rates among sites amounts to estimating this
shape parameter. A simple extension to this model involves
abandoning the parametric framework. We assume instead
that the relative rates and frequencies of the mixture model
do not have to match any pre-specified distribution. Each rate
and frequency is then directly estimated from the data.
While such approach comes at the price of an increase in
the number of parameters to estimate compared with the
gamma distribution (one for gamma against 2c-2 for the non
parametric technique with c classes of relative rates), it pro-
vides a more flexible description of the RHAS.

We give below a more detailed description of the FreeRate
model of RHAS. The likelihood at site s given the tree topol-
ogy t, a vector of branch lengths L and a rate matrix Q is

pðDsj�, L, QÞ ¼
Xc

i¼1

pðDsj�, L� ri, QÞfi,

where ri is the relative rate for class i and fi is the correspond-

ing frequency. We have
P

i

fi ¼ 1 and
P

i

firi ¼ 1. Bayesian

estimation of fis and ris requires to specify the joint prior
p(f, r), where f and r are the vectors of fi and ri values, respec-
tively. In its current implementation in PhyTime, this prior is
uniform.

In practice, sampling values of f and r from their posterior
density cannot be done by applying a standard
Metropolis-Hastings step to each element in these vectors
successively. Indeed, changing one value in f or r would violate

the two constraints
P

i

fi ¼ 1 and
P

i

firi ¼ 1. A solution

here is to introduce new variables. We first have

fi ¼ ðyðiÞ � yði�1ÞÞ=yc, where y(i) is the ith order statistic of y
(with i = 1 . . . c and y(0) = 0) and the yis are independent and
identically distributed random variables. The second variable,

z, is such that
Pc

i

fizi ¼ K, where the zis are independent and

identically distributed random variables and ri = zi/K. Each
element in y and z is then updated successively using
Metropolis-Hasting. The Hastings ratio for the proposal on
the variables of interests, that is, f and r is derived by account-
ing for the change of variables between y and f and between z
and r.

Saturation Analysis

Mutational saturation in the simulated sequences was as-
sessed for the different root ages by plotting observed (uncor-
rected pairwise) against inferred genetic distances (Philippe
et al. 2004). The uncorrected distances were obtained using
the Dset command in PAUP 4.0b10 (Swofford 2003). Inferred
distances were obtained using the APE module in R (Paradis
et al. 2004; R Development Core Team 2011) to extract
patristic distances from phylogenetic trees. The trees were
inferred with the software PhyML (Guindon and Gascuel
2003), using the HKY85 substitution model. To quantify the
degree of saturation, a linear regression model with zero
intercept was fitted for each plot, the slope representing
the degree of saturation (Jeffroy et al. 2006). The slopes for
the concatenated subsets, and both the fast and slow site
subsets, were compared through time (all plots are given in
the supplementary material, Supplementary Material online).

Results and Discussion

Mathematical Model

The mathematical model was used to show the time-
dependent rate pattern when the correction model differed
from the generating model, and parameter exploration shows
the limitations of the correction models based on a gamma
distribution (fig. 2). More specifically, Curve I in figure 2 illus-
trates the case where the generating process G is the same as
the correction model M [note that in equation (7) r̂ð0Þ ¼ �],
then gðtÞ ¼ f ð�tÞ and �̂ ¼ � ¼ �t so r̂ðtÞ ¼ �, as expected
[this can be seen directly from equation (1) or derived from
equation (6)]. In contrast, if a single rate is assumed for the
correction model but the sequences are actually generated
under a F81 model with 90% of the sites slow (rate 0.1) and
10% of the sites fast (1.0), then r̂ðtÞ starts at the rate 0.19
(¼ �) and drops toward 0.1 as time increases (Curve III in
fig. 2; as described above).

These examples are part of a more general result, given as
Theorem 1 below, that describes the behavior of the rate
curve for small and larger values of t. The results demonstrate
that the rate curve can take on a variety of shapes, depending
on both the variation in rate classes and the smallest rate
classes in G and M. In particular, not only can the rate curve
change toward a new asymptote, but also it can be a
“U-shaped” curve (fig. 2, curve II) or a curve that initially
decreases then increases toward a higher asymptote (or, con-
versely, initially increases and then approaches a lower
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asymptote). These results are summarized in the theo-
rem below, with the formal proof provided in the Appendix.

Theorem 1
a) The rate curve r̂ðtÞ initially decreases (i.e., its slope is

negative at t ¼ 0) if and only if the variance of the
relative rates of the generating process is greater than
the variance of the relative rates of the correcting
model.

b) As t continues to increase, the rate curve r̂ðtÞ con-
verges to some nonzero rate, decays to zero, or tends
to infinity, depending on the relative rates of the gen-
erating process G and the correction model M. In par-
ticular, as t grows:
i) If G has more than one rate class and M has a

single rate class, then the rate curve converges to
the smallest nonzero absolute rate in G;

ii) More generally, if both G and M. have discrete rate
classes and no invariable sites, then the rate curve
converges to �r1=r01;

iii) If G has discrete rate classes, and no invariable
sites, and if the rates in M follow a continuous
gamma distribution, then the rate curve tends to
infinity;

iv) If G or M (or both) has invariable sites, then if
there are fewer invariable sites in M than in G, the
rate curve tends to zero; while if there are more
invariable sites in M than G, then the rate curve
tends to infinity as t approaches a sufficiently
large (but finite) value.

Part (a) shows immediately why the two-rate mixture gener-
ating function will always lead to an initial decline in the rate
curve when corrected under a single class (as in the earlier
example), since the relative rates have positive variance in the
generating process but zero variance in the correction model.
Note also that a comparison of claims (ii) and (iii) of Part (b)
reveals that a continuous gamma correction model behaves
fundamentally differently from a discretized version (regard-
less of the number of bins) at sufficiently large time scales.
Part (iv) of (b) also shows that infinite rates can be achieved at
finite values of t, and beyond this vertical asymptote, equation
(5) has no solution because there are simply insufficient var-
iable sites available in the correction model to match the
generating process.

We then used the mathematical model to explore the
impact of changes in the proportion of fast sites, and in the
ratio of fast to slow rates, on the time dependence of overall
rates, when no correction is used to account for RHAS (fig. 3).
The time-dependent underestimate of the rate is shown to be
more pronounced both when the proportion of hotspots
increases (fig. 3A), and when the ratio between fast and
slow rates increases in the data (fig. 3B).

Simulations

To understand the impact of among-site rate heterogeneity
on the time dependence of molecular rates, we first discuss

Scenario 1 (overall fast rates and high rate ratio). By simulating
sequences on the same tree topology and relative branch
lengths, we can directly compare the inferred overall rate
and age estimates between trees of 15 different depths
(i.e., root ages). Results from 1 of the 10 tree topologies
used in this study are presented in figures 4 and 6 as an
illustration of the time-dependent patterns. Results from all
10 topologies are compared in supplementary material,
Supplementary Material online.

Rates Estimated with and without a Gamma Model
As previously shown by the mathematical analysis, when
the model does not correct for among-site rate heterogeneity

A

B

FIG. 3. Mathematical exploration of the relationship between diver-
gence time, actual substitution rate, and inferred rate from the math-
ematical model. (A) Rates for various proportions of fast sites, when the
ratio of fast to slow rates is 1,000. (B) Rates for various ratios of fast to
slow rates, when the proportion of fast sites is fixed at 10%. * represents
the parameter values chosen in subsequent simulations.
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A

B

FIG. 4. Relationship between simulated and inferred substitution rates and node ages. (A) Rate estimates reported for 15 trees of varying root age,
and their relationship to the real rates. The pink curve represents the rates calculated mathematically using the same rates, rate ratio, and proportion
of fast sites as those used for simulation. (B) Ratio of the estimated to expected (simulated) node ages for the node placed at 5% of the root age on
the simulated tree. For both graphs, the empty shapes mark the absence of admixture (nonconvergence) for at least one parameter of the Bayesian
analysis.
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(no gamma), the overall rates inferred from the simulated
alignment are underestimated in a time-dependent pattern
(red curve in fig. 4A). In that situation, the correct rate is
recovered only for the shallowest tree, with a root age of 1
ky (“correct” means the simulated rate was included within
the 95% highest posterior density interval of the inferred rate).
To show the correlation between the theoretical results and
the phylogenetic inferences, the curve calculated mathemat-
ically with the same parameters is plotted on the same graph
(pink curve in fig. 4A).

When a gamma distribution is used to model the RHAS,
the correct rate is recovered for only 4 of the 15 trees, but the
pattern of the bias is completely different (blue curve in
fig. 4A). For the four shallowest trees (root ages 1–10 ky),
we observe a similar pattern to the noncorrected curve but
with reduced underestimates, showing that the gamma
model is improving rate inferences at this stage. When the
root age is 20 ky, this trend is reversed and the curve turns
upwards, with large rate overestimates until the root age
reaches 2 My. A second inversion appears at 5 My, leading
to rate underestimates in the four deepest trees (root ages>5
My). For the two deepest trees (root ages 20 and 50 My), the
BEAST analyses did not converge (effective sample sizes
<100, empty shapes in fig. 4A); at the simulated rate of evo-
lution, these sequences are completely saturated (see text
below and fig. 5). They are presented on the graphs to
show the limit of analyzable alignments, delimiting the time
range for which phylogenetic signal is present in the simulated
sequences.

Saturation

Saturation is the principal cause of degradation of the phylo-
genetic signal through time. To investigate more thoroughly
the presence of signal in the sequences, the saturation level
for each of the alignments generated on the 15 simulated
trees is depicted in figure 5 (and supplementary figure 10,
Supplementary Material online). Three examples of satura-
tion plots from the concatenated alignments are shown in
figure 5A. At a root age of 5 ky, there is almost no sign of
saturation, whereas at a root age of 0.5 My (i.e., 500 ky), a low
level of saturation starts to appear (i.e., an observed distance
of 15% can correspond to an inferred genetic distance of 20–
30%). The sequences are completely saturated at a root age of
50 My.

The saturation levels at all root ages are compiled in
figure 5B, either for the concatenated alignment (dashed
line) or both subsets individually (plain lines). This last
figure shows the importance of the differential saturation
between the fast and slow subsets of the alignment through
time. The fast sites become completely saturated from 50 ky,
whereas the slow sites start to present signs of saturation�1
My, to reach full saturation at 50 My. Consequently, the
concatenated sequences present an intermediate saturation
pattern, approaching a plateau between 50 ky and 2 My.
Interestingly, the time frame of this plateau, corresponding
to the highest degree of differential saturation between fast
and slow sites, matches the time frame of strong rate

overestimation when a gamma distribution is used (blue
curve in fig. 4A). Furthermore, and importantly, this maxi-
mum differential saturation matches the time frame over
which there were greatest errors in node age estimates,
driven by errors in estimating relative branch lengths, as dis-
cussed later.

For two trees (root ages 1 and 2 My), when the gamma
distribution was used, both the gamma shape parameter and
the mean rate failed to converge (effective sample sizes <10,
empty shapes on fig. 4A). It is important to note that this
convergence issue is not observed with PhyTime (see text
below and supplementary fig. 6, Supplementary Material
online). As all the other parameters of the analysis converged
satisfactorily, it appears that the difficulty in estimating the
shape parameter of the gamma distribution is related to
the observed convergence issue. Each change in the pattern
of the rate estimates corresponds to a change in the inferred
shape parameter (supplementary fig. 9, Supplementary
Material online). This suggests that the ability of the program
to estimate correctly the shape of the gamma distribution is
related to the observed pattern of time-dependent rate
estimates.

Consequences for Molecular Estimates of Divergence Times
The primary aim of molecular-clock analysis is often the
dating of divergences in a tree, rather than estimating the
average substitution rate. When the ages of calibrating
nodes are known accurately, as in these analyses, accurate
estimation of relative branch lengths will be sufficient for
accurate divergence dating. Therefore, to observe the conse-
quences of the time-dependent rate estimates on relative
node heights, the inferred ages of the nodes are contrasted
with the actual (simulated) dates.

The results for the node initially set at 5% of root age are
presented first as an example in figure 4B. When among-site
rate variation is not modeled (no gamma, red curve), the
correct node age is retrieved for only 4 of the 15 tree
depths. For shallower trees (root age 1 ky to 0.2 My) the
5% node age is gradually overestimated, reaching 7.9 times
its expected value at 0.2 My; this node is expected to be 10 ky
old, but has an inferred age of 73–84 ky. Because the correct
age of the 100% (root) node is always used as a calibration, the
overestimate of the age of the 5% node cannot be simply due
to a general underestimation of evolutionary rate across the
entire tree. Rather, it demonstrates that the relative branch
lengths in the inferred tree are distorted, with basal branches
being shortened in comparison to the branches near the tips
(see below).

Surprisingly, for trees with root ages of 0.5 to 50 My, the
bias in age estimation is reduced. Although overall rates are
increasingly underestimated, the age of the 5% node is more
accurately inferred. The correct age for the 5% node is esti-
mated for the two shallowest trees, which show the least
saturation (1 and 2 ky), and for the two deepest trees,
which show the most saturation (20 and 50 My) but for
which the differential saturation is at a minimum (fig. 5B).
The 5% node described here presents the biggest bias, because
it is furthest from the calibration point (root), but all four
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A

B

FIG. 5. Saturation estimates from the simulated sequences. (A) The level of saturation was estimated by comparing the genetic distances inferred from a
ML tree (X axis) to the pairwise distances directly observed from the sequences (Y axis). To quantify the phenomenon, we use a linear regression
through the origin (dashed line): the lower the slope, the more saturated the sequences. The diagonal (black line) represents the ideal “no saturation”

state. Note that both axes vary in scale across the three plots. (i) At 5 ky, there is almost no sign of saturation, whereas (ii) at 0.5 My, we start to observe a
low level of saturation (i.e., an observed distance of 0.15 can correspond from 0.20 to 0.30 inferred genetic distance). (iii) At 50 My, the sequences are
completely saturated. (B) The slope values, representing the degree of saturation of the sequences, are reported for the concatenated alignments
(dashed line) and for both fast and slow subsets (plain lines).
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nodes, fixed in the tree used for simulation, show the same
pattern (fig. 6A): for shallower trees, all branches are less sat-
urated, and for deeper trees, all branches are highly saturated.
In the latter case, even though the overall evolutionary rate is
underestimated, relative branch lengths across the tree are
not greatly distorted. At intermediate ages, the largest dating
errors occur, due to the strongest differential saturation
across branches: the recent branches are far less saturated
than the deeper branches, resulting in greatly distorted rela-
tive branch lengths.

When a gamma distribution is used to model RHAS, the
correct node age is inferred for 7 of the 15 trees (blue curve in
fig. 4B). Between 1 and 20 ky, the estimates follow the ten-
dency described earlier when no gamma distribution was
used, showing a gradual overestimation of the node ages.
Between 50 ky and 0.5 My, the correct value is inferred
(with large uncertainty for the 50 ky calibration), despite sub-
stantial overestimation of the rates. For trees of these ages, the
use of a gamma distribution appears to be efficiently recov-
ering the correct tree proportions even in this extreme situ-
ation of among-site rate heterogeneity. For trees with root
calibrations deeper than 1 My, the node ages are consistently
underestimated. There is an extreme case at 5 My, where the
5% node is simulated to be 250 ky old but is inferred to be
between 12 and 26 ky. Importantly, this is not one of the two
analyses for which the Markov chain failed to converge for the
rate and the shape parameter of the gamma distribution,
potentially leading to false confidence in the pattern of bias.
In agreement with the results from the overall rate estimates,
trends in the estimation of node ages with increasing tree
depth appear to change when the estimated shape parameter
of the gamma distribution is changing abruptly.

We can compare the consequences of the time-dependent
rate estimates on the estimates of node ages at different
depths in the trees (5, 10, 20, and 50% of the basal node;
respectively colored in orange, purple, blue, and green in
fig. 6). When among-site rate heterogeneity is not modeled
using a gamma distribution, the largest overestimation is ob-
served for the younger nodes (fig. 6A) showing a correlation
between the distance from the calibration point (here the
root) and the magnitude of the bias. This observation is con-
firmed by the replication of these analyses using a calibration
at the 5% node instead of the root, and estimating the ages of
all other nodes including the root (supplementary fig. 8,
Supplementary Material online). In this situation, the age
estimates for the root of the tree (furthest from the new
shallow calibration point) have the greatest bias. This corre-
lation is not observed when a gamma distribution is used to
model rate variation among sites. The phylogenetic estimate
for the simulated tree with root age of 20 ky is presented in
figure 6B. Although this relatively shallow tree does not show
the most biased results, the impact on the tree proportions is
obvious.

Confirmation of Results
The results from Scenario 2 are shown in supplementary fig-
ures 3 and 4, Supplementary Material online. This scenario
presents lower overall rates, and a lower rate ratio between

A

B

FIG. 6. Distortion of retrieved node ages for four simulated nodes
(5, 10, 20, and 50% of root/calibration age). (A) Ratio of the inferred
to expected (simulated) node ages, for trees of 15 different root ages.
(B) Comparison of inferred trees without (upper) and with (center)
gamma to the actual tree (lower), for simulated tree with root age of
20 ky. Note the artifactually shortened basal branches in both inferred
trees, with the bias being greater in the upper tree.
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slow and fast sites, than Scenario 1. The same time-dependent
patterns described for Scenario 1 were retrieved for estimated
rates and node ages in Scenario 2. However, the lower overall
rates used to simulate the sequences leads to a predictable
shift in the time taken for the biases to manifest: the rate is
overestimated and the node ages underestimated after
200 ky, instead of 2 ky for Scenario 1. The effect of a lower
rate ratio between slow and fast sites also has consequences
on the estimates of rates and tree proportions, with the ob-
served biases being smaller.

Similar time-dependent results were obtained using: mul-
tiple replicates, a Yule prior in BEAST, PhyTime and a three-
rate scenario with intermediary molecular rate. This shows
that the observed time dependence of inferred rates and
node ages is neither due to one particular dataset, nor that
it is specific to the program or method used to simulate the
alignments. The results from the replicates are presented in
the supplementary material, Supplementary Material online.

Improvement Using a More General Mixture Model
One solution for dealing with RHAS when the site-specific
rate variation does not follow a gamma distribution is to use a
more complex mixture model. The gamma distribution is a
mathematically tractable but very restricted type of mixture
model that assumes that sites vary only in overall substitution
rate (and not other substitution parameters), that they fall
into a specific number of rate categories, and that the distri-
bution of site-specific rates fits a gamma distribution. More
general mixture-models can relax these assumptions and also
capture other variation, such as different substitution matri-
ces and different base frequencies.

To evaluate the efficacy of such models in the presence of
strong RHAS, we implemented a new Bayesian mixture
model called “FreeRate” in the program PhyTime. The
“FreeRate” option allows a pre-determined number of classes
of substitution rates among sites, with the posterior distribu-
tions of the rates for each class and the corresponding
proportions being estimated from the data. Crucially, the
distribution of rates is not forced to follow the gamma
(or any other parametric) distribution.

The results of analyses performed with the “FreeRate”
option on our simulated alignments are compared with the
results from BEAST in figure 4 (orange curves). The correct
overall rate is inferred for the seven shallowest trees, after
which the rate is progressively underestimated (fig. 4A).
Although the estimated rates are time dependent after 0.2
My in this situation, the FreeRate model outperformed the
gamma-distribution model implemented by both BEAST
(fig. 4A) and PhyTime (supplementary fig. 6, Supplementary
Material online). More importantly, the correct node ages
were inferred for 10 of the 15 tree depths (2 of the 5 incor-
rectly inferred values being for the fully saturated alignments
at 20 and 50 My). This demonstrates the capability of a gen-
eral mixture-model to recover the correct tree proportions
from an alignment with substantial RHAS, where a more
restricted mixture model (gamma distribution) appears to
be inadequate.

Improvement from Partitioning the Data According to RHAS
The use of a general mixture model is an effective way to
estimate and characterize site-specific rate heterogeneity in
an alignment, but one might also have a prior knowledge or
expectation of such heterogeneity (e.g., codon positions in
protein coding genes).

Using our simulated data, when the fast and slow sites are
treated as two separate data subsets in BEAST (green curves
in fig. 4), the fast rate is correctly inferred for eight tree depths
(two additional estimates being very close to the correct rate)
up to 1 My. At deeper tree depths, the upper ends of the
95% highest posterior density intervals of these rate estimates
approach infinity, in agreement with the complete saturation
observed for these fast-evolving sites (fig. 5B). For the slow
rate, BEAST estimated the correct value for 11 of the 15 tree
depths, none of the estimates showing substantial deviation
from the expected rate. More importantly, from a dating
perspective, the correct age for the 5% node was recovered
for 13 of these 15 tree depths (fig. 4B). This analysis demon-
strates the presence of recoverable phylogenetic signal
through the 15 tree depths of our study. It also shows that
prior knowledge of the location of mutational hotspots along
sequences can be used to improve the estimation of the
overall substitution rate and the node age estimates.

Conclusion
Our study confirms that RHAS can lead to a time-dependent
pattern of rate estimates. We have presented a mathematical
characterization of the phenomenon, and using simulations
we have explored the consequences on the estimated rates
and node ages when conducting phylogenetic analyses. Our
simulations show that the greatest bias in age estimates
occurs at intermediate (rather than the oldest) root ages.
Relative branch lengths are least distorted in very shallow
trees (where mutational saturation is absent), and in very
deep trees (where all branches are highly and uniformly sat-
urated, and to roughly the same extent). At intermediate
ages, where only basal branches are saturated (and thus short-
ened), relative branch lengths are most distorted, leading to
maximal bias in age estimates.

Our results show that assuming a distribution-free mixture
model (Pagel and Meade 2004; Huelsenbeck and Suchard
2007), or simply a gamma mixture model (Mayrose et al.
2005) would limit these biases. Also, we demonstrate that
an a priori identification of the fastest sites of a particular
alignment using existing tools, such as IQPNNI (Meyer and
von Haeseler 2003) or mixture model algorithms, would allow
the partitioning of the data in BEAST and improve the esti-
mates of rates and node ages (providing sites are assigned to
the adequate rate classes).

Although the observed time dependence of molecular
rates is not solely explained by RHAS, the presence of
strong rate heterogeneity in the data clearly affects both
the estimation of the node age and substitution rate. This
further emphasizes the need for the development and use of
appropriate models of molecular evolution.
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Supplementary Material
Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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Appendix: Technical Details and Proof of
Theorem 1
We first outline how the earlier analysis extends to accom-
modate continuous distributions of rates across sites in the
correction model M. In this case, equation (6) is replaced by

f ðxÞ ¼

Z1

0

�½1� expð�xr=�Þ��ðrÞdr,

where �ðrÞ is the probability density function for the contin-
uous distribution of rates, scaled so that the mean rate
is 1 (i.e.,

R1
0 r�ðrÞdr ¼ 1); this is applied as before in

equations (5) and (7). Note that we can write
f ðxÞ ¼ �½1�  Mð�x=�Þ�, where  M is the moment gener-
ating function of the distribution of rates across sites. For
example, for a gamma distribution with shape parameter k
we have  MðxÞ ¼ ð1� x=kÞ�k and so

f ðxÞ ¼ �½1� ð1+
x

k�
Þ
�k
�: ð8Þ

These formulae can be extended further to allow M to be a
mixture of discrete and continuous rate distributions (e.g., in
the case of a continuous distribution for variable sites, plus a
discrete class class of invariable sites).

Next, we describe how to apply equation (6) when
the correction model has just one rate class or is a gamma
distribution. For a single rate class, we saw earlier (equation 7)
that rðtÞ ¼ g0ðtÞ

1�gðtÞ=� : Thus, for a discrete mixture of rates
(ri with frequency ai) in the generating model (G) we have

r̂ðtÞ ¼ �

Pn
i¼1

�iriexpð��rit=�Þ

½
Pn
i¼1

�iexpð��rit=�Þ�
: ð9Þ

More generally, if the correction model is based on a (con-
tinuous) gamma distribution with shape parameter k then
from equations (8) and (6) we obtain

r̂ðtÞ ¼ �

Pn
i¼1

�iriexpð��rit=�Þ

½
Pn
i¼1

�iexpð��rit=�Þ�
1+1

k

: ð10Þ

Notice that, in the limit as k!1, the gamma distribu-
tion approaches the single-rate distribution, and, accordingly,
equation (10) converges to equation (9).

Proof of Theorem 1
For part (a) routine calculus shows that

dr̂ðtÞ

dt
¼

g00ðtÞf 0ð�̂tÞ � g0ðtÞ d
dt f 0ð�̂tÞ

f 0ð�̂tÞ
2

and as

d

dt
f 0ð�̂tÞ ¼ f 00ð�̂tÞ

d

dt
�̂t ¼ f 00ð�̂tÞr̂ðtÞ ¼ f 00ð�̂tÞg

0ðtÞ=f 0ð�̂tÞ,

(by eqs. 1 and 6), we obtain

dr̂ðtÞ

dt
¼

g00ðtÞf 0ð�̂tÞ � f 00ð�̂tÞ½g
0ðtÞ�2=f 0ð�̂tÞ

f 0ð�̂tÞ
2 :

Now, in the limit as t approaches 0, g0ðtÞ approaches� and

g00ðtÞ approaches ��
2

�

Pn
i¼1

�ir
2
i , whereas f 0ð�̂tÞ approaches 1

and f 00ð�̂tÞ converges to �1
�

Pn0
i¼1

�0iðr
0
iÞ

2. Thus

dr̂ðtÞ

dt
¼
��2

�
½
Xn

i¼1

�ir
2
i �

Xn0

i¼1

�0iðr
0
iÞ

2
� ¼
��2

�
ð	2

G � 	
2
MÞ,

where 	2
G and 	2

M is the variance of the generating process
and correction model, respectively.

For Part (b-i), note that the ri’s are ordered in increasing
values (and the �i values are strictly positive) and so equation
(9) implies that, provided r1 > 0, r̂ðtÞ is asymptotic to
��1r1=�1 ¼ �r1. On the other hand, if r1 ¼ 0, then the
denominator in equation (9) has a constant term (�1)
while all the numerator terms decay exponentially, and so
r̂ðtÞ converges to zero. In either case r̂ðtÞ converges to �r1

(the smallest absolute rate of G).
For part (b-ii), observe that as t!1 then �̂t !1 and

that, as r1, r01 > 0 we can write

1�
f ð�̂tÞ

�
¼ �01expð��̂tr

0
1=�Þ½1+h1ð�̂tÞ�;

1�
gðtÞ

�
¼ �1expð��r1=�Þ½1+h2ðtÞ�,

ð11Þ

where h1ðxÞ and h2ðxÞ is a sum of positively weighted expo-
nential terms, which all decay to zero. Rewriting equation (5)
as 1� f ð�̂tÞ

� ¼ 1� gðtÞ
� and taking the logarithm of both sides

of this equation using equation (11) gives

logð�01Þ � �̂tr
0
1=�+log½1+h1ð�̂tÞ� ¼ logð�1Þ � �tr1=�

+ log½1+h2ðtÞ�,
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and differentiating both sides with respect to t (and observing
that d�̂t=dt ¼ r̂ðtÞ) gives

�r̂ðtÞr01=�+
h01ð�̂tÞrðtÞ

1+h1ð�̂tÞ
¼ ��r1=�+

h02ðtÞ

1+h2ðtÞ
,

which gives

r̂ðtÞ ¼ �r1=r01 � bðtÞ+aðtÞrðtÞ, ð12Þ

where aðtÞ ¼
�h01ð�̂tÞ

r01½1+h1ð�̂tÞ�
and bðtÞ ¼

�h02ðtÞ

r01½1+h2ðtÞ�
.

Rearranging equation (12) gives

r̂ðtÞ ¼
�r1=r01 � bðtÞ

1� aðtÞ
, ð13Þ

Now, bðtÞ clearly converges to 0 with increasing t, and so
too does aðtÞ because �̂t tends to infinity as t!1. Thus, by
equation (13), we deduce that r̂ðtÞ converges to �r1=r01, as
claimed.

For Part (b-iii), as r1 > 0, the numerator of equation (10) is
asymptotic to ��1r1e�r1t=� as t!1 while the denomina-
tor is asymptotic to ð�1e�r1t=�Þ

1+1
k. As k is finite, the denomi-

nator of equation (10) converges to 0 more quickly than the
numerator, and so the rate curve tends to infinity.

For Part (b-iv) note that, as x increases, f ðxÞ converges to
�ð1� iMÞ where iM is the proportion of invariable sites in M,
and gðxÞ converges to �ð1� iGÞ where iG is the proportion of
invariable sites in G. Part (iv) now follows by considering the
graphs of f ðxÞ and gðxÞ for the cases iM < iG and iM > iG and
thereby the constraints on the solution for �t in equation (5).
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