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Abstract The reconstruction of phylogenetic trees from molecular sequence data
relies on modelling site substitutions by a Markov process, or a mixture of such
processes. In general, allowing mixed processes can result in different tree topologies
becoming indistinguishable from the data, even for infinitely long sequences. However,
when the underlying Markov process supports linear phylogenetic invariants, then
provided these are sufficiently informative, the identifiability of the tree topology
can be restored. In this paper, we investigate a class of processes that support linear
invariants once the stationary distribution is fixed, the ‘equal input model’. This model
generalizes the ‘Felsenstein 1981’ model (and thereby the Jukes—Cantor model) from
four states to an arbitrary number of states (finite or infinite), and it can also be described
by a ‘random cluster’ process. We describe the structure and dimension of the vector
spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic
tree (and for all trees—the so called ‘model invariants’), on any number n of leaves.
We also provide a precise description of the space of mixtures and linear invariants
for the special case of n = 4 leaves. By combining techniques from discrete random
processes and (multi-) linear algebra, our results build on a classic result that was first
established by James Lake (Mol Biol Evol 4:167-191, 1987).
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1 Introduction

Tree-based Markov processes on a discrete state space play a central role in molecular
systematics. These processes allow biologists to model the evolution of characters
and thereby to develop techniques for inferring a phylogenetic tree for a group of
species from a sequence of characters (such as the sites at aligned DNA or amino
acid sequences; Felsenstein 2004). Under the assumption that each character evolves
independently on the same underlying tree, according to a fixed Markov process, the
tree topology can be inferred in a statistically consistent way (i.e. with an accuracy
approaching 1 as the number of characters grows) by methods such as maximum
likelihood estimation (MLE) (Chang 1996) and techniques based on phylogenetic
invariants (Ferndndez-Sanchez and Casanellas 2016). This holds even though one
may not know the values of the other (continuous) parameters associated with the
model, which typically relate to the length of the edges, and relative rates of different
substitution types.

The assumption that all characters evolve under the same Markov process is a very
strong one, and biologists generally allow the underlying process to vary in some
way between the characters. For example, a common strategy is to allow characters
to evolve at different rates (i.e. the edge lengths are all scaled up or down in equal
proportion at each site by a factor sampled randomly from some simple parameterized
distribution). In that case, provided the rate distribution is sufficiently constrained, the
tree topology can still be inferred in a statistically consistent manner (Allman et al.
2012; Matsen et al. 2008), and by using MLE, or related methods.

However, when this distribution is not tightly constrained, or when edge lengths are
free to vary in a more general fashion from character to character then different trees can
lead to identical probability distributions on characters (Allman et al. 2012; Steel et al.
1994). In that case, it can be impossible to decide which of two (or more) trees generated
the given data, even when the number of characters tends to infinity. In statistical termi-
nology, identifiability of the tree topology parameter is lost. For certain types of Markov
models, however, identifiability of the tree topology is possible, even in these general
settings. These are models for which (i) linear relationships (called ‘linear phylogenetic
invariants’) exist between the probabilities of different characters, and which hold for
all values of the other continuous parameters associated with the model (such as edge
lengths) and (ii) these invariants can be used to determine the tree topology (at least
for n = 4 leaves) (Steel 2011; Stefakovi¢ and Vigoda 2007). The first such invariants,
which we call linear topology invariants, were discovered by James Lake in a landmark
paper in 1987 (Lake 1987) for the Kimura 2ST model, and the Jukes—Cantor submodel.

Linear topology invariants were known to exist for Kimura 2ST and Jukes—Cantor
models, and the dimension of the corresponding (quotient) linear space had been
computed for the Jukes—Cantor model in Fu (1995) and Steel and Fu (1995). It is also
known that more general models such as Kimura 3ST or the general Markov model do
not admit linear topology invariants (see for example Sturmfels and Sullivant 2005;
Casanellas and Fernandez-Sanchez 2011). Nevertheless, linear topology invariants
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had not been studied for evolutionary models with more than 4 states or for models
slightly more general than Jukes—Cantor.

In this paper we extend Lake-type invariants to a more general setting and for
another type of process, the ‘equal input’ model (defined shortly, but it can be regarded
as the simplest Markov process that allows different states to have different stationary
probabilities). By building also on the approach of Matsen et al. (2008) (which dealt
just with the 2-state setting) we investigate the vector space of linear invariants, and
describe the space of phylogenetic mixtures on a tree (or trees) under the equal input
model once the stationary distribution is fixed. Note that the space of phylogenetic
mixtures is dual to the space of phylogenetic invariants, and hence studying one of
these spaces translates into results for the other space. This leads to our main results
(Theorems 1 and 2) which characterize the space of phylogenetic mixtures across all
trees, and on a fixed tree (respectively), along with an algorithm for constructing a basis
for the topology invariants. It is worth pointing out that while linear topology invariants
are relevant for distinguishing distributions arising from mixtures of distributions on
particular tree topologies, linear phlylogenetic invariants satisfied by distributions
arising from mixtures of distributions on trees evolving under a particular model
(model invariants) can be used in model selection as in Kedzierska et al. (2012). In
brief summary, our main results describe the vector space (and its dimension) of the
space of phylogenetic mixtures of the equal input models for any numbers n of leaves
and « of states:

— across all trees (Theorem 1) by providing a spanning set of independent points;

— for a fixed tree (Theorem 2); and

— for an infinite state version of the equal input model, known as Kimura’s infinite
allele model (Proposition 5).

Using the duality between phylogenetic mixtures and linear invariants, in Corollary
1 we compute the dimension of the quotient space of linear topology invariants and
describe an algorithm for computing a basis of this space. Note that the dimension of
the space of mixtures had already been computed in Casanellas et al. (2012) and in
Fu (1995) for the Jukes—Cantor model. Theorem 3 and Corollary 3 provide a more
detailed description for trees with n = 4 leaves. The case n = 4 is of particular
interest, since the existence of a set of linear phylogenetic invariants for this case
and which, collectively, suffice to identify the tree topology means that there also exist
informative linear phylogenetic invariants that can identify any fully-resolved (binary)
tree topology on any number of leaves. This follows from the well-known fact that
any binary tree topology is fully determined by its induced quartet trees (for details
and references, see Semple and Steel 2003).

We also establish various other results along the way, including a ‘separability
condition’ from which a more general description of Lake-type invariants follows
(Proposition 3). We begin with some standard definitions, first for Markov processes
on trees, and then for the equal input model, which we show is formally equivalent
to a random cluster process on a tree (Proposition 2). We then develop a series of
preliminary results and lemmas that will lead to the main results described above.
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2 Markov processes on trees

Given a tree T = (V, E) with leaf set X, a Markov process on T with state space
S is a collection of random variables (Y, : v € V) taking values in S, and which
satisfies the following property. For each interior vertex v in 7', if Vi, ..., V), are the
sets of vertices in the connected components of 7 — v then the m random variables
W; = (Y, : v € V;) are conditionally independent given Y.

Equivalently, if we were to direct all the edges away from some (root) vertex, v,
then this condition says that conditional on Y, (for an interior vertex v of T') the
states in the subtrees descended from v are independent of each other, and are also
independent of the states in the rest of the tree.

A Markov process on T is determined entirely by the probability distribution 7 at
aroot vertex vg, and the assignment ¢ +— P () that associates a transition matrix with
each edge ¢ = (u, v) of T (the edge is directed away from vg). Matrix P() has row «

and column B entry equal to POE/? =P (v) = B|Y(4) = ), and so each row sums

to 1. If stochastic vector 7 has the property that 7 = 7 P(®) for every edge e of T,
then 7 is said to be a stationary distribution for the process. A phylogenetic model is
a Markov process on a tree where the transition matrices are required to belong to a
particular class M.

In this paper we will be concerned with trees in which the set X of leaves are
labelled, and all non-leaf (interior) vertices are unlabelled and have degree at least
three; these are called phylogenetic X-trees (Semple and Steel 2003). A tree with a
single interior vertex is called a star, while a tree for which every interior vertex has
degree three is said to be binary. We will write ab|cd for the binary tree on four leaves
(aquartet tree) that has an edge separating leaves a, b fromc, d. Afunctiony : X — §
is called a character and any Markov process on a tree with state space S induces a
(marginal) probability distribution on these characters. An important algebraic feature
of this distribution is that the probability of a character P() ) under a Markov process
on T is a polynomial function of the entries in the transition matrices.

2.1 The equal input model

The equal input model (EI) for a set S of « states is a particular type of Markov
process on a tree, defined as follows. Given a root vertex vy let 7 be a distribution of
states at vy and for each (directed) edge e = (u, v) (directed away from vp). In the
E I model, each transition matrix P(¢) has the property that for some value 6, € [0, 1]
and all states o, 8 € S with @ # 8 we have:

Py =5 -6.. (1
We shall assume that the distribution 7 is strictly positive throughout the paper.

This model generalizes the familiar fully symmetric model of k states (such as the
‘Jukes—Cantor model’, when ¥ = 4) to allow each state to have its own stationary
probability. In the case x = 4 with § equal to the four nucleotide bases, the model is
known as the Felsenstein 1981 model. The defining property of the model is that the
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probability of a transition from « to B (two distinct states) is the same, regardless of
the initial state a(# B).

Lemma 1 The following properties hold for the equal input model.

1) POSZ) =1-0, + m40,.

(1) 7 is a stationary distribution for each vertex v of the T (i.e. P(Y (v) = «) = 7y).

(iii) The process is time-reversible (i.e. for each edge e, my POE;) = nﬁP(Z) ).

(iv) If p is the probability that the ends of e receive different states under the EI
model, then p = (1 — >, 72)0,.

(v) The process is multiplicatively closed. In other words, (P(")P(e/))a,g = 740,
where =1 — (1 —6,)(1 —6,).

Proof For (i), Pae) = 1= 34, L Py =1-0,% 5.0 mp =1—0c(1 —7,). For (i),

it suffices to show that if (u, v) is a directed edge and u has stationary distribution

then v does too. But

© ©
P(Y (v) = Znype = mp Py +zny ﬂ = 7g.
y#B

For (iii), the result clearly holds if « = f so suppose o # . Then
T PLY) = ma(mg6e) = 6e) = wp Py
alyg = T p0e) = mg(mebe) = 7p Bo*

For (iv),

=2 D B = D D gbe

o B#a o B#a
which simplifies for the expression in (iv). Property (v) is left as an exercise.

For an equal input model, the transition matrix P© has eigenvalue 1 — 6, with
multiplicity k — 1 (and eigenvalue 1 with multiplicity 1). Also, for fixed r the matrices
P commute, as they can be simultaneously diagonalized by a fixed matrix (which
depends on 7). Equal input models with also have a continuous realisation with rate
matrix Q defined by its off-diagonal entries as follows:

Qup =mg, foralla,BecS,a#p

(the diagonal entries are determined by the requirement that each row of Q sums to
0). Then P© = exp(Qt) fort = —In(l1 —6,), and so 6, = 1 — e™". In the case
where 7 is uniform, the £ model reduces to the fully symmetric model in which all
substitution events have equal probability.

One feature of the £ model, that fails for most other Markov processes on trees,
is the following. Let o be any partition of the state space S, and for a state s € S let
[s] denote the corresponding block of ¢ containing s. Then for an E process Y on
the set V of vertices of a phylogenetic tree 7', let Y be the induced stochastic process
on V, defined by Y (v) = [Y (v)] for all vertices v of T.
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Proposition 1 For any E1 model with parameters 7w and {6,}, and any partition o of
S, Y is also an EI Markov process on T, with parameters 7 and {6, }, where for each
block B of o, 7t := ZﬁeB 7g.

Proof By Theorem 6.3.2 of Kemeny and Snell (1976), the condition for ¥ to be a
Markov process is that it satisfies a ‘lumpability’ criterion that for any two choices
o,a’ € A € o,andblock B € o,

P(Y(v) € B|Y(u) = a) =P(Y(v) € B|Y(u) = ).

For each B # A, this last equality is clear from (1), and since P(Y (v) € A|Y (v) =
a) = 1= 3 pes p2aP(Y(v) € B|Y(u) = ) the criterion also holds for the case

B = A.Finally, for B # A, P(Y (v) = B|Y () = A) = > 4. 5(746,) = 750k

2.2 A useful lemma

For results to come the following lemma, and its corollary will be helpful.

Lemma 2 For variables x1, x2, . . ., Xr, consider polynomials fo(x), ..., fu(X) €
R[x1, ..., x;] of the form

fix) = Z CX) ij, CX) e R.

AC(r] JjeA

(i) Then fo =0 (i.e. ¢ = 0 forall A  [r]) ifand only if for any t # 0, fo(x) =0
forallx € {0, t}".

(i) Let f = (f1,..., fu) : R" — RM andlet L : RM — R be a linear map. Define
an equivalence relation among the elements of {0, 1} by x ~ %' if f(x) = f (X)),
and let x1, ..., % be representatives of these equivalence classes. We call q; =
fG),i=1,...,5 Then L(f(x)) =0 forall x € R" if and only if L(g;) =0
forj=1,...,5s.

Proof (i) The ‘only if” part holds automatically; for the ‘if” direction, given any subset
B of [r], let h(B) = h(x®) where xl.B =1tifi € B and xiB = 0 otherwise. Then
h(B) = 0 by hypothesis, and 7(B) = > ,cp cat!l, by definition. Applying the
(generalized) principle of inclusion and exclusion it follows that, for each A C [n],
cattl =3 o (=1)A=BIh(B) = 0,50 c4 = 0.

(ii) The map h = L o f satisfies the hypotheses of (i), hence L( f(x)) = 0 for all x if
and only if L(f(x)) = 0 for all x € {0, 1}". Then the statement follows immediately
due to the definition of the equivalence relation.

In what follows we will use this lemma to check linear relations among the character
probabilities.

In the ET model, once we fix m, the probability Pr(x |®) of observing a character
at the leaves of T satisfies the hypotheses of the corollary with r equal to the number
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Fig. 1 Cutting the three edges marked * in the tree on the eft leads to the partition of X shown at right.
Under the random cluster model these four blocks are independently assigned states from the distribution
b4

of edges and variables in ® = {6.}.c£(r). Indeed, by Lemma 1 (i), any entry of the
transition matrix P (¢ is a linear function of 6, and hence the expression

Prixl®) = > =, [] P9, )

(5)peSUT) (u,w)eE(T)

(where the sum is over the states at the set Int(7") of interior vertices of 7' and sub-
ject to the convention that s,, = x(I) if w is the leaf /) satisfies the hypotheses of
Lemma 2.

Remark 1 Lemma 2 can be slightly modified to accommodate substitution matrices
with more parameters as it was done in Fu (1995).

2.3 The equal input model as a random cluster model

Our alternative description of the £/ model is as an instance of the (finite) random
cluster model (briefly RC) on trees (this phrase is also used to study processes on
graphs, such as the ‘Ising model’ in physics). For an unrooted phylogenetic tree with
leaf set [n], each edge e of T is cut independently with probability p.. The leaves in
each connected component of the resulting disconnected graph are then all assigned the
same state s with probability 77y, independently of assignments to the other components
(see Fig. 1). More precisely, for any binary function g : E(T) — {0, 1}, define C(g) to
be the set of connected componentsin 7'\ {e € E(T)|g(e) = 1}. Then the probability
Pr(x|{pe}e) of observing a character x at the leaves of T under the RC model is

> P9 pE (- po)'E@ 3)
g:E(T)—{0,1}

where P(x |g)is0if x (i) # x (j) forsomeleavesi, j inthe same connected component
in C(g) andisequal to [ | ceCg) Txe otherwise (where x. denotes the value of x at the
leaves of T that are in c). In particular, the RC model also satisfies the hypotheses of
Lemma 2.
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Proposition 2 The E I model with parameters w and {6,} produces an identical prob-
ability distribution on characters as the random cluster model in which p, = 6, for
each edge e of T.

Proof For the two models the probability of a given character (given by Egs. (2)
and (3)) satisfies the conditions required by Lemma 2 (ii), and so we can use it with
M =2 and L the difference between the probability of a given character by the two
models. Therefore, it suffices to show that the two models produce the same probability
distribution on characters whenever 6, = 1 for all e € F and 6, = 0 of all edges e
of T not in F (for all possible choices of subset F € E(T)). Given F, notice that if
6, = 1 for a directed edge ¢ = (u, v) of T in the EI model, then POS;) = mg for all
B € S, including § = «. In other words, when 6, = 1 for e = (u, v), the state at v
is completely independent of the state at u. This is equivalent to cutting the edge and
assigning a random state according to the distribution 7 to v, and thereby to all the
other vertices of T for which there is a path to v that does not cross another edge in F
(since P(© is the identity matrix on those edges); this is just the process described by
the random cluster model.

3 Linear phylogenetic invariants in phylogenetics

Definition 1 Consider a phylogenetic model M with state space S on a phylogenetic
tree T with n leaves. A phylogenetic invariant of a tree T under the model M is a
polynomial f in S” indeterminates that vanishes on any distribution IPr g that arises
under the phylogenetic model M (that is, f(p) = 0if p = Pr e, for any set © of
transition matrices and distribution at the root vertex).

We say that a polynomial in S” coordinates is amodel invariant if itis a phylogenetic
invariant for any tree on n leaves under the phylogenetic model M. A phylogenetic
invariant of a tree T that is not a model invariant is called a fopology invariant.

A phylogenetic invariant is a linear phylogenetic invariant (resp. linear model
invariant, linear topology invariant) if each monomial involves exactly one indeter-
minate and has degree 1. Note that this implies that the polynomial is homogeneous
(the independent term is 0). There are phylogenetic invariants of degree 1 that are
not homogeneous, for example the frivial phylogenetic invariant that arises from the
observation that in a distribution all coordinates must sum to one. However, taking
this trivial invariant into account, any other phylogenetic invariant of degree 1 can be
rewritten as a homogeneous phylogenetic invariant of degree 1 (indeed, >°; a;x; +a
is a phylogenetic invariant if and only if Zi (a; + a)x; is a phylogenetic invariant).
This is why we only call linear phylogenetic invariants those that are homogeneous
of degree 1. The sets of linear model invariants and linear phylogenetic invariants of
atree T are vector spaces.

Linear phylogenetic invariants are of particular interest since they hold even if
the process changes from character to character (provide it stays within the model for
which the invariant is valid). An important early example of linear phylogenetic invari-
ants were discovered by Lake (1987). In this paper, we first provide a new and more
general version of Lake’s invariants. It is the first time that linear topology invariants
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are given for non-uniform stationary distributions and for models on any number of
states, provided that they satisfy what we call the Partial Separability condition (see
below). It is worth noting that in our Lake-type invariants the stationary distribution
is assumed to be known.

For any phylogenetic X-tree, T (not necessarily binary), and an interior vertex v
of T consider the disconnected graph T — v. Let ¢ and " be two of the trees incident
with v.

Suppose that a Markov process Y on T takes values in state space S. For any state
s of S write Y () = s if all the leaves of T that are in ¢ are in state s (similarly for ¢').
Consider the following property.

(PS) Partial separability. For some interior vertex v, and for some subset {ay, az,
by, by} of four distinct elements of S one has

P(Y(t) =a;ilY(v) =s5) =n(a;j)c, whens e S —{ay,az},i=1,2;
and
P(Y() =b;|Y(v) =s) =m(bj)d, whens e S—{b,b}, j=1,2.

Here c and d are arbitrary functions dependent on the tree and associated parameters
(but not the states) and 7 is an arbitrary function of the states such that 7 (a;) # 0,
w(b;) #0,i = 1,2 (for various models with = given by the stationary distribution).

Partial separability is satisfied by various models. For example, when |S| = 4,
it holds for the Kimura 2-ST model (and hence the Jukes—Cantor model) by taking
{a1, a2} = {A, G} (purines) and {b1, bp} = {C, T} (pyrimidines), in which case
w(a;) = w(by) = i for i = 1,2. The property also holds for the fully symmetric
model on any number of states. Moreover, the property holds for the £7/RC model
on any number of states if 7 and ¢’ are single leaves. The partial separability condition
should be viewed as an algebraic constraint rather than as a natural condition that one
might expect to hold for most evolutionary models. For instance it, is not a natural
property satisfied by evolutionary models and, for instance, it is not satisfied for the
EI/RC model if ¢ or ¢’ are not single leaves.

Let £ be any event that involves the states at the leaves of T not in ¢ or ¢’. For
example, if y and y’ are leaves of T not in ¢ or ¢’ then £ might be the event that
Y(y) = s and Y(y') = s’ for some particular s, s’ € S.

Let us write pg;; for the probability of the three-way conjunction & A {Y (1) =
ai} A{Y(t") = b;}. Notice that pg;; is a sum of probabilities of various characters
(i.e. a marginal distribution). Let

1

—————— - pgij andlet A := pe1y + pega — pgiz — peat-
maj)m(b;)

peij =

Proposition 3 (Lake-type invariants) If a Markov process on T satisfies the partial
separability condition (PS), then A = 0.
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Proof By the Markov property,
peij = D P (@) =5) - PEIY) =5) - P (1) = a;]Y (1) = 5)
-I;’(Y(t/) =b;|Y(v) =5).
Letr;j = m(a;) - w(b;), and let

Ay =rpp1p) +riipapy — ri2pap) — r2ipips,

where p; = P(Y(t) = a;|Y (v) = s), and p;. =P ) = b;|Y(v) = s). Then we
can write

1
A=
w(ay)m(az)m (b)) (b2)

ZP(Y(U) =s5) -PE|Y(v) =5) - As.

Thus it suffices to show that Ay = 0 for all s.

We consider three cases: (i): s € {a, a2}, (i) s € {b1, by} and (iii) s € S —
{a1, a2, b1, by}

In Case (i), suppose s = g;. Then p| = 7 (b1)d and p), = w(by)d, and so

Ay = d[piraam(by) + pariim(b2) — parizm(by) — prraim(b2))].
=dpilrnm(br) — (b)) +dpalriim(by) —ripm(b1)] =0+ 0 =0.

Case (ii) is similar. In Case (iii), p; p’/. = r;jcd and so
As = cdlraprin + riira2 — riara1 — rairiz] = 0.

Example 1 When we take t and ¢’ single leaves, the E1/RC model satisfies the (PS)
property and Lemma 3 can be applied. If the stationary distribution = is fixed, then A
gives rise to two types of linear phylogenetic invariants for the quartet tree 12|34,

H, : Kxyxy Kyyzw — Xxyzy  Fayaw
L oy m@mrw)  w@ry)  w)w(w)
H - Xxyyx Xxywz Xayyz  Haywx

rr(y)  r@rw) @A) TE)7T(Y)

(here Xy, y, 3 x4 18 the coordinate that corresponds to Pz (x1 x2 x3 x4))- To see how these
follow from Proposition 3, for H; take x = a;, y = by, z = a2, w = by and let € be
the eventthat Y (1) = aj and Y(2) = by;for Hatakex = b,y = a1,z =by, w = ay
and let £ be the event that Y (1) = b; and Y (2) = a;. Note that these are topology
invariants because the first is not a phylogenetic invariant for the quartet 13|24 while
the second is not a phylogenetic invariant for 14]23.
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4 Generating linear invariants for the RC/E I model on i states
4.1 Combinatorial concepts and terminology

Let T be a phylogenetic X-tree, X = [n], and consider a Random Cluster model
(or Equal Input model) on T, with stationary distribution 7 on a set S of k states.
Henceforth we assume that 7 is fixed and it is positive, that is, g #= 0 Vs € S. We
denote by e; the pendant edge incident with leaf i. A character x : [n] — S shall
be denoted as x = x1...xn if x; = x(i) fori = 1,...,n. We let Ch(n, k) to be
the set of characters on [r] for a fixed state space (S) of size x and denote by N its
cardinality (N = «"*). We think of a distribution Pr @ on the set of characters under
the RC model on T as a vector of Ch(n, k) coordinates and therefore lying in the real
vector space with coordinates x,, x € Ch(n, k) (the point P7 ¢ has coordinate x,
equal to P7r(x|®)).

Let F be a subforest of T, that is, a subgraph comprised of a collection of vertex

disjoint trees {77, ..., T,} such that the only nodes of degree < 1 in T; are leaves of
T (we allow T; to be formed by only one leaf and we allow F = {T'} also). We say
that a subforest F = {T, ..., T,} is a full subforest if U; L(T;) = X; we let Fr be the

set of full subforests of T'. For a full subforest F, we define ®r to be the following
collection of edge parameters under the RC model: 6, = 0 if e € E(T;) for some
T; € F and 6, = 1 for all other edges e. We denote by o (F) the partition that F
describes on [n], that is, two leaves are in the same block of o (F) if they lie in the
same subtree of F. The full subforest formed by singletons will be called the trivial
subforest.

Given a character y, we define o () to be the partition {S, ..., S;} of the set of
leaves defined according to “two leaves i, j are in the same block of the partition if
Xxi = x;”. Note that given a full subforest /' = {T1, ..., T} of T and a character x,
Pr(x|®F) is zero if o (F) does not refine o (x) and is equal to H;=1 7y, otherwise
(here s; stands for the value of x at the leaves of T;).

For any partition o of [n], and any phylogenetic tree 7 on [r], we say that o is
convex on T (or compatible with T) if the collection of induced subtrees {T[B] :
B € o} are vertex disjoint (here 7[B] is the minimal connected subgraph (subtree)
of T containing the leaves in B). Let co(T') be the set of partitions of [n] that are
convex on T. There is a natural correspondence between full subforests of 7" and
convex partitions on 7' that associates to each partition o € co(7’) the full subforest
Fr(o) = {T[B] : B € o}. Therefore, the number of full subforests of a tree T is equal
to |co(T)|, | Fr| = |co(T)|. When T is a binary tree, [co(T)| = F,—1 where Fj is
the k-th Fibonacci number, starting with F; = F> = 1 (see Steel and Fu 1995). By
contrast, for a star tree on [n] we have [co(T)| = 2" —n. A partitiono = {Bj, ..., By}
of [n] is incompatible with T if it is not convex on T, that is, there exist two blocks
B; and B; from o for which T[B;] and T'[B;] share at least one vertex. A singleton
block B of o is a block of size 1. The number of partitions of [n] is known as the Bell
number B,,.

Finally, let Inc(T') be the set of partitions of [n] that are not convex on T (i.e. they
are ‘incompatible’ with 7). Thus |Inc(T)| = B;, — |co(T)]|.
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4.2 Results

Lemma 3 (a) Let ® be a collection of parameters (0,)ccr (1) such that 6, is either
O or 1 forall e € E(T). Then there exists a unique full subforest F € Fr such
that ]P)T,@ = ]P)T,(:)p

(b) A degree 1 polynomial . y AxXy is a linear phylogenetic invariant for a tree T
if and only if

> Pr(x|®r) =0
X

for any full subforest F € Fr.

Proof (a) We first prove that two full subforests F' and G satisfy P(x|®g) #
P(x|®F) for some x if F # G. As F, G are full subforests, they are differ-
ent if and only if they induce different partitions o (F'), 0 (G) on the set of leaves.
Then there exists an edge eg such that e is compatible with o (F) (i.e, o (F) refines
the bipartition induced by egp) but is not compatible with o (G) (or the other way
around). If x is the character that assigns state x at the leaves of one connected
component of T — e and state y # x at the leaves of the other component, then
P(x|®g) = 0 while P(x |®F) is not zero.

Given O, let A be the set of edges e in T such that 6, = 1. Let o (T \ A) be the
partition induced on X when removing all edges in A (if an edge in A is a pendant
edge, then removing it means that we separate the corresponding leaf). If F is the
subforest Fr(o(T \ A)), then we have Pr ¢ = Pr g,.

(b) This follows from part (a) and Lemma 2 (ii).

Let ®© be a collection of edge parameters on a tree T evolving under the RC model.
For a site character x, we define

Pr(x1©)
Ty Ty - - Ty

n

pL(©) =

~ . . .~ _ X

We call %, the corresponding coordinates: X, = m

Lemma 4 We say that two characters x and x' are equivalent, x = x/, if o (x) =
o (x) and x; = x/ for any leaf i that belongs to a block of the partition of cardinality

greater than or equal to 2. Let x, x' be two characters on the set X = [n].

(@) If x = x' then X, — %, is a linear model invariant.

(b) If m is not invariant by any permutation of the set of states, then for any tree T
the equality ﬁ;(@) = 15;(@) for every ® implies that x = x' (i.e. in this case
every linear phylogenetic invariant of type X, — %, satisfies x = x').

Proof (a)Let x and x' be two equivalent characters, leto be o (x) = o (x’),and let T

be any X-tree. According to Lemma 3 (b) we need to check that p, (©f) = p,/(OF)
forany F = {Ty,...,T,} € Fr.
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If o (F) does not refine o, then P7(x|®F) and Pr(x'|OF) are zero and we are
done.
If o (F) does refine o, then P (x|®F) = my, ... ms, where s; is the value of x at

the leaves of T; (note that we may have s; = s;). Therefore ﬁ; (OF) = == 1 —
Ty Ty

wheren; = |L(T;)|. Aso (F) refines o (x) = o (x') and the states of x and x’ coincide
for any block of o of size > 2, the states of x and x’ also coincide at the leaves of T;
if n; > 2. Therefore, p! (©F) = ﬁ){,(@F).

As for (b), assume that 7 is not invariant by any permutation of the set of states (i.e.
7wy = 7y if and only if s = ). Assume that for a tree 7 we have ﬁ;(@r) = ﬁ;,(G)T)
for any collection of edge parameters ®r. Then, for each block B; of o (x) of size
b; greater or equal than 2 consider the forest F; = {Tp,, Uj¢p,; {I}}, where T, is the
smallest subtree of T joining the leaves in B;. Then 15; (OF) = # if 5; is the state

of x at the leaves of B;. By hypothesis this is equal to ﬁ;,(@;:,.). But ]3;, (©F) is zero
if 0 (x’) does not contain the block B;. Performing the same argument for any block

B; of size b; > 2 we obtain o (x) = o(x’). Now for each such block B; we have

13;(®F,-) = ]3;,((93) and hence % = % if s/ is the state of x” at the leaves of

T
s; /

B;. As b; > 2, the assumption on 7 implies s; = sl.’ . Thus, x and x’ are equivalent
characters.

s

Remark 2 1f m is the uniform distribution (i.e we consider the «-state fully symmetric
model), then we have Py (x|®) = Pr(x'|®) if and only if o (x) = o (x’). Indeed,
in this case if we consider any permutation g of the set of states S, the polynomials
Xy — Xg.y are linear phylogenetic invariants for any tree (see Casanellas et al. 2012),
where g - x stands for the corresponding permutation of states at the leaves. But these
polynomials can also be rewritten as x, — x, for o(x) = o (x).

Examples: n =3 andn =4

— For n = 3, Lemma 4 gives the following. If « > 3 and we consider three different
states x, y, z and another set of three different states x’, y’, 7/, the linear invariants
obtained in Lemma 4 are:

Kxyz = Xxly'z/s Xaxy = Xaxzs Xayx = Xxzxs Xyxx — Xzxx-

— For n = 4, Lemma 4 gives the following. If ¥ > 4 and we consider four different
states x, y, z, w and another set of four different states x’, y’, 7/, w’, the linear
phylogenetic invariants of Lemma 4 are:

Xxyzw — Xx'y'z/w’s Xxxyz = Xaxy'z/» Xxxxy = Xxxxy's

and the analogous invariants obtained for the other partitions of [4] involving
singletons. o

There are several ways to construct linear invariants from smaller trees and a sys-
tematic way to find model invariants for certain models with stationary distribution
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has been described in Fu and Li (1991). The most immediate one, used already in
the quoted paper, uses the following marginalization lemma. If i is a leaf of T', we
call 7; the tree obtained by removing leaf i and its incident edge, and suppressing the
resulting degree-2 vertex if the interior node had degree 3.

Lemma 5 Leti be a leaf of a phylogenetic [n]-tree T and let T; be the corresponding
tree. Let | be a linear homogeneous map [ : R — Randlet M; : R — R be
the marginalization map at leaf'i. If [(p;) = O for any distribution p; from a Markov
process on the tree T;, then (I o M;)(p) = 0 for any distribution p that comes from a
Markov process on the tree T.

Proof To prove this lemma one just needs to observe that for any distribution p coming
form a Markov process on 7', M; (p) is a distribution on 7; that comes from the Markov
process that at each edge e has the same transition matrices as e had on the tree T'.

Another construction, which is new, and particular to the RC/E I model is described
in the following lemma. This lemma shall be used in Sect. 6 where we provide specific
linear invariants for quartet trees.

Lemma 6 (Extensionlemma) Let A = ZX ayxy be alinear invariant for an n]-tree
T evolving under the RC model.

(a) Let T' be the tree obtained by subdividing an edge of T and attaching a new
pendant edge at the newly introduced node. Let s be a new state not involved in
A (that is, a,, = 0if x contains s). Then,

ZaXXXS “4)
X

is a linear invariant for T' (where the new leaf is labelled as leaf n + 1).

(b) Let T' be the tree obtained by subdividing an edge of T and attaching a tree T of
m + 1 leaves to the newly introduced node (so that T' has n + m leaves and the
newly introduced leaves are labelled from n + 1 to n + m). Let u be a character
on m leaves for which a, = 0 if x contains some state in | (that is, A does
not involve the states of u at any leaf). Then >, y Ax Xy isa linear phylogenetic
invariant for T' (where x i stands for states x at the first n leaves and states |t
at the other m leaves).

(c) Suppose T is the star tree, and let |1 be a character on m leaves for which ay, =0
if x contains some state in j1. Then, for the star tree T’ with n +m leaves evolving
under the RC model, >, 5 AxXyp is a linear phylogenetic invariant.

Proof (a) By Lemma 3, we only need to check that (4) vanishes for the distributions
generated with ® = O where F is a full subforest of 7’. We denote by ® FiT the
corresponding probabilities at the edges of 7 and we denote by A(® g 1) the value of
A evaluated at Pr o ;-

If F contains a tree with the new edge ¢’ on it, then, for all x involved in A, we
have P7/(xs|®F) = 0 (because s is a state not involved in A) and then (4) trivially
vanishes. If F' does not contain the edge ¢/, then the new leaf is a singleton in F. In
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this case we have Pr/ (xs|®r) = nsPr(x|© g ir). Therefore (4) evaluated at P/ g,
is A(0F r) multiplied by 7y, so it vanishes as well.

(b) If T is binary, then the addition of 7 can be obtained by successively adding
cherries to 7. So, assume that we have added one cherry as in (a), so that we have
assigned state s to the new leaf [, |, and now we add a new cherry to the edge leading
to 1,1 1. Now the new state s’ that we consider for the new leaf now can be allowed to
be equal to the state s as long as s’ differs from the states that appear in A. Indeed, if
s’ = s, there might be forests containing the new cherry, but all of them give probability
zero for the states appearing in the polynomial except if the forest is formed by the new
cherry and other trees. For such a forest F we have P(xss|®F) = m,P(x|®F|7) and
hence the polynomial evaluated at the parameters of this forest is A(® g|7) multiplied
by 7y which vanishes again.

If T is not a binary tree, then it can be also constructed from a binary tree by
contracting edges. As for binary tree the polynomial is a phylogenetic invariant, so it
is when we contract edges (note that if a polynomial is a phylogenetic invariant for
a tree, then it is also a phylogenetic invariant for the tree Ty obtained by contracting
one edge ¢y because any collection of edge parameters at Ty gives a collection of edge
parameters for 7' by assigning ,, = 0).

(c) This follows from (b) by contracting edges.

5 Phylogenetic mixtures

So far, we have found some linear polynomials that turn out to be either model invari-
ants or topology invariants. But we were not able to say whether these invariants
actually generate the space of linear phylogenetic invariants for a tree 7. On the other
hand, it would be interesting to know whether a distribution where all these linear
invariants vanish is actually a linear combination from distributions on a tree or a
mixture of trees. To this end, one defines the space of mixtures on a tree (§tefakovié
and Vigoda 2007).

Definition 2 Fix a distribution 7 on the set of states. Given a particular tree 7', we
denote by Pr_ g the distribution of a RC model with parameters 7, ® on 7. We define
the space of mixtures on T as

'D;{ = [p = Z)‘iPTyG)i ’ Z)Li = 1] .
i i

If 7 is the set of phylogenetic trees on [12], we define the space of phylogenetic mixtures
on [n] as

Dﬂ:[PZZMPT,-,@,-‘ZM=1,TI'E7']
i i

When {p;};cs is a set of points in an affine linear space, we denote by (p;|i € I),
the linear span of these points, that is, the set of points ¢ = >, A; p; with >, A; =1
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(we put the subindex a in order to distinguish this affine linear span from the usual
linear span of vectors). Note that the spaces of phylogenetic mixtures are affine linear
varieties,

D?=<P)P=PT,(-)>G, D”=<p‘p=IP’T,@,TeT>a,

and both lie inside the hyperplane

H={x=(@), eRY > x,=1
X€Ch(n,x)

Strictly speaking, for applications in phylogenetics it is only relevant to consider
points in D" (or D7) that are actually distributions. In other words, one should be
mainly interested in convex combinations of the points Pr o:

[P = ZMIP’T,@,-
i

[P = ZMPT,»,@i
i

K[EO,Z)\,‘II] and

i

Aizo,ZAizl,TiGT].
i

However, as the dimension of a polyhedron is the dimension of its affine hull, we focus
on computing the dimension of D* and D7.

For any distribution 7z, we denote by L™ the vector space of linear model invariants
and by L7 the space of all linear phylogenetic invariants for a tree 7. The orthogonal
subspace of L™ (respectively L7) shall be denoted by E” (respectively E7), that is,
E7 is the set of vectors in R"Y where all the linear model invariants vanish and E 7 the
set of vectors where all the linear phylogenetic invariants for 7' vanish (by identifying
dual and orthogonal spaces). In other words, E7 and E” are spanned by the following
vectors of distributions:

E¥=<P‘P=PT,(~)>, ETTr=<P‘P=PT,(~), T€T>-

Note that when we use p € RY as a vector, we use the notation p to distinguish it
from its use as an affine point in R" . Then the following equalities are clear

D} =EfNH, D"=E"NH.
Therefore, studying phylogenetic mixtures (on [n] or on a tree) is equivalent to study-
ing linear phylogenetic invariants (only model invariants or together with topology

invariants). Note that due to Lemma 3, it is clear that

Ef =(p=Pre,|FeFr), E"=(p=Pre.lT €T,FcFr)
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(see also Matsen et al. 2008, Prop. 10).
In this section we compute the dimension of the spaces of phylogenetic mixtures.

5.1 Model invariants and phylogenetic mixtures

We fix n > 4 throughout this section. We call X, the set of partitions of [n] of size at
most « (note that if « > n, this is the whole set of partitions of [r]). If o is a partition
of [n] compatible with trees T and 7', and we consider F = Fr(o) and F' = Fr/(0),
then one has Pr ¢, = Pr/ e,,. This point will be briefly denoted as g, (because it
does not depend on the chosen tree compatible with o). We give the coordinates of
the points g, for n = 4 shortly, see Example 2. Note that D" = (g, | 0 € X,),, but
this spanning set of points are not affine linearly independent if « > n:

Theorem 1 If 7 is a distribution on k states with positive entries, then {q, | 0 € Xy}
are affine linearly independent points. Moreover, if 7w is the uniform distribution or a
generic distribution, or if k > n, then DT coincides with (g, | 0 € Xy), and has
dimension | X, | — 1 (which equals B, — 1 if k > n).

The inclusion (g, | o € %), € DT clearly holds (and if « > n, the other
inclusion is trivial). The idea for the proof of the other inclusionis touse D" = E"NH,
bound the dimension of E™ from above by a quantity d and prove that the set of points

qs span an affine linear variety of dimension d — 1. We first need the following lemma.

Lemma 7 (a) Foranyk, the set{q, | 0 € X} isformed by affine linearly indepen-
dent points for any distribution 7w (with positive entries).

(b) Ify is the uniform distribution, then the set of linear model invariants is spanned
by the set of polynomials x, — x, for o (x) = o (x'). In particular, the set of
vectors E™U where the model invariants vanish has dimension equal to |2y |.

Proof (a) We need to prove that if we have a linear combination

D togs =0 ()

o€ Xy

with X" A, = 0, then we need to prove that the coefficients A, are zero. We proceed
by induction on m = min{n, «}. Note that as all partitions of [n] are of size at most 7,
%, equals the set X, of partitions of size at most m.

If m = 1, then X, contains a single element and there is nothing to prove. Assume
that m > 2 and consider a linear combination as in Eq. (5).

Note that the coordinate X, of ¢, is zero if o does not refine o(x). Let X, be a
coordinate such that o (x) has the maximum size m. Then X, is different from zero
only for g4 () (because the other points g, correspond to partitions that do not refine
o (x)). Thus, As(x) = 0 and hence in (5) we have A, = 0 for all o of size m. Thus,
we are left with a linear combination such as

> Ao =0, D k=0

0€ Xy-1 0€ X1
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The result follows by the induction hypothesis.

(b) For the uniform distribution, each polynomial x, —x,/ foro (x) = o (x ")is clearly
amodel invariant (see Remark 2). Thus the set of vectors E”V where these polynomials
vanish has dimension less than or equal to | X, |. The set of points considered in (a) for
7y is contained in E”V N H, and hence (as H is an equation linearly independent with
the previous polynomials), the dimension of E™V is | X, |. It follows that the inclusion
E™ C {x € RN|xX = x, if 6 (x) = o(x")} is actually an equality and the set of
model invariants is spanned by the polynomials x, — x, for o (x) = o (x").

Now we are ready to prove the theorem.

Proof of Theorem 1 We claim that the dimension of E™ can be bounded from above
by the dimension of E™V:

Claim: For a generic distribution 7, the dimension of E” is less than or equal to
the dimension E™ for a particular distribution 7.

Proof of Claim: We think first of the coordinates of 7 as parameters, so that we
consider model invariants as linear polynomials in the variables x, with coefficients
in the field of rational functions R(sr) (i.e. the field of fractions of the ring of poly-
nomials R[7my, ..., m]). The set of all model invariants is a R(rmq, ..., m,)-vector
space. Consider a basis /1, ..., [, of this space and let E be its orthogonal subspace,
E={xeRV|j(x) =0,i =1,...,t} sothat dimE = N — . When we sub-
stitute w by a particular value mg, /1, ...,[; may not be linearly independent any
more, and the corresponding space E™ may have dimension > dim E. But for a
generic m, the dimension of the corresponding space coincides with dimension of
E (because mw moves in an irreducible space). Therefore, for a generic 7 we have
dim E™ = dim E < dim E™ and the claim is proved. By the Claim, for a generic 7,
the dimension of E” is less than or equal to dim E™V for the uniform distribution ¢/
and the dimension of this vector space is | X, | (by Lemma 7(b)). Thus, dim E™ < |Z,|.
On the other hand, the dimension of (g, | 0 € X, is |X,| — 1 by Lemma 7(a). The
inclusion

(go | 0 €Z) D" =E"NH

finishes the proof. Note that if k > n one immediately has D" = (¢, | 0 € X, for
any 7, and its dimension follows from Lemma 7(a). O

Remark 3 In Theorem 1 we give a set of affine independent points that span D7 for
almost any distribution 7r. From this set of points (vectors) it easy to compute a basis
of the space of linear invariants L™ as its orthogonal space.

Example 2 'We give here the coordinates of the points that span the spaces of mixtures
on trees withn =4 andk =4 ork = 3.

For k = 4 we have |X4] = B4 = 15and D™ = (¢, | 0 € X,). We start
with 12 partitions o that correspond to forests in the star tree 7.. We call g, the
point corresponding to the trivial subforest of T (formed by singletons). We call g;;
the points corresponding to the full subforest of T, formed by the tree T'[i, j] and
singletons (this gives six points, g;;, i < j). Then we consider the forests formed by a
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Table 1 Linearly independent points for Dy, for n = 4 in coordinates X's

XXXX XXXy XXyX XYyXX YXXX XXYYy XyXy XyyX XXYZ XyXZ XyZX YyXXZ YyXZX YZXX XYZW

@ 1 1 1 1 1 1 1 1 11 1 1 1 1
m = = &= 0 o L o o L o o o o o o
i = = 0 £ 0 o L o o L o o 0o o o
a4 = 0 &= £ 0 o o L o o L o o o o
© m om0 0 40 0 oz 0 0 0 Z 0 0 0
o = 0 L o0 Lo % 0 0 0 0 L 0 o
@4 A= 0 = = % 0o 0 0 0o 0 0 0 £ o0
123 HL} HL% o0 0 o0 o O 0 O O 0 0 0 0
q124 ﬁ 0 ”L% 6o 0 o0 o0 0 O O0O O 0 0 0 0
q134 # 0 0 ﬁ 0 0 o0 o0 0O 0O O 0 0 0 O
@4 &% 0o o o L o o o o o o 0o 0 o0 0
?

o
S 5
o
o
o
(=]
[«
o
o
o
=]
[«

q1234 =3 0 0
TTx

Table 2 The new point added for tree 12|34

XXXX XXXy XXYX XYXX YXXX XXYy XyXy XyyX XXYZ XyXZ XYZX YXXZ YXZX YZXX XyZW

q12‘34$0000ﬁ000000000

subtree of three leaves i, j, k and a singleton, which gives four points 123, g124, g134,
q234. Finally, we denote by g1234 the point corresponding to the forest F' = {T.}. To
simplify notation we write the normalized coordinates X, . ,, instead of x,, ,,. Let
the space of states S be {x, y, z, w}. In order to prove that the 15 points we provide
are affine linearly independent, it is enough to look at the following 15 coordinates of
these points:

Kxxxxs Xxxxys ZXxxyxs Xxyxxs Xyxxxs Xxxyys Xxyxys Xxyyxs

Kxxyzs Xxyxzs Xxyzxs Xyxzxs Xyxxzr Xyzxxs Xxyzw-

In Table 1 we write the coordinates of the first 12 points considered above.

If we consider the previous points plus the point 12|34 that corresponds to the forest
{T[1, 2], T3, 4]} on the tree 71234, then we obtain a set of linearly independent points
that span DJITZIS 4- In Table 2 we show the coordinates of this new point.

Now we consider the points corresponding to the forests compatible for the remain-
ing quartets, ¢1324, q14[23 (their coordinates are shown in Table 3). The previous points
together with these two points span the space of mixtures D” .
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Table 3 The two points added when considering the quartets 13|24 and 14|23

XXXX XXXy XXyX XyXX YXXX XXYy XyXy XyyX XXyz XyXZ XyzZX YXXZ YXZX yZXX XYyZW

0 0 0 0 0 Lo 0 0 0 0 0 0 0

Tx Ty

0 0 0 0 0 0 L9 0 0 0 0 0 0

TTxTy

413|124

A ‘_ 5~‘”

=9l

q14)23

Consider now the case x = 3. Then, according to Theorem 1, D" has dimension
13 for generic 7. Indeed, if we consider the 15 points above, then they are no longer
linearly independent when the last column of the table is removed. The last 14 points
suffice to span D" in this case.

6 Phylogenetic mixtures on a fixed tree

In this section we compute the dimension of the space of phylogenetic mixtures on
a tree, give an algorithm to compute a basis of the space of liner topology invariants
and we explain whether Lake-type invariants of Proposition 3 suffice to describe the
space of phylogenetic invariants. For x = 2 there are known to be no linear topology
invariants (Matsen et al. 2008); these arise for k > 3 (see Lemma 10 below, though
Lake-type invariants only appear when k > 4). Moreover, even when k = 4 for certain
models there exist other linear topology invariants beyond the Lake-type ones (Fu
1995). By considering the E1/RC model we show how it is possible to characterize
the quotient space of linear topology invariants for any number of states and taxa,
and provide an explicit algorithm for constructing a basis for the (quotient) space
of topological invariants. As explained in the introduction, linear topology invariants
are of interest because they provide a way to distinguish distributions coming from
mixtures on a particular topology from distributions arising as mixtures on another
topology.

Recall that E7 is the space of vectors where the linear phylogenetic invariants
vanish. We know by Lemma 3(b) that a homogeneous linear polynomial vanishes on
all distributions Pr ¢ if and only if it vanishes on all distributions of type Pr ¢, for
F a full subforest of T. Therefore we have

E7 = (qp| F € Fr).

Example 3 Let n = 3, let T be the tripod tree and assume that x > 3. We prove
here that the vectors qr, for F € Fr are linearly independent. These vectors are:
q, corresponding to the trivial subforest, q;,3, q;3)2, 23/ corresponding to full sub
forests with one singleton, and q;,3 corresponding to the tree itself. We choose three
states x, y, z and we provide in Table 4 the submatrix corresponding to the coordinates
Xxxxs Xxxy» Xxxys Xxyxr Xyxx» Xyyz. It is clear that this submatrix has nonvanishing
determinant if 7 is positive.

Let T be a binary tree on [n], n > 4, and assume that leaves n and n — 1 form a
cherry c. Let u be the interior node of this cherry, and let e be the edge adjacent to u
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Table 4 Table of Example 3

Xxxx Xxxy Xxxy Xxyx Xyxx Xxyz

qe 3 ﬂ_%]Ty T['%ﬂy T[_%T[y ﬂxﬂyﬂz
q12)3 f TxTy 0 0 0

q132 nf 0 TxTy 0 0

3|1 nf 0 0 TTx Ty 0

q123 TTx 0 0 0 0

and not to n, n — 1. Let T’ be the subtree T — {e,,, e,—1}.We denote by F, the set of
full subforests of T that contain a tree with the cherry ¢ = {e,, e,—1}. For any leaf /
we let F; be the set of full subforests of T that contain / as a singleton and we call 7;
the tree obtained by replacing the two edges adjacent to ¢; by a single edge. Then F7r
is the disjoint union of F, and F,—1 U F,.

Lemma 8 For a binary tree on n > 4 leaves we have isomorphisms of vector spaces:
Qrl F € F1) =(qg| G € Fp), (qpl F € Fe) =(4gl G € Fr).

Proof We start with the first isomorphism. For simplicity we assume [ = n (and
for this isomorphism 7 is not necessarily a leaf in a cherry). Let V,, be the vector
space (qp| F € F,). For any state s € S we denote by f* the projection map
from R¥" to the subspace Ry corresponding to coordinates X, . . s, SO that we can
view R" as the direct sum Ry, @ --- @ Ry, . For a vector v € R<" we denote by
(f'(v), ..., f**(v)) the decomposition of v according to this direct sum. Note that
if F e Fy,then Pr(x1...x2lOF) = 7y, Pr(x1 ... Xn=11®F|7,). In particular, we
have f*(qp) = msqp forany s € Sand qp = (75,957, - - - s, AF|T;,)-

We prove here that (for any s € §) the linear map f* is an isomorphism between
V,, and the target vector space. First of all, the linear map f\év,l is injective. Indeed,
if fjy, (v) = 0 for a certain v = > pcr Arqp, then 0 = > por Arfi(qp) =
> rerF, MFTsqp 7, and hence (assuming 77y # 0) > pe 7 AFqp 7 = 0. This implies
thatv =(0,...,0)in Ry, @ --- ® Ry, and so f|Yvn is an injective linear map.

We prove that the image of f|SV,, is {(qg| G € Fr,). From the above, one can easily
see that Im £}, 'is contained in (qg| G € Fr,). Now for any G € Fr, we shall find

G € Fr such that G|z, = G. If n does not belong to a cherry, we consider G to
be the full subforest of 7" defined by the singleton {n}, and the trees in G (thinking
of T;, as a subtree of T). If n belongs to a cherry, we can think of T}, as the tree T’
described above. Now for any G € F7/, we consider G the full subforest of T defined
by: the singleton {n}, # for any ¢ € G not containing e nor u, t Ue,_; if thereist € G
containing e, and the singleton {n — 1} if G contains the singleton {u}. In this way we
have G|Tr =Gandqg = n% f|SVn q; € Im fISV,,’ so the other inclusion is proved.

As far as the second isomorphism is concerned, we consider the subspace L C R !
given by coordinates of type x,.. y,_,ss fOrany xi, ..., x,—2, s in S. We have R =
L @ L+ and if f denotes the projection to L, then any vector v can be decomposed as
(fW,v—fW).If F € FethenPr(x1 ... xum1 Xn|®F) is zero if x,—1 # xn and is
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equal to Pr/(x1 ... xu—2|®OFp|77) if Xp—1 = x» = 5. Hence, if F' € F. we have qp =
(f(q),0) = (qp7/, 0). Now we prove that fjy, is injective. Let v = ZFe]—‘c AFPqQFp
and suppose that f(v) =0.Then0 = >z Arf(Qp) = 2 per, Arqp and

v = z AFqp = z Ar(Qp7, 0) = Z Arqp7, 0| =0.

FeF, FeF, FeF,

This proves that f|y, is injective. Moreover the image of this map is included in the
subspace (q;| G € Fr). For any G € Fp we consider the full subforest Gof T
defined by: the trees in G that do not contain e, t Uc if  contains e, and the cherry c if G
contains the singleton {u}. Therefore we have C_;|T/ =Gandqg = fiv.qg € Imffvc'

Theorem 2 Let T a phylogenetic tree on n leaves, n > 3, evolving under the EI/RC
model for any distribution & on k > 3 states. Then, {qr| F € Fr} are affine inde-
pendent points that span the space of phylogenetic mixtures on T, D7F.. In particular,
the dimension of D}, is |Fr| — 1 and when T is binary this dimension is equal to the
Fibonacci number F»;,_1 minus 1.

Proof We proceed by induction on n. The statement of the theorem is equivalent to
dim EF = |Fr|.

The cases n = 3 and n = 4 are handled by Examples 2 and 3.

For n > 5, suppose first that T is a binary tree. We may assume that the statement
is true for trees with strictly less than n leaves. We suppose that n and n — 1 form a
cherry and adopt the notation fixed above. Then we have that

Ef =(qp| F e Fr) = (qpl F € Famt UFn) +{qp| F € Fo).

Note that (qp| F € F,—1 U Fy,) equals (qp| F € Fu—1) + (qp| F € Fn). We
know that (qr| F € F,—1) and (qp| F € F,) have dimension |F7/| by Lemma 8
and the induction hypothesis. These subspaces intersectin (qz| F € F,—1 NFy,). By
Lemma 8 (applied twice) and the induction hypothesis, this linear space has dimension
|Fr#| where T” is a tree on n — 2 leaves. Therefore, using Grassmann’s formula
(dim(U + W) = dim U + dim W — dim(U N W) for subspaces U, W of a vector
space) we have that dim((qr| F € Fn—1)+{(qp| F € Fn)) = |Fp| +|Fr | — | Frrl.
As all of these trees are binary, this dimension equals the Fibonacci number F5,_»
since Fop—2 = Fap3 + Fay—3 — Fan-s.

On the other hand, by Lemma 8 and the induction hypothesis, (qz| F € F.)
has dimension |F7/| = F,_3. Let us prove now that (qp| F € F;) and (qp| F €
Fn—1 U F,) only intersect in the zero vector. Let v be a vector in the intersection,

v = Z AFqQp = Z 2%l teX

FG]‘—V,,lufn GEFC

Looking at the right-hand side we see that all the coordinates of v of type %, ., s’ fOr
s # s’ are zero. Let us fix x1, ..., xn—2, s € S and we shall prove that the coordinate
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Xyioogneass OF UV, 35 5, 555 (v), 18 0. Let us split the sum ZFeJ—'n_luﬂ into two terms
(although this decomposition may not be unique): > rcx=  ArQr + 2 per, AHAH-
We denote by F’ the restriction of a forest F to T'. Note that

Ky oosn—25s (V) = TsKyy xu s § AFQE | + Xy as 2 AHq g
FeF,—1 HeF,

For each o € S we denote by a(a) the value of the coordinate xy; 4, ,o Of
> rer,_, MFqp and by b(e) the value of this coordinate at >_ ;. = Arqp . We want
to prove that a(s) + b(s) = 0. Consider s’ and s” states in S different from s (this is
possible because k > 3). As

0= Xx|...x,,_2ss/(v) =nga(s) + 7sb(s"),
0= XX]..‘Xn_zS/S(v) = ﬂsa(s/) + myb(s),
0 =Xy, 4, 055" (V) = wa(s’) + myb(s”), and

0= XXIA..Xn,zs”s’(v) = JTS/LZ(S//) + ﬂs”b(sl)a
we have

!
s

a(s) + b(s) = —%(b(s/) +a(s)) = %(a(s”) +b(s")).

s

But now we use the analogous relations between a(s), a(s”), b(s), b(s”):

0 = Xy, g _ass” (V) = gra(s) + msb(s”) and

0= X)(1..,x,,,25”s(v) = ”Sa(s”) + ﬂs//b(s),

in order to obtain that a(s) + b(s) = — 2= (b(s") + a(s")). Therefore, a(s) + b(s) =
—a(s) — b(s) and this quantity vanishes.
Applying Grassmann’s formula again, we have (qp| F € F,_1 UF,) N(qp| F €

Fe) = 0and
dim E7 = dim((qp| F € Fy—1) +(qp| F € F)) +dim(qp| F € Fe).

We have already seen that the first term is equal to F>,,_>. The second term is equal to
F>,—3 by Lemma 8 and the induction hypothesis. Therefore dim E7 = Fa,—1 = |Fr|.
Let us assume now that 7 is not binary. We already know that E7 = (qr| F € Fr)
and we only need to check that the vectors q, F' € Fr, are linearly independent. As
the forests in 7" are also subforests of any binary tree that refines 7', these vectors are
linearly independent by the binary tree case proved above. This finishes the proof.

Recall that L™ = (E™)+ and L} =(E ?)L and therefore the quotient space L7 /L™
of linear topology invariants is isomorphic to E7 /E7. As an immediate consequence
of Theorems 1 and 2 we have:
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Corollary 1 The dimension of the space of linear topology invariants is | Xy | —|co(T)|
if w is either a generic distribution or the uniform distribution, or k > n (and in this
last case the dimension equals |Inc(T)|).

As a consequence of Theorem 2, we are able to provide an algorithm to obtain a
basis of the space of linear topology invariants for any tree T', L} /L” . To do so, note
that if proj is the orthogonal projection from ET to the subspace L7 = (E?)J-, then
proj provides an isomorphism between E” /ET and L7./L™ and therefore we have:

Algorithm.

1. For each F € Fr compute the coordinates of the vector qr € E7.

2. Complete the basis {qr| F € Fr} by vectors vy, ..., vg from E” in order to
obtain a basis of E™.

3. Then the classes of proj(vy), ..., proj(vg) form a basis of the space of linear
topology invariants L7 /L™ .

Note that step 2 can be done using the Steinitz exchange lemma and the spanning
set of vectors of E™ provided in Theorem 1.

We prove now that Lake-type invariants suffice to define the space of linear topology
invariants of a tree when ¥ > n and 7 is the uniform distribution. We first need a
combinatorial lemma.

Lemma 9 For any phylogenetic tree T on [n] and any partition o that is incompatible
with T there exist two blocks B, B’ of o and leaves x € B, x' € B’ and an interior
vertex v of T in the path connecting x and x' for which the following holds:

For each leaf | of T in the same connected component of T — v as x, l € B or
{l} eo.
For each leaf | of T in the same connected component of T —v as x’, 1 € B’ or
{l} eo.

Proof First suppose that o has no singleton blocks. Let us say that an edge e = {u, v}
of T is terminating if:

(i) all the leaves of T that are in the subtree 7, of T — v containing u are contained
in a single block of o (say, B;), and
(ii) at least two of the other subtrees of T — v contain elements of [n] not in B;.

For each such terminating edge e delete the pendant subtree ¢, from 7 and label u
by B;. Let T’ be the resulting tree. This tree 7’ has at least four leaves (since o is
incompatible with T') and so T” has a cherry (two leaves that are adjacent to a shared
vertex v). This vertex v and the label sets of the incident leaves (B and B’) then satisfies
the property claimed in the lemma. The extension to allow o to have singleton blocks
is now straightforward—we can simply delete them first, repeat the argument above,
and add them in afterwards.

Corollary 2 If wy is the uniform distribution and k > n, then the Lake-type invari-
ants of Proposition 3 and model invariants generate the space of linear phylogenetic
invariants for T.
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Proof We omit the superscript 7ry; for the spaces of linear invariants in this proof. By
Lemma 7(b) the space of model invariants L is spanned by the polynomials x, — x,/
for 0(x) = o(x’) and has dimension «" — |Z,| (because k > n). We also have
that dim L7 = «" — dim E;U =«" —|Frl =«" = (1Z,] — |Inc(T)|) and dim L =
k" —dim E™V = k" —|X%,|. Hence, wehave dim L7 /L = dim L7 —dim L = |Inc(T)|.
So we need to prove that Lake’s invariants give a set of [Inc(7')| linearly independent
vectors in Lt /L.

Note that in L7 /L we can work with polynomials in indeterminates x5, 0 € X,,.

Let us prove that, if o is an incompatible partition on 7', then x, is a linear com-
bination of x,+ for compatible partitions o’ of size > |o|. To this end, we proceed by
inductiononm = n — |o|.

If m = 0 or 1, then o is convex on 7 and there is nothing to prove. Let m > 2
and assume that we have proved the statement when n — |o| is smaller than m. Let
o ={Bj, ..., B} and we call sy, ..., s, the states associated to o. Assume first that
o has no singletons. Then, according to Lemma 9 we can find two blocks of o, say
B\, By, and an interior vertex v for which all leaves in one of the subtrees Tl’ of T —v
are in By, and all leaves in one of the other subtrees T2’ of T — v are in By. We write
llf for the set of leaves in Ti’ so that B; is the disjoint union of llf and another set /;.
We let £ be the event that leaves B; are in state s; for i > 3, leaves in /] are in state
s1 and leaves in /5 are in state s>. As the fully symmetric model satisfies the partial
separability property (PS) and as |o| < n —2 < x — 2, we can consider two new states
s, 85 to apply Proposition 3 (with # = T} and ¢ = T5). Thus we obtain the following
linear invariant (written in terms of partitions because the states do not matter, as soon
as they are different):

Xo + XL 1|15 Bs...| B, ~ ¥ |1} |Ba| B3l...| B, T XBillall}|Bs|...| B,

Note that all partitions involved in this expression, except for o, have size larger
than |o'| and we can apply the induction hypothesis to any x, appearing here with o’
incompatible, to write x, as a linear combination of x s using only compatible ¢'.

If o has singletons, we remove these singletons in 7" and o obtaining a tree 7Ty and a
partition oy without singletons on Tjy. We apply the previous argument to o and Tj to
obtain a linear invariant. Then we apply the Extension Lemma 6(a) recursively to add
singletons and we end up also with a linear polynomial that involves o and partitions
of larger size. Hence, we can apply the induction hypothesis again.

The linear invariants obtained in this way for each incompatible partition o are
of Lake-type and form a set of linearly independent vectors in L7 /L because they
involve partitions of larger size.

Remark 4 Case k = 2. For k = 2, Theorem 2 and Corollary 2 do not apply. In this
case it is already known (see Matsen et al. 2008) that there are no linear topology
invariants for the uniform distribution 7y and hence D’TTU = D™ for any tree T
(see Matsen et al. 2008). One can actually prove that this also holds for any generic
distribution 7 and this space has dimension |X>| = 21=1_ 1, see Matsen et al. (2008).

Remark 5 Case k = 3. For k = 3 and n = 4, we cannot apply Corollary 2 either. But
in this case we can provide another topology invariant. We describe it in the following
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lemma for n = 4 but can be easily generalized for the uniform distribution to any tree
by using a similar argument as in Proposition 3. Moreover, it is not difficult to see that
for k > 4 it can be derived form Lake-type invariants.

Lemma 10 For the tree 12|34 and any positive distribution w on a set S of k > 3
states, the polynomial

>~<xyxy + >~<xyyz + >~<xyzx - >~<xyyx - >~<)cyxz - }Nixyzyv (6)

for any three different states x, y, z € S, is a topology invariant if T evolves under the
EI/RC model.

Proof According to Lemma 3 we need to prove that (6) vanishes when we evaluate
it at the points gr, F € Fr. If F is a forest such that o (F') does not refine any of
the partitions {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}, then the coordinates that appear in (6)
are all zero. If o (F) refines {{1, 3}, {2, 4}}, then o (F) is either {{1, 3}, {2}, {4}}, or
{{2, 4}, {1}, {3}} or the trivial forest. In the first two cases (6) evaluated at ¢ vanishes.
As the evaluation of any coordinate X at the point associated to the trivial forest is one,
it also vanishes in this case. The remaining cases follow from the symmetry of leaves
3 and 4 in (6).

Remark 6 Case k = 4. For n = 5 not all linear topology invariants are of Lake-type.
In Fu (1995) a complete list of 17 (= | 24| — |co(T')| = 61 — 34) linear invariants that
generate the space of linear topology invariants is given. For example, for the fully
symmetric model on the set of states {x, y, z, w} (i.e. Jukes—Cantor model),

Xxyyxy T Xxyzwz = Xxyyzy — Xayzxz

is a topology linear invariant that cannot be described by Proposition 3.

7 Explicit linear invariants for quartet trees

In this section we assume that ¥ > 4 and we shall deal with quartet trees and the star
tree on four leaves. Note that in the previous section we gave an explicit description of
linear phylogenetic invariants only when the distribution was uniform. For a generic
distribution 7 we managed to compute the dimension of the space of linear phyloge-
netic invariants, but we did not provide a explicit set of generators. We do it in this
section for the case n = 4, k > 4, and any distribution 7.

Remark 7 In the case of quartet trees on the set of taxa X = [4], the possible tree
topologies are 12|34, 13|24, 14|23, and the star tree T;. As the star tree is a subtree of
the others, the vector space of phylogenetic mixtures is

E"=(qr | F € Fiopa)+{dr | F € Fiopa)+{dr | F € Fizpa)+{qr | F € Frap3).

By Theorem 2 we know that the vectors q are linearly independent if we let F move
in the set of full subforests of the tree A|B. As F1234, F13)24 and Fi4pp3 intersect at
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the set of forests for the star tree Ty, in order to check whether a homogeneous linear
polynomial vanishes at the vectors of E™ one needs to check whether it vanishes at the
15 vectors of Tables 1, 2 and 3 that correspond to 12 subforests of 7, and one forest
q4,p for each refined quartet).

Proposition 4 Let x, y, z, w be four different states and define

ﬂx,y = n)?ixxxy + Ty [ixxyy + >~<)cyxy + >~<y)cxy]
+Iy Ty [Zzwxx + Xzxwx + Xezwx] + n)%ixyzwy

Ox,y = ng[nxixxxx + ny}zxxxy + 7T Xxxxz + TwXexxw]
+T, Ty [”xixxyx + 7Ty>~<xxyy + nzixxyz + nwixxyw]
+Ty Ty [ﬂxixyxx + ”yixyxy + nzfixyxz + nw}zxyxw]
+Iy Ty [ﬂxiyxxx + ﬂyiyxxy + nzgyxxz + ”wiyxxw]

2 ~ ~ ~ ~
+7Ty [TxXxyzx + TyXayzy + Tz Xayzz + TwXayzwl

Then following are linear model invariants for quartet trees evolving under the
EI/RC model:

ﬂyixxyy + 7Tz}~<xxyz - T[y}zxxzy + T Xxxzz @)
7Tx>~<xxyz + 7Tw>~<xwyz - nwiwwyz + nxiwxyz (8)
/Bx,y - ﬂy,x (9)
Ox,y — Sy.x (10)

One obtains analogous linear model invariants by considering any permutation of the
set of leaves.

Proof From the extension Lemma 6(b) it follows that (7) and (8) are model invariants.
Indeed, if we consider the star tree 7> on two leaves, then it is easy to check that

TyXyy + T Xyz — MyXzy — M Xz,

is alinear phylogenetic invariant. By identifying 7> with the star tree 73 4 on leaves 3, 4
we can apply Lemma 6(b) with © = xx to obtain (7) for the quartet tree 7 = 12|34
(because T can be obtained by attaching the tripod tree 777 to the edge leading to
leaf 3 of T3). In particular, (7) vanishes for the star tree 7, on four leaves. Similarly,
in order to see that (8) is a phylogenetic invariant for the star tree T, we use the
phylogenetic invariant

Ty Xy + TwXxw — TwXpw — TxXyx
for the tree 7, = T and apply Lemma 6(b) with u© = yz. By Lemma 6(c) we see

that (8) is a phylogenetic invariant for the quartet tree 12|34 (and hence also for the
star tree T}).
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In order to prove that (7) and (8) are model invariants, it only remains to check that
these expression vanish when evaluated at 1324 and (423, which is straight forward
because all coordinates involved in the expressions are O for these vectors.

We check now that (9) and (10) are model invariants having Remark 7 in mind.
Looking at Table 1, we observe that By , (respectively dy y) evaluated at q, is th +
6wy + 7ty2 (resp. nf + 3wy + erz (7wx + 1y + 7, + 1y)). As these expressions are
symmetric for x and y, (9) and (10) vanish in this case.

Now we consider the other vectors in Table 1, qp, where B is a block of m leaves,
m > 2, and the partition associated to this point is B and singleton blocks.

We start with m = 2. Using the equalities of lemma 4, we can see that By ,
and d,,, are symmetric under the permutation of leaves 1,2, and 3. Thus we only
need to consider that B is formed either by {1, 2} or by {3, 4}. In the first case, B,y
evaluated at qp is my + 7y and 8y y is (mwy + 7)) (wx + 7y + 7, + 7TY). As these
expressions are symmetric inx and y, (9) and (10) also vanishin this case. If B = {3, 4},
then the evaluation of By y at qp equals m, + 7y and the evaluation of (10) gives
nf + 3wy + 71)2,. Again, these are symmetric in x, y and (9), (10) vanish.

Now we consider m = 3. Let us assume first that B = {1, 2, 3}. In this case, the
evaluation of B, , at qp equals 1 and the evaluation of §x, y is 7y + 7y + 7, + 7.
Therefore (9) and (10) vanish at qp. If B contains the leaf 4, then all terms in the
evaluation of B, , at qp are zero and the evaluation of 8x, y at qg is 7, +y. Therefore
(9) and (10) also hold for these vectors.

If m = 4, then (9) vanishes trivially because all its terms are 0. Moreover §x, y is
equal to 1 when evaluated at 1234 and there fore both equations hold for this vector.

The only remaining cases to check correspond to the vectors qi2j34, qi324 and
q14p23 of Tables 2 and 3. As By, is equal to 1 and &,y is equal to 7y + 7y when
these expressions are evaluated at these vectors, both Egs. (9) and (10) vanish on these
vectors.

Note that when we apply a permutation of the set of leaves, the resulting polynomials
are phylogenetic invariants because we have just proven that the original ones are linear
model invariants.

Theorem 3 For any distribution 7, the space of linear model invariants L™ forn = 4
and k > 4 is generated by the phylogenetic invariants of Proposition 4 together with
Xy — Xy for any x = x' and has dimension k* — By = k* - 15.

For the fully symmetric model we have already seen in Remark 2 that x, — x,/
are linear phylogenetic invariants if o (x) = o (x’). In this case this set of invariants
defines the same vector space as the phylogenetic invariants in Theorem 3.

Remark 8 Although one could replace (9) by other phylogenetic invariants obtained
from marginalization from a phylogenetic invariant relating X,y and X,y on the
tripod, this expression would have less symmetries than (9) and therefore we decided
to use (9) instead (similarly for (10)).

Proof We let F™ be the space of vectors where all the linear polynomials in the
statement vanish. Then we shall prove that for the vectors in F*, any coordinate X,
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can be expressed as a linear combination of the following 15 coordinates:

}E.XX.XX

>~<x)cxy ’ >~<)c)cy)c ’ }Exyxx ’ }nyxx

;Cxxyy’ ixyxy, ixyyx

ixxst ixyxz’ }Exyzm inZX* 5{””’ iﬂ“

Xxyzw

This will prove that F7 is a vector space of dimension 15 or lower. By Lemma 7
we know that dim D7 is > |X,| — 1, whichis B4 — 1 = 14 for n = 4. As we have the
inclusion D™ = E™ N H C F™ N H this will finish the proof.

First note that by Lemma 4 we have Xy, xy = Xyxxxys Xrxy'y = Xxxyzs Xn'y/zw’ =
Ryyzw forany y' #x,x", 2 # y, y, x, x', w #x,y,z2,x',y, 7.

Using the equation (8) = 0 one can write X,/,/y/v as a linear combination of X,
and Xyyzy. The Eq. (7) = 0 allows us to put X,/ as a linear combination of Xyy
if y' # y. In order to write Xyyxx (Or similarly Xy, yy) in terms of the allowed coordi-
nates we need to do two steps. We use expression (7) three times to put first Xy, in
terms of Xy, first, then Xy, in terms of Xy, and finally Xy, in terms of Xyyy.
Interchanging the role of leaves 1,2 with 3,4 we also obtain X/, as a linear combi-
nation of X,y if x" # x. In the same way, we can use the Eq. (9) = 0 to put X,/,/,//
as a linear combination of Xy, and other coordinates which we now know that are
linear combinations of the allowed coordinates. Finally, we use the Eq. (10) = 0 to put
Zeryy for x’ # x as a linear combination of X, ,y, and other allowed coordinates.

By considering these relations above and all permutations of the leaves, we end
up with every coordinate written as a linear combination of the allowed list of 15
coordinates.

We now consider the two linear topology invariants that we obtained in Example 1:
in terms of the X's above, the corresponding equations for the quartet tree 12|34 these
are

H, : ixyxy + )Exyzw = )Exyzy + >~<xy)cw

Hy © Xyyyx + Xnywz = Xayyz + Xxywa-

Equations H; and H» are linearly independent and drop the dimension by two.
In total, we have that Df2|34 is contained in an affine space E* N H N H; N Hy of
dimension 12. As the dimension of D71T2|3 4 1s 12 and for the star tree dim Dji =11we
have:

Corollary 3 For n = 4 and any distribution w one has

D" =E"NH
i:EnﬂHﬂHlﬂHzﬂPh
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where H3 @ Xyxyy + Ryzyw = Kazyy + Xuxyw and Ty denotes the star tree on four
leaves. In particular, Lake-type invariants generate all linear topology invariants for
quartet trees evolving under the EI model.

8 The infinite-state random cluster model RC

Recall that in the random cluster model, each edge of T is cut with some probability
6, to obtain a resulting partition o of the leaf set X. Each block is then assigned a
state independently according to the distribution . However, we could just consider
the partition o itself as the output of this process (rather than assigning states, which
has the effect of combining some blocks together when they receive the same state).
We call this the infinite state RC model RC, since it has a natural interpretation as
the limiting distribution on partitions induced by the E//RC model as the number of
states « in S tends to infinity when states have at least roughly similar probabilities.
More precisely, under the RC model, the probability that two blocks of o are
assigned a same state in the equal input model is at most n >, ¢ 7102[, by Boole’s
inequality (note that there are at most n blocks in o). Suppose that 7 € [a/k, b/ k]
for some fixed a, b then as k = | S| — oo all blocks of o receive distinct states with
probability converging to 1 (this restriction on 7 can be weakened a little further).
The RCs model is sometimes referred to as the ‘Kimura’s infinite alleles’ model in
phylogenetics, and it was studied mathematically in Mossel and Steel (2004).

8.1 Linear invariants for RC,

The linear phylogenetic invariants for the infinite-state random cluster model are par-
ticularly easy to describe.

Let p, = Pr(0|®) be the probability of generating partition o on T under the
RC+, model with edge cut probabilities ® = (6,), and recall the definitions of co(T’)
and Inc(T") from Sect. 4.1.

Proposition 5 Under the RC, model:

(i) Pr(o|®) = 0 forall ® if and only if o € Inc(T).

(1) {xo : o € Inc(T)} forms a basis for the vector space Lt of linear phylogenetic
invariants for T and of the space of linear topology invariants. Consequently,
this space has dimension |Inc(T)| = B,, — |co(T)|.

(iii) The space of all phylogenetic mixtures on T has dimension | co(T)| — 1.

(iv) The space of all phylogenetic mixtures on all n-leaf trees under the RC o, model
has dimension B, — 1.

Proof (i) Suppose that o € Inc(T). Then there exists two blocks B, B” of o and
leaves x, y € B and x’, y’ € B’ for which the paths P(T’; x, y) and P(T; x', y')
share at least one vertex. Now since x, y € B and x’, y' € B’ the only way to
generate o under RC«, is if none of the edges in the two paths P(T'; x, y) and
P(T; x’',y") is cut. Since these paths intersect on a vertex this implies that x and
x" must be the same block, i.e. that B = B’. Thus o cannot be generated with
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positive probability under the RC+, model. Conversely, suppose that ¢ is convex
on 7. Then set 6, = 0 for all edges in {T[B] : B € o} and set , = 1 for all
other edges. Then p, = 1.

(if) If > Ayx4 is a linear phylogenetic invariant, then for any o convex on 7' we can
choose a set of parameters ® such that p, = 1 (see above). This implies that
As = 0 for any o € co(T). This and (i) show that the set spans the space of
all linear phylogenetic invariants, and linear independence follows immediately
from the observation that each polynomial involves a variable not present in
any other polynomial in this set. Note that all these polynomials are topology
invariants.

(iii) The space of phylogenetic mixtures D7 on T is equal to ET N H where E is
the space of vectors on which the linear phylogenetic invariants vanish and H is
the hyperplane defined by the trivial equation )" %, = 1 (the sum is over all
partitions of [n]). By (ii), E7 has dimension B,, — Inc(7") = |co(T)| and we are
done.

(iv) Note that in the basis {x, : 0 € Inc(T)} of (ii) there are no model invariants.
Therefore, the set D of phylogenetic mixtures on all trees coincides with the
trivial hyperplane H and has dimension B, — 1.

The construction of certain quadratic phylogenetic invariants for RCy is also quite
easy. Let x ~ y denote the event that x and y are in the same block of the partition
generated by a phylogeny under the RCs, model, and let p(x, y) denote the probability
of that event. Note that p(x, y) is a sum of p, values over all o for which x and y are
in the same block. Then p(x, y) = HeeP(T;x’y)(l —6,), where P(T; x, y) is the path
in T between x and y. It follows (from the four point condition) that if the quartet tree
obtained by restricting T to x, y, w, z is either xy|wz or the star tree, then

px, w)p(y,z) — px,2)p(y,w) =0.

9 Future work

It would be interesting to generalize Lake-type invariants in such a way that they
generate the space of linear topology invariants for x < n (cf. Corollary 2). On the
other hand, it also would be useful to give explicit linear model invariants (with many
symmetries) for any number of leaves, as was done in Sect. 4 for n = 3, 4. These
model invariants could be used for model selection as it was done in Kedzierska et al.
(2012) for the uniform distribution. Extending the work of Sect. 4 to other models is
also of interest because this would increase the range of models that can be considered
in certain model selection software such as SPIn (http://genome.crg.es/cgi-bin/phylo_
mod_sel/AlgModelSelection.pl).
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