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a  b  s  t  r  a  c  t

One  important  question  in  microbiome  analysis  is  how  to  assess  the  homogeneity  of the  microbial  com-
position  in  a given  environment,  with  respect  to a given  analysis  method.  Do  different  microbial  samples
taken  from  the same  environment  follow  the  same  taxonomic  distribution  of organisms,  or  the  same  dis-
tribution  of  functions?  Here  we  provide  a non-parametric  statistical  “triangulation  test”  to  address  this
type of  question.  The  test  requires  that  multiple  replicates  are  available  for each  of  the  biological  samples,
and it is based  on  three-way  computational  comparisons  of  samples.  To  illustrate  the  application  of the
test, we  collected  three  biological  samples  taken  from  different  locations  in  one  piece  of human  stool,
each  represented  by  three  replicates,  and  analyzed  them  using  MEGAN.  (Despite  its name,  the  triangula-
tion  test  does  not  require  that the  number  of  biological  samples  or  replicates  be  three.)  The  triangulation
nvironmental inhomogeneity
tatistical testing

test  rejects  the  null hypothesis  that the three  biological  samples  exhibit  the same distribution  of taxa  or
function  (error  probability  ≤0.05),  indicating  that  the microbial  composition  of  the  investigated  human
stool  is not  homogenous  on a macroscopic  scale,  suggesting  that  pooling  material  from  multiple  locations
is  a reasonable  practice.  We  provide  an  implementation  of  the  test  in  our  open  source  program  MEGAN
Community  Edition.

Publis
©  2016  The  Author(s).  

. Introduction

There is growing interest in microbiome analysis, the study of
icroorganisms in a particular environment, such as the human

ody, water or soil. Taxonomic profiling of microbiome samples
s usually based on DNA sequencing, using either an amplicon
r a shotgun approach (Handelsman, 2004). While early stud-
es typically involved small numbers of samples, there is now an
ncreased expectation that replicate samples are sequenced (Knight
t al., 2012) so as to allow statistical analysis of the significance of
btained results.

One important question is how to assess the homogeneity of the
icrobial composition in a given environment. Do different sam-
les taken from the same environment follow the same taxonomic
istribution of organisms? Do they follow the same distribution of
unctional features? Presumably, well-mixing environments such

∗ Corresponding author.
E-mail address: Daniel.Huson@uni-tuebingen.de (D.H. Huson).

ttp://dx.doi.org/10.1016/j.jbiotec.2016.10.020
168-1656/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article
hed  by Elsevier  B.V. This  is  an open  access  article  under  the CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

as air or water will display a higher degree of compositional homo-
geneity than more structured environments such as soil, stool or
waste water flocks.

We need to introduce two key concepts. First, we  assume that
multiple samples are taken from the same given environment. For
example, in the case of human stool, one might collect samples from
a number of different locations in the same piece of fecal matter.
We refer to these samples as biological samples. Second, we assume
that each biological sample gives rise to two or more replicates,
which are obtained by constructing multiple DNA libraries for each
biological sample.

In addition, we emphasize that the whole chain of steps
employed, from sampling, DNA extraction, sequencing, calcula-
tion of taxonomic or functional profiles, to the comparison of such
profiles using a dissimilarity measure, is part of the input to the
problem, and we  will use M to denote the complete analysis pro-

cedure.

We describe a novel statistical test, which we call the triangu-
lation test,  that aims at testing the null hypothesis that different
biological samples taken from a given environment exhibit the

 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Triangulation test. The nine replicates A1, . . .,  C3 (represented by labeled
discs) come from three biological samples (indicated by gray ovals). Lines connecting
6 D.H. Huson et al. / Journal of

ame distribution of taxa, with respect to M.  The triangulation test
an be applied to a wide range of different sampling regimes involv-
ng any number of biological and replicates. This is a nonparametric
est and is thus robust against assumptions of population distribu-
ion.

In Section 2, we first formulate the triangulation test for the
 × 3 case of three biological samples, each represented by three
eplicates. We  then generalize the triangulation test to the case of
ny number of biological samples, each represented by an arbitrary
umber of replicates.

In Section 3, we demonstrate the application of the triangu-
ation test in the 3 × 3 case using human stool samples. In more
etail, we collected three samples from different locations (approx-

mately one centimeter apart) in the same piece of stool and
equenced three replicates for each. Application of the triangula-
ion test implies that the microbial composition of the investigated
uman stool is not homogenous on the macroscopic scale.

We use a series of artificially constructed mixtures of samples
o study the performance of the method in lower contrast settings
nd show that it performs as well as PERMANOVA.

. Methods

.1. Triangulation test for 3 × 3 samples

Assume that we are given three biological samples A, B and C, and
or each biological sample S = A, B or C we are given three replicates,
1, S2 and S3. We  thus have nine samples in total: A1, A2, A3, B1, B2,
3, C1, C2, C3. Moreover, let M be a specific chain of analysis steps
hat provides taxonomic profiles for all samples, and a dissimilarity

easure.
The null hypothesis and the alternative hypothesis of interest

re stated as follows:

H0: the nine samples A1, . . .,  C3 are all drawn independently
according to the same distribution, versus
Ha: For each of the three biological samples S = A, B or C, the three
replicates S1, S2, S3 are drawn from the same distribution for S,
but the distributions for each of the biological samples are not all
identical. Moreover, replicates within the same biological sample
expected to be more similar to each other than any ones that lie
in different biological samples.

To address these hypotheses, we define the triangulation test as
 simple non-parametric significance test for H0. It is based on the
oncept of a random triangulation of the set of samples.

For ease of exposition, we first describe this for the special set-
ing used in our practical study, namely three biological samples,
ach represented by three replicates. Below, we will then present a
eneral version of this test that allows for any number of biological
amples, each with its own arbitrary number of replicates.

We define a triangulation of the set of nine replicates A1, A2, . . .,
3 to be a graph G = (V, E) with node set V = {A1, A2, . . .,  C3} and
dge set E consisting of undirected edges that form node-disjoint
-cycles that each involve replicates from exactly two different bio-

ogical samples. We  desire that any such triangulation contains as
any triangles as possible, i.e., three triangles as in Fig. 1.
We assume that an analysis of the taxonomic content (or func-

ional content, if desired) of each replicate has been performed
sing M and we have obtained a dissimilarity measure d(Si, Tj)
etween any two replicates Si, Tj ∈ V.
The triangulation test is performed in two steps. In the first
tep, we randomly choose a single triangulation that involves all
eplicates. In Fig. 1 we show one such choice for the case of
hree biological samples, each represented by three replicates. As
discs represent a triangulation of the data. The null hypothesis is rejected, if for each
and every triangle, the distance between replicates from the same sample is less than
the distance from either of those replicates to a replicate from a different sample.

required, each depicted triangle contains two  replicates from the
same biological sample, and a third replicate from a different bio-
logical sample.

In the second step, we  then ask the following question: For each
triangle in the chosen triangulation, is the dissimilarity between
the two  replicates that are contained in the same biological sample
less than the dissimilarity of either of them to the third replicate
in the triangle? If the answer is yes for all triangles, then reject H0
with a significance level that is less than the 0.05.

To see this, note that under the null hypothesis H0, all three pairs
of replicates in a triangle have equal probability of exhibiting the
strictly smallest dissimilarity value, 1/3 (or less, in the case of a tie).
Thus, the probability that it is always the pair of replicates con-
tained in the same biological sample that has the smallest value in
all three triangles is at most (1/3)3 = (1/27) < 0.05. Hence, the prob-
ability of rejecting the null hypothesis when it is true (i.e., the type
1 error) is less than 0.05.

Whether the triangle test is able to reject H0 depends not only
on the samples, but also on the details of the analysis method M, we
would like to emphasize. For example, if the samples are analyzed
using a low resolution method M that can only detect the general
presence or absence of bacteria, say, and if bacteria are detected
in all samples, then the dissimilarities will be constant, in which
case the test will fail to reject the null hypothesis. However, it is of
course possible that the use of a higher resolution analysis method
will lead to rejection of the null hypothesis on the same data.

We  would also like to emphasize that application of the test
only involves the use of one randomly chosen triangulation. The
test does not require that one looks at multiple triangulations. In
particular, this makes the test very easy to apply “by hand”.

2.2. Triangulation test in the general setting

We  now describe how the simple triangulation significance test
described above extends to the general setting where we have

m bins (i.e., biological samples) of arbitrary sizes r1, . . .,  rm. Let
V = {Si(j) | j = 1, . . .,  ri} be the set of replicates present in bin i, for
i = 1, . . .,  m.  (Above we studied the special case of m = 3 and ri = 3
for i = 1, . . .,  3.) The total number of replicates is N =

∑m
i=1ri. Again,
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e assume that a method M is given that provides profiles and
issimilarities.

As above, a triangulation of V refers to a set of node-disjoint
-cycles connecting (all, or a subset of) these N nodes, with the
roperty that each 3-cycle contains exactly two samples from the
ame bin – we call such 3-cycles valid. A simple counting argument
hows that the number of valid 3-cycles in any such triangulation
an never exceed the largest integer less or equal to (1/3)N. More-
ver, this bound can be achieved (for example, in the set-up of the
revious section where m = 3; r1 = r2 = r3 = 3), though not always (for
xample, if m = 2, r1 = 7 and r2 = 2, then the number of valid 3-cycles
s at most 2, while (1/3)N = 3).

We now randomly generate (over 100 independent runs, say)
riangulations of V, and select a valid triangulation of largest size
i.e., containing the largest number T of valid 3-cycles). Then, under
he null hypothesis H0 that the N samples are all drawn indepen-
ently according to the same distribution, if X denotes the number
f 3-cycles in the sample for which a strictly smallest dissimilarity
s between the pair within the bin, then X has a binomial distribu-
ion consisting of T trials and success probability (at most) 1/3. For
ny  ̨ > 0 (above we used  ̨ = 0.05) let k˛ denote the ˛-critical value
f this distribution, in other words the smallest integer k for which

(
T
)(

1
)i(2

)T−i

< ˛.
i≥k
i 3 3

hen the triangulation test will reject H0 in favor of Ha when X ≥ k˛.
ere Ha is the alternative hypothesis that the samples within each

ig. 2. Taxonomic analysis of nine samples. Samples are normalized to the smallest num
ndicating the number of reads assigned to the taxon for each sample, for each of the nin
o  avoid clutter, nodes that have only one child are not labeled.
chnology 250 (2017) 45–50 47

bin are drawn from the same distribution but these m distributions
are different, with reads expected to be more similar within each
bin than between bins. The proof that this test has type-1 error at
most  ̨ proceeds in parallel fashion to the earlier argument.

2.3. Illustration of the method using human stool samples

Three samples A, B, C were collected from one piece of human
stool provided by a healthy male subject, from three different
locations separated by about two centimeters. DNA was  extracted
within three hours using a modified version of the Human Micro-
biome Project protocol as described elsewhere (Willmann et al.,
2015). For each of the biological samples, A, B and C, three
libraries were produced. For this purpose, genomic DNA was
sheared by Covaris M220 (Covaris, Woburn, USA) to obtain 550 bp
fragments. DNA libraries were prepared with TruSeq Nano DNA
LT Kit (Illumina, San Diego, USA) using the standard protocol.
Barcoded libraries were analyzed on the QIAxcel Advanced Instru-
ment (Qiagen, Hilden, Germany). All libraries were sequenced at
2 × 250 bp on an Illumina MiSeq (Illumina, San Diego, USA), obtain-
ing nine shotgun metagenomic datasets A1, A2, A3, B1, B2, B3, C1,
C2, C3. Quality control was performed using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). The total number
of reads was  39 million, on average 4.3 million reads per sample
(range 3.6–4.8 million).
We  used Metascope (Buchfink et al., 2015) to identify human
sequences and 0.16% of all reads were removed. We  used cutadapt
to perform adaptor trimming (Martin, 2011). Quality filtering
was performed using the USearch package (Edgar, 2010), with the

ber of aligned reads, 1.9 million each. Each taxonomic node is drawn as a bar chart
e samples, using a square-root scale so as to make small assignments more visible.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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aximum expected error rate set to 0.01. This removed 19.9% of all
eads. The remaining reads (31 million) were aligned against NCBI-
r (Benson et al., 2005) using DIAMOND (Buchfink et al., 2015)
default settings), finding alignments for 24 million reads. We
hen performed taxonomic and functional binning using MEGAN
Huson et al., 2016), with the following settings: minScore = 50,

axExpected = 0.01, topPercent = 10, minSupportPercent = 0.01.
he resulting assignment of reads to taxa is summarized in
ig. 2.

The input of the triangulation test is a dissimilarity matrix on
he given set of samples. To compute such a dissimilarity matrix in
he case of taxonomic analysis, we summarized all taxonomic read
ssignments at a fixed taxonomic rank (species, genus, . . .,  phylum)
nd then applied the square-root Jensen–Shannon diversity calcu-
ation (Arumugam et al., 2011) to compute pairwise dissimilarities
etween the samples. We  call the resulting matrix a taxonomic
issimilarity matrix.

Similarly, a functional dissimilarity matrix can be obtained by
sing one of the functional classifications implemented in MEGAN
uch as the new InterPro2GO classification (Hunter et al., 2014;
itchell et al., 2015), KEGG (Kanehisa and Goto, 2000) or SEED
Overbeek et al., 2013). Read counts are summarized at a cho-
en level of the classification and then again the Jensen–Shannon
iversity calculation (Arumugam et al., 2011) is used to compute
airwise dissimilarities between the samples.

ig. 3. Application of the triangulation test by hand to a PCoA analysis of stool samples. C
he  same biological sample (e.g., B2 and B3) with one from a different biological sample (
eplicates from the same biological sample is the shortest edge in the triangle, then one ca
ith   ̨ = 0.05. This is the case here.
chnology 250 (2017) 45–50

3. Results

We  have implemented the general triangulation test in
MEGAN 6, where it can be applied both to taxonomic and functional
profiles (Cluster Analysis Viewer → Options menu → Triangulation
Test).

3.1. Application to human stool samples

For the nine metagenomic datasets A1, A2, A3, B1, B2, B3, C1, C2,
C3 described above, together with the described analysis method
M,  application of the triangulation test to a taxonomic dissimilar-
ity matrix always rejects the null hypothesis that the samples are
based on the same distribution of taxa, for all taxonomic ranks from
Species up to Phylum. PCoA analysis of the nine samples illustrates
that replicates from the same biological sample are much closer
to each other than they are to replicates from other samples (see
Fig. 3).

The triangulation test applied to a functional dissimilarity
matrix based on InterPro2GO, SEED or KEGG, rejects the null
hypothesis that the samples are based on the same distribution

of function, both when read counts are summarized at a high
level (e.g., carbohydrate metabolism, energy metabolism, lipid
metabolism, etc. in the case of KEGG), or a low level (e.g., using
KO groups in KEGG).

hoose a random triangulation such that each triangle connects two replicates from
e.g., A3), as shown here. If, for each triangle, the length of the edge connecting the
n reject the null hypothesis that all samples are drawn from the same distribution,
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So, in both terms of taxonomic composition and in terms of
unctional capacity, the test establishes significant inhomogeneity
etween biological samples. This result provides statistical justifi-
ation for the practice of pooling material from multiple locations
n a piece of stool, as performed in Willmann et al. (2015).

When using any of the other eight beta-diversity calculations
rovided by MEGAN, such as such as Bray–Curtis (Bray and Curtis,
957), we find that the null hypothesis is always rejected, except
or some of the high-level functional comparisons. The latter is
onsistent with the observation that high-level metabolic modules
how much less variation across human microbiome samples than
axonomic phyla do (The Human Microbiome Project Consortium,
012).

Note that after randomly reassigning replicates to biological
amples, the null hypothesis was no longer rejected, as expected.

All non-human sequencing reads, a MEGAN file containing the
axonomic and functional profiles for all nine samples, and the pro-
ram MEGAN 6 (including source code), are available here: http://
b.inf.uni-tuebingen.de/data/external/tritest/.

.2. Comparison with PERMANOVA on lower contrast data

How does the triangle test compare against standard nonpa-
ameteric analysis such as PERMANOVA (Anderson, 2001)? To
nvestigate this, we performed permutational multivariate analy-
is of variance (PERMANOVA) using Bray–Curtis dissimilarities and
99 permutations, employing the Vegan package in R (Oksanen
t al., 2016; R Core Team, 2013). The result is that the three groups
f samples A, B and C are significantly different with p = 0.004.

Fig. 3 suggests that the three groups of samples A, B, C have such
igh contrast that a significant difference is a foregone conclusion.
o evaluate performance of the triangulation test where samples
re more similar, we generated a series of artificially constructed
ixtures of samples that show increasingly less contrast.
First, we generated a background distribution H of taxa based on

he union of all nine original samples. Then, for a given percentage
 = 90, 80, . . .,  10, 7, 5, 3, we produced a group of nine artificial
amples Ax

1, Ax
2, . . .,  Cx

3 by defining the taxonomic profile associated
ith each such sample Px

i
to be a linear mixture of Pi (x percent

signal”) and H (the remaining 100 − x percent of Px
i
, “background”).

Both the triangle test and PERMANOVA analysis were applied
o all groups of artificial samples. For all groups with x > 3%, both
he triangle test and PERMANOVA rejected the null hypothesis with

 significance level of 0.05 (triangle test) and 0.01 (PERMANOVA).
or x = 3%, both tests failed to robustly reject the null hypothesis.
his suggests that the triangle test performs as well as PERMANOVA
nalysis, even in quite low contrast settings.

. Discussion

To address the problem of assessing microbial homogeneity in
 given environment, we suggest that multiple replicates are col-
ected for each biological sample. The non-parametric triangulation
est presented here allows one to test the null hypothesis that all
amples are drawn independently according to the same distribu-
ion. This test is performed relative to a specific analysis pipeline

 that is used to calculate profiles and dissimilarities. The imple-
entation of the test that we provide in MEGAN 6 (Community

dition) can be applied to both taxonomic and functional profiles,
t different levels of resolution.

The aim of this work was to develop a new statistical tool for

esting homogeneity. This test is attractive because it is easily
pplied by hand (see Fig. 3); moreover, it provides a precise sta-
istical underpinning for the intuition that, if replicates cluster by
iological sample, then there is inhomogeneity on the macroscopic
chnology 250 (2017) 45–50 49

scale. With this tool in hand, it will be possible to systematically
investigate the level of homogeneity in different microbial envi-
ronments, at different macroscopic scales and for different analysis
methods.

Author contributions

D.H.H., M.S., S.P. and M.W.  designed the study. M.S. developed
the statistical test. D.H.H. implemented the test. D.H.H. and M.S.
wrote the manuscript. S.P. and M.W.  produced the human stool
data. M.H. and S.M. performed the data analysis.

References

Anderson, M., 2001. A new method for non-parametric multivariate analysis of
variance. Austral Ecol. 26, 32–46.

Arumugam, M.,  Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R.,
Fernandes, G.R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M.,  Borruel, N., Casellas,
F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem,
M.,  Kurokawa, K., Leclerc, M.,  Levenez, F., Manichanh, C., Nielsen, H.B., Nielsen,
T.,  Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte,
E.,  Zoetendal, E.G., Wang, J., Guarner, F., Pedersen, O., de Vos, W.M.,  Brunak, S.,
Dore, J., Weissenbach, J., Ehrlich, S.D., Bork, P., 2011. Enterotypes of the human
gut  microbiome. Nature 473 (7346), 174–180, http://dx.doi.org/10.1038/
nature09944.

Benson, D., Karsch-Mizrachi, I., Lipman, D., Ostell, J., Wheeler, D., 2005. Genbank.
Nucleic Acids Res. 1 (33), D34–38.

Bray, R.J., Curtis, J.T., 1957. An ordination of the upland forest communities of
southern Wisconsin. Ecol. Monogr. 27, 325–349.

Buchfink, B., Xie, C., Huson, D., 2015. Fast and sensitive protein alignment using
DIAMOND. Nat. Methods 12, 59–60.

Buchfink, B., Huson, D.H., Xie, C., 2015. Metascope – Fast and Accurate
Identification of Microbes in Metagenomic Sequencing Data, Tech. Rep.,
arXiv:1511.08753.

Edgar, R., 2010. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics (Oxford, England) 26 (19), 2460–2461, http://dx.doi.org/10.
1093/bioinformatics/btq461.

Handelsman, J., 2004. Metagenomics: application of genomics to uncultured
microorganisms. Microbiol. Mol. Biol. Rev. 68 (4), 669–685.

Hunter, S., Corbett, M.,  Denise, H., Fraser, M., Gonzalez-Beltran, A., Hunter, C., Jones,
P.,  Leinonen, R., McAnulla, C., Maguire, E., Maslen, J., Mitchell, A., Nuka, G., Oisel,
A.,  Pesseat, S., Radhakrishnan, R., Rocca-Serra, P., Scheremetjew, M., Sterk, P.,
Vaughan, D., Cochrane, G., Field, D., Sansone, S.-A., 2014. EBI metagenomics – a
new resource for the analysis and archiving of metagenomic data. Nucleic
Acids Res. 42 (Database issue), D600–D606, http://dx.doi.org/10.1093/nar/
gkt961, URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/.

Huson, D., Beier, S., Flade, I., Górska, A., El-Hadidi, M.,  Mitra, S., Ruscheweyh, H.-J.,
Tappu, R., 2016. MEGAN Community Edition – interactive exploration and
analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12 (6),
e1004957, http://dx.doi.org/10.1371/journal.pcbi.1004957.

Kanehisa, M.,  Goto, S., 2000. KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28 (1), 27–30.

Knight, R., Jansson, J., Field, D., Fierer, N., Desai, N., Fuhrman, J.A., Hugenholtz, P.,
van der Lelie, D., Meyer, F., Stevens, R., Bailey, M.J., Gordon, J.I., Kowalchuk,
G.A., Gilbert, J.A., 2012. Unlocking the potential of metagenomics through
replicated experimental design. Nat. Biotech. 30 (6), 513–520, http://dx.doi.
org/10.1038/nbt.2235.

Martin, M.,  2011. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.journal 17 (1), URL: http://journal.embnet.org/
index.php/embnetjournal/article/view/200.

Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M.,  Hunter, S., Lopez, R., McAnulla,
C.,  McMenamin, C., Nuka, G., Pesseat, S., Sangrador-Vegas, A., Scheremetjew,
M.,  Rato, C., Yong, S.-Y., Bateman, A., Punta, M.,  Attwood, T.K., Sigrist, C.J.,
Redaschi, N., Rivoire, C., Xenarios, I., Kahn, D., Guyot, D., Bork, P., Letunic, I.,
Gough, J., Oates, M.,  Haft, D., Huang, H., Natale, D.A., Wu,  C.H., Orengo, C.,
Sillitoe, I., Mi,  H., Thomas, P.D., Finn, R.D., 2015. The interpro protein families
database: the classification resource after 15 years. Nucleic Acids Res. 43 (D1),
D213–D221, http://dx.doi.org/10.1093/nar/gku1243, URL: http://nar.
oxfordjournals.org/content/43/D1/D213.abstract, http://nar.oxfordjournals.
org/content/43/D1/D213.full.pdf+html.

Oksanen, J., Blanchet, F.G., Friendly, M.,  Kindt, R., Legendre, P., McGlinn, D.,
Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs,
E.,  Wagner, H., 2016. Vegan: Community Ecology Package, URL: http://cran.r-
project.org/web/packages.

Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A.,
Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A.R., Xia, F., Stevens, R.,

2014. The SEED and the rapid annotation of microbial genomes using
subsystems technology (RAST). Nucleic Acids Res. 42, http://dx.doi.org/10.
1093/nar/gkt1226, URL: http://nar.oxfordjournals.org/content/early/2013/11/
29/nar.gkt1226.full.pdf+html, http://nar.oxfordjournals.org/content/early/
2013/11/29/nar.gkt1226.abstract.

http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://ab.inf.uni-tuebingen.de/data/external/tritest/
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0005
dx.doi.org/10.1038/nature09944
dx.doi.org/10.1038/nature09944
dx.doi.org/10.1038/nature09944
dx.doi.org/10.1038/nature09944
dx.doi.org/10.1038/nature09944
dx.doi.org/10.1038/nature09944
dx.doi.org/10.1038/nature09944
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0015
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0020
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0025
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0030
dx.doi.org/10.1093/bioinformatics/btq461
dx.doi.org/10.1093/bioinformatics/btq461
dx.doi.org/10.1093/bioinformatics/btq461
dx.doi.org/10.1093/bioinformatics/btq461
dx.doi.org/10.1093/bioinformatics/btq461
dx.doi.org/10.1093/bioinformatics/btq461
dx.doi.org/10.1093/bioinformatics/btq461
dx.doi.org/10.1093/bioinformatics/btq461
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0040
dx.doi.org/10.1093/nar/gkt961
dx.doi.org/10.1093/nar/gkt961
dx.doi.org/10.1093/nar/gkt961
dx.doi.org/10.1093/nar/gkt961
dx.doi.org/10.1093/nar/gkt961
dx.doi.org/10.1093/nar/gkt961
dx.doi.org/10.1093/nar/gkt961
dx.doi.org/10.1093/nar/gkt961
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965009/
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
dx.doi.org/10.1371/journal.pcbi.1004957
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0055
dx.doi.org/10.1038/nbt.2235
dx.doi.org/10.1038/nbt.2235
dx.doi.org/10.1038/nbt.2235
dx.doi.org/10.1038/nbt.2235
dx.doi.org/10.1038/nbt.2235
dx.doi.org/10.1038/nbt.2235
dx.doi.org/10.1038/nbt.2235
dx.doi.org/10.1038/nbt.2235
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
dx.doi.org/10.1093/nar/gku1243
dx.doi.org/10.1093/nar/gku1243
dx.doi.org/10.1093/nar/gku1243
dx.doi.org/10.1093/nar/gku1243
dx.doi.org/10.1093/nar/gku1243
dx.doi.org/10.1093/nar/gku1243
dx.doi.org/10.1093/nar/gku1243
dx.doi.org/10.1093/nar/gku1243
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.abstract
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://nar.oxfordjournals.org/content/43/D1/D213.full.pdf+html
http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages
dx.doi.org/10.1093/nar/gkt1226
dx.doi.org/10.1093/nar/gkt1226
dx.doi.org/10.1093/nar/gkt1226
dx.doi.org/10.1093/nar/gkt1226
dx.doi.org/10.1093/nar/gkt1226
dx.doi.org/10.1093/nar/gkt1226
dx.doi.org/10.1093/nar/gkt1226
dx.doi.org/10.1093/nar/gkt1226
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.full.pdf+html
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract
http://nar.oxfordjournals.org/content/early/2013/11/29/nar.gkt1226.abstract


5  Biote

R

T

0 D.H. Huson et al. / Journal of
 Core Team, 2013. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

he Human Microbiome Project Consortium, 2012. Structure, function and
diversity of the healthy human microbiome. Nature 486 (7402), 207–214,
http://dx.doi.org/10.1038/nature11234.
chnology 250 (2017) 45–50
Willmann, M.,  El-Hadidi, M.,  Huson, D., Schütz, M.,  Weidenmaier, C., Autenrieth, I.,
Peter, S., 2015. Antibiotic selection pressure determination through
sequence-based metagenomics. Antimicrob. Agents Chemother. 59 (12),
7335–7345.

http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0085
dx.doi.org/10.1038/nature11234
dx.doi.org/10.1038/nature11234
dx.doi.org/10.1038/nature11234
dx.doi.org/10.1038/nature11234
dx.doi.org/10.1038/nature11234
dx.doi.org/10.1038/nature11234
dx.doi.org/10.1038/nature11234
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095
http://refhub.elsevier.com/S0168-1656(16)31576-0/sbref0095

	A simple statistical test of taxonomic or functional homogeneity using replicated microbiome sequencing samples
	1 Introduction
	2 Methods
	2.1 Triangulation test for 3×3 samples
	2.2 Triangulation test in the general setting
	2.3 Illustration of the method using human stool samples

	3 Results
	3.1 Application to human stool samples
	3.2 Comparison with PERMANOVA on lower contrast data

	4 Discussion
	Author contributions
	References


