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Abstract

We investigate the topology and combinatorics of a topological space called the edge-product space
that is generated by the set of edge-weighted finite labelled trees. This space arises by multiplying the
weights of edges on paths in trees, and is closely connected to tree-indexed Markov processes in molecular
evolutionary biology. In particular, by considering combinatorial properties of the Tuffley poset of labelled
forests, we show that the edge-product space has a regular cell decomposition with face poset equal to the
Tuffley poset.
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1. Introduction

For a tree T , we let V (T ) and E(T ) denote the sets of vertices and edges of T , respectively.
For a fixed finite set X we are interested in the (finite) set of binary (i.e. trivalent) trees T that have
X as their set of leaves (degree one vertices). They correspond to all the possible “phylogenetic
trees” for X. See [12]. We study the space of all such trees with edge weights between 0 and 1.
To each binary tree with edge weights we associate a point in a high-dimensional space in the
following way. Given a map λ :E(T ) → [0,1] define

p = p(T ,λ) :

(
X

2

)
→ [0,1]

by setting, for all x, y ∈ X,

p(x, y) =
∏

e∈P(T ;x,y)

λ(e),

where P(T ;x, y) is the set of edges in the path in T from x to y.

Let E(X,T ) ⊂ [0,1](X
2) denote the image of the map

ΛT : [0,1]E(T ) → [0,1](X
2), λ �→ p(T ,λ)

and let E(X) be the union of the subspaces E(X,T ) of [0,1](X
2) over all binary trees T with X

as its set of leaves. We call E(X) the edge-product space for trees on X. Note that a different
notion of the space of trees was suggested by Billera, Holmes and Vogtmann in [2]. The main
difference is that they add edge weights along paths to give a distance between leaves, rather than
multiplying them. The edge-product space can be seen as a compactification of the space studied
in [2], since we allow zero as an edge weight.

Apart from their intrinsic interest, a central motivation for investigating edge-product spaces
is that they are intimately connected with tree-indexed Markov process in molecular evolution-
ary biology [5,8,12], as we now briefly outline. In these models there is a fixed matrix Q of
transition rates between states of some set (e.g. nucleotide bases, amino acids), which forms a
stationary and time-reversible Markov process. The process operates for some duration d(e) on
each edge e of T . Let λ :E(T ) → [0,1] be defined by λ(e) = e−d(e), and allow λ(e) to equal 0
in order to model ‘site saturation’ (i.e. the limiting value as d(e) → ∞). The Markov process,
parameterised by the pair (T ,λ), induces a (marginal) joint probability distribution on the set of
state assignments to X. Furthermore it can be shown that two pairs (T ,λ) and (T ′, λ′) induce the
same joint probability distribution precisely if p(T ,λ) = p(T ′,λ′) (by extending the approach of
[13] which established this result when Q is a symmetric 2 × 2 matrix). Consequently, the edge-
product space defined above is homeomorphic to the quotient space where trees with λ-valued
edge weights are identified if they induce the same Markov process at the leaves for a fixed rate
matrix Q.

In [9] it was shown that E(X) has a natural CW -complex structure for any finite set X, and a
combinatorial description of the associated face poset, called the Tuffley poset was given. It was
also conjectured that E(X) is a regular cell complex. Here we prove that this conjecture holds.
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Theorem 1.1. The edge-product space E(X) has a regular cell decomposition with face poset
given by the Tuffley poset.

In particular, E(X) is homeomorphic to the geometric realization of the Tuffley poset (see [3,
12.4(ii)]). Note that as a consequence of this theorem we obtain an affirmative answer to the main
conjecture in [1].

Our main technical tool is a proof that any interval of the Tuffley poset (with an artificial 0̂
added) has a recursive coatom ordering. This implies amongst other things that the order complex
of every open interval is a sphere. Note that we do not describe an explicit recursive coatom
ordering that is valid for any given interval. Instead, we have developed what we believe to be a
new method for establishing the existence of recursive coatom orderings. In particular, we define
a class of coatom orderings and show that for any interval we can always choose some ordering
from that class that satisfies the conditions for a recursive coatom ordering.

We now describe the contents of the paper. In Section 2 we review some properties of “X-
forests” and of the Tuffley poset, which can be regarded as an order relation on the collection
of all X-forests. In Section 3 we prove that there exists a shelling order for the chains in every
interval of the Tuffley poset which we require in order to prove Theorem 1.1 in Section 4. Finally,
in Section 5 we present the proofs of some technicalities that we used in Section 3. As many of
the cases are straightforward checks, where appropriate we will refer the reader to [6] where the
full details are presented.

2. Trees, forests and the Tuffley poset

In this section we review some material concerning trees and related structures. Throughout
this paper X will be a finite set.

An X-tree T is a pair (T ;φ) where T is a tree, and φ :X → V (T ) is a map such that all ver-
tices in V (T )−φ(X) have degree greater than two. Note that we do not require φ to be injective.
We call X labels and the vertices in V (T )−φ(X) unlabelled. Two X-trees (T1;φ1) and (T2;φ2)

are isomorphic if there is a graph isomorphism ψ :V (T1) → V (T2) such that φ2 = ψ ◦φ1. For an
X-tree T = (T ;φ) we let E(T ) denote E(T ), the set of edges of T . By a contraction of an edge
e = {v,u} in an X-tree T = (T ;φ), we mean contraction of the edge in T , with identification of
u and v and label φ−1(u) ∪ φ−1(v) for the new vertex.

An X-forest is a collection α = {(A,TA): A ∈ π} where

(i) π forms a set partition of X, and
(ii) TA is an A-tree for each A ∈ π .

We let S(X) denote the set of X-forests. We order the elements of S(X) by letting β � α

if the trees in β can be obtained from the trees in α by contracting certain edges, and deleting
certain other edges, with any resulting unlabelled vertices of degree 2 being suppressed.

The poset S(X) was first defined (slightly differently) by Christopher Tuffley [13], and it is
thus called the Tuffley poset on X. In Fig. 1 we show the Hasse diagram of S({1,2,3}).

Given an X-forest α and an edge e ∈ E(α), we denote the X-forest obtained by contracting
e with ec(α), and the X-forest obtained by deleting e and suppressing any resulting vertices of
degree 2 with ed(α). From now on we will with an edge deletion always include the suppression
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Fig. 1. The Tuffley poset S(X) for X = {1,2,3}.

of any degree two vertices. When α is clear from the context we will simply write ec and ed .
Furthermore,

∣∣E(
ec(α)

)∣∣ = ∣∣E(α)
∣∣ − 1, (1)

and

∣∣E(α)
∣∣ − 3 �

∣∣E(
ed(α)

)∣∣ �
∣∣E(α)

∣∣ − 1. (2)

We will say that the edge deletion α �→ ed(α) is safe if |E(ed(α))| = |E(α)| − 1. We say that
a vertex in an X-tree is unsupported if it is unlabelled and of degree 3. We can easily conclude
that for an X-forest α, an edge deletion α �→ ed(α) is safe if and only if neither endpoint of the
edge e in α is unsupported.

We define an elementary operation on an element of S(X) to be either an edge contraction,
or a safe edge deletion. The covering relation in the poset will be denoted by the symbol �.

The following result which is a restatement of Theorem 4.2 of [9] describes S(X) in terms of
these operations, and establishes some further structural properties of the Tuffley poset.

Theorem 2.1. Suppose that X is a finite set and α,β ∈ S(X). Then the following statements
hold.

(i) β � α if and only if β can be obtained from α by any sequence of contraction and deletion
operations, in which case we can insist that all contractions occur first, and that all the
subsequent deletions are safe.

(ii) β � α if and only if β can be obtained from α by one elementary operation.
(iii) S(X) is a pure poset, and for an element α = {(A,TA): A ∈ π} of S(X) its rank, denoted

ρ(α), is given by

ρ(α) = ∣∣E(α)
∣∣.
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(iv) S(X) ∪ {0̂} is thin (that is, all intervals of length 2 contain exactly four elements).
(v) The maximal elements of S(X) are precisely the binary X-trees with |X| leaves. They have

rank 2|X| − 3.
(vi) The minimal elements of S(X) are precisely the X-forests with no edges. Hence, there is a

minimal element for each set partition of X.
(vii) Suppose α is an X-forest, and that α has an interior vertex v labelled by m. Construct

an X′-forest β by removing v from α and giving edge number i incident with v, 1 � i �
deg(v), a new vertex vi that is labelled by mi , mi /∈ X and mi �= mj if i �= j . Then [0̂, α] is
isomorphic to [0̂, β].

3. Recursive coatom orderings

In this section we establish the following theorem.

Theorem 3.1. There is a recursive coatom ordering for each interval [0̂,Γ ] ⊂ S(X) ∪ {0̂}. In
particular, every such interval is shellable.

The proof of Theorem 3.1 is provided in Section 3.3.

Corollary 3.2. The order complex of any interval (α,β) in S(X) ∪ {0̂} is homeomorphic to a
sphere of dimension ρ(β) − ρ(α). In particular, the Möbius function μ of the Tuffley poset is
given by μ(α,β) = (−1)ρ(β)−ρ(α).

Proof. We know that intervals in S(X)∪{0̂} are thin (see Theorem 2.1(iv)) and admit a recursive
coatom ordering. The result now follows from [4, Theorem 4.7.24(i)] (see p. 169). The Möbius
function is equal to the reduced Euler characteristic of the order complex of the open interval
(α,β) (see [3, 9.14]). �
3.1. Preliminaries and definitions

Definition 3.3. A recursive coatom ordering for an interval [0̂,Γ ] is an ordering α1, . . . , αt of
its coatoms that satisfies the following two conditions:

(V1) For all i < j and γ < αi,αj there is a k < j and an element β such that β � αk,αj and
γ � β .

(V2) For all j = 1, . . . , t , [0̂, αj ] admits a recursive coatom ordering in which the coatoms that
come first in the ordering are those that are covered by some αk where k < j .

A recursive coatom ordering of an interval has several implications, see e.g. [3].
The following notation is used. The edges incident with a vertex v in an X-forest will be

denoted e1, . . . , en (or f1, . . . , fn). If the other vertex incident with an edge ei has degree 3, the
two other edges incident with that vertex will be denoted ei1 and ei2, else ei1 and ei2 are not
defined. See Fig. 2. Remember that the coatom obtained from an X-forest Γ by contraction of
the edge ei is ec

i (Γ ), and the coatom obtained by safe deletion of the edge ei is ed
i (Γ ).

Convention 3.4. e1, . . . , en (or f1, . . . , fn) are not in general fixed labels for the edges incident
with a vertex v. This convention is made to avoid having to write ei , . . . , ein where i1, . . . , in is
1
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Fig. 2. Edge notation at the vertex v.

a permutation of {1, . . . , n}. If for example some condition uses e1 and e2, it will be true for all
ei1 and ei2 with the same properties. The same applies to numbered components of an X-forest.
This concerns all sections in this text.

Convention 3.5. By Theorem 2.1(vii) we may replace any X-forest α with labels on some in-
ternal vertices by a forest β of trees without labels on internal vertices and lower interval [0̂, β]
isomorphic to [0̂, α]. We may therefore throughout the proof of the existence of a recursive
coatom ordering assume that no internal vertices are labelled. We may also during the proof
without loss of generality assume that each leaf has exactly one label.

To prove that there exists a recursive coatom ordering α1, . . . , αt for [0̂,Γ ], a new condition
for coatom orderings called (V3) is used. The idea is to replace the conditions for a recursive
coatom ordering with a stronger but easier condition. In Theorem 3.16 it will be proven that all
coatom orderings satisfying the condition (V3) are recursive coatom orderings. The following
two definitions are made to simplify condition (V3) that will be given in Definition 3.8, and to
facilitate dealing with (V3) later.

Definition 3.6. Let Γ be an X-forest, and v an interior vertex of Γ incident with the edges
e1, . . . , en. Let vi be the other vertex incident with ei , 1 � i � n. To simplify notation, we use
the following symbols for coatoms of [0̂,Γ ]:

ėd
i (Γ ) =

{
ed
i (Γ ) if deg(vi) �= 3, deg(v) � 4,

ec
i1(Γ ) or ec

i2(Γ ) if deg(vi) = 3,

ëd
i (Γ ) =

{
ed
i (Γ ) if deg(vi) �= 3, deg(v) � 4,

{ec
i1(Γ ), ec

i2(Γ )} if deg(vi) = 3.

Note that ėd
i (Γ ) and ëd

i (Γ ) are not defined if deg(vi) �= 3, deg(v) = 3. When no confusion arises,
Γ is often omitted.

Definition 3.7. Let C and D be disjoint sets of coatoms, and suppose there is a given coatom
ordering. If all elements in C come before every element in D in the ordering, then C � D. We
will use C /�D to denote the condition that at least one element in C comes after some element
in D.

Definition 3.8. Take an X-forest Γ , consisting of the non-trivial components K1, . . . ,Km (i.e.
with at least one edge each). If a coatom ordering of [0̂,Γ ] satisfies the following conditions,
then it is said to satisfy the condition (V3) (recall Convention 3.4):
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(V3) (a) {γ | γ � Γ, γ = ec or γ = ed where e ∈ ⋃�
i=1 Ki} /� {γ | γ � Γ, γ = ec or γ = ed

where e ∈ ⋃m
i=�+1 Ki} for all 1 � � � m − 1.

(b) If v is an interior vertex in Γ , n = deg(v) = 3 and ëd
3 is defined then {ec

1, e
c
2} /� {ëd

3 } and
{ëd

3 } /� {ec
1, e

c
2}.

(c) If v is an interior vertex in Γ and n = deg(v) � 4 then {ec
1, e

c
2} /� {ëd

3 , ëd
4 , . . . , ëd

n} and
{ëd

3 , ëd
4 , . . . , ëd

n} /� {ec
1, e

c
2}.

(d) If v is an interior vertex in Γ and n = deg(v) � 4 then {ec
1, ë

d
1 , . . . , ec

k, ë
d
k } /�

{ec
k+1, ë

d
k+1, . . . , e

c
n, ë

d
n}, where 1 � k � n − 1.

The sub-conditions of (V3) are symmetric, hence the reversal of a coatom ordering satisfying
(V3) also satisfies (V3).

Definition 3.9. Let Γ be an X-forest and v a vertex in Γ . The coatom α is said to be near v if
α is obtained by (safe) deletion or contraction of an edge ei incident with v or contraction of ei1
or ei2.

The above definition is made since the sub-conditions (V3)(b), (V3)(c), and (V3)(d) only deal
with the coatoms near an interior vertex v in an X-forest.

3.2. Outline of proof of Theorem 3.1

To prove Theorem 3.1 the following method is used. A class of recursive coatom orderings is
created. This class has the property that if α1, . . . , αj , . . . , αt is a coatom ordering in the class,
then for each 1 � j � t the class contains a coatom ordering for [0̂, αj ] in which the coatoms
that come first in the ordering are those that are covered by some αk where k < j . In particular,
the class is defined to be all coatom orderings satisfying the condition (V3).

That property (V1) of Definition 3.3 follows from (V3) is shown in Lemma 3.10. The property
which implies (V2) of Definition 3.3 is shown in Lemma 3.12 and Theorem 3.15 with the help of
Lemmas 3.13 and 3.14. This is done by first finding certain orderings of the coatoms near each
interior vertex in αj , and then combining them to a coatom ordering for [0̂, αj ].

The results are put together in Theorem 3.16 to show that a coatom ordering satisfying (V3)
is a recursive coatom ordering. Finally Theorem 3.1 follows from Theorem 3.15 which implies
that there is always a coatom ordering of [0̂,Γ ] satisfying (V3), and Theorem 3.16.

Since the proofs of Lemmas 3.10–3.14 are very technical, they will be presented separately in
Section 5.

3.3. There is a recursive coatom ordering for [0̂,Γ ]
The following lemma is obviously necessary, and will be proven in Section 5.1.

Lemma 3.10. Let Γ be an X-forest, and let α1, . . . , αt be the coatoms of [0̂,Γ ]. If α1, . . . , αt

satisfies (V3), then it also satisfies part (V1) of Definition 3.3.

To prove that a coatom ordering satisfying (V3) also satisfies part (V2) of Definition 3.3,
Lemma 3.12 and Theorem 3.15 are needed.

The following definition is useful since A � B is a necessary condition for the possibility of
ordering A∪B so that the ordering satisfies A �B and (V3).
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Definition 3.11. Let Γ be an X-forest, and let A and B be disjoint sets of coatoms of [0̂,Γ ].
Then A and B are said to be compatible with the condition (V3) if A � B is not forbidden by
any single sub-condition of (V3). If A and B are compatible with (V3), we write A � B. If A
and B are not compatible with (V3), we write A /� B. Since the condition (V3) is symmetric,
A�B ⇔ B �A.

Lemma 3.12. Let α1, . . . , αj , . . . , αt be a coatom ordering of [0̂,Γ ] satisfying (V3). Fix j ,
and consider the interval [0̂, αj ]. Let A = {γ | γ � αk,αj and k < j} and let B = {γ | γ �

αk,αj and k > j}. (The sets A and B are disjoint since S(X) ∪ {0̂} is thin.) Then A�B.

The above lemma is shown in Section 5.3. To prove Theorem 3.15 the following method is
used. For each interior vertex a coatom ordering for the coatoms near that vertex is found, an
ordering that satisfies A � B and (V3). Then these coatom orderings are combined to a coatom
ordering of all coatoms. Hence these orderings must agree on the order of coatoms that are
near more than one vertex, which we will now make sure by the following investigation and
Lemmas 3.13, 3.14.

Let v1 and v2 be adjacent interior vertices, and denote the edge between them e1. Let the
edges incident with v1 be denoted e1, . . . , en. The coatoms near v1 which are also near v2 are the
following:

ec
1, e

c
2, and ec

3 if deg(v1) = 3, deg(v2) � 4,

ec
1, e

c
2, e

c
3, e

c
11, and ec

12 if deg(v1) = 3, deg(v2) = 3,

ec
1 and ed

1 if deg(v1) � 4, deg(v2) � 4,

ec
1, e

c
11, and ec

12 if deg(v1) � 4, deg(v2) = 3.

If v2 is adjacent to an interior vertex v3 then some coatoms can be near both v1 and v3, but in
that case these coatoms are near both v1 and v2 too.

Lemma 3.13. Let α be an X-forest, and let v be an interior vertex of α with degree 3. Suppose
the coatoms near v are partitioned into two sets C and D where C �D. Then there is always an
ordering of C ∪D that satisfies (V3) and C �D, and has a given order of ec

1, ec
2, ec

3, and ec
11, ec

12
(if they are defined) that is not forbidden by (V3)(b) or C �D.

Lemma 3.14. Let α be an X-forest, and let v be an interior vertex of α with deg(v) � 4. Suppose
the coatoms near v are partitioned into two sets C and D where C �D. Then there is always an
ordering of C ∪D that satisfies (V3) and C �D, and has a given order of those of ec

1 and ëd
1 that

are in C, and the same for D.

Lemmas 3.13 and 3.14 are proven in Section 5.4.

Theorem 3.15. Let α be an X-forest, and let A and B be a disjoint bipartition of the coatoms of
[0̂, α]. If A�B then there is a coatom ordering for [0̂, α] satisfying (V3) and A �B.

Proof. Let Av = {γ ∈ A | γ is near v} and let Bv = {γ ∈ B | γ is near v} for an interior vertex v

in α. Then A�B implies that Av �Bv .
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It is now possible to find a coatom ordering that satisfies (V3) in the following way. Choose
a component of α, and then choose an interior vertex vp in that component. Take an ordering of
the coatoms near that vertex that satisfies (V3) and Avp � Bvp . This is possible by Lemmas 3.13
and 3.14 with C = Avp and D = Bvp . Then for each of the vertices vi , i ∈ I , adjacent to the
first vertex, choose an ordering of the coatoms near vi that does not contradict the earlier chosen
ordering and satisfies (V3) and Avi

� Bvi
. This is possible since the coatoms near two adjacent

vertices are exactly those possible to choose order of in Lemmas 3.13 and 3.14.
Then continue recursively in the same way with the vertices adjacent to them, until all interior

vertices in the component are dealt with. It is now easy to combine the orderings for all interior
vertices in the component to produce a coatom ordering that satisfies (V3) and does not contradict
A �B.

Do the same for each component. In the end, combine the orderings of the coatoms in the
components by choosing one component that has at least two coatoms in A (if such a component
exists) and put the first coatom of its ordering first in the ordering of A and the last coatom in A
of its ordering last in the ordering of A. Do the same with B. Since A � B this implies that the
result is a coatom ordering of [0̂, α] satisfying (V3) and A �B. �
Theorem 3.16. Let Γ be an X-forest, and let α1, . . . , αt be a coatom ordering for [0̂,Γ ]. If
α1, . . . , αt satisfies (V3), then it is a recursive coatom ordering.

Proof. Assume α1, . . . , αt is a coatom ordering for [0̂,Γ ] satisfying (V3). It will be shown by
induction over |E(Γ )| that α1, . . . , αt is then a recursive coatom ordering. Remember that if α is
a coatom of [0̂,Γ ] then |E(α)| = |E(Γ )| − 1.

(I) If |E(Γ )| � 1 there is only one or two coatoms. In both these cases all possible coatom
orderings satisfy (V3) and are recursive coatom orderings.

(II) Assume that if 0 � |E(Γ )| � q (q � 1), then every coatom ordering of [0̂,Γ ] satisfying
(V3) is a recursive coatom ordering.

(III) Take an X-forest Γ such that |E(Γ )| = q + 1. Let α1, . . . , αt be a coatom ordering for
[0̂,Γ ] satisfying (V3). Then Lemma 3.10 implies that (V3) ⇒ (V1).

Fix j , 1 � j � t . Let A = {γ | γ � αk,αj and k < j}. Since S(X) ∪ {0̂} is thin, the remaining
coatoms in [0̂, αj ] are B = {γ | γ � αk,αj and k > j}. From Lemma 3.12 and Theorem 3.15 it
now follows that there is a coatom ordering for [0̂, αj ] satisfying (V3) and A�B. By the induction
assumption it is a recursive coatom ordering. Hence (V2) is also satisfied. Thus α1, . . . , αt is a
recursive coatom ordering for [0̂,Γ ]. �
Proof of Theorem 3.1. Let Γ be an X-forest. The existence of a coatom ordering satis-
fying (V3) for [0̂,Γ ] ⊂ S(X) ∪ {0̂} is implied by Theorem 3.15 with α = Γ , A = ∅, and
B = {γ | γ � Γ }. That this coatom ordering is a recursive coatom ordering for [0̂,Γ ] follows
from Theorem 3.16. �
3.4. An example of a coatom ordering satisfying (V3)

Figure 3 shows an X-forest Γ . The coatom ordering of [0̂,Γ ] given by gc
1 ed

2 ec
3 ed

4 gc
4 gc

2 f d
1

gc ec ed ec f c gc f c f c f d f d satisfies (V3), and thus it is a recursive coatom ordering.
5 2 3 4 2 3 3 1 2 3
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Fig. 3. The X-forest Γ .

4. The edge-product space is a regular cell complex

In this section we will assume that the reader is familiar with basic concepts of point-set
topology. We will also make use of some purely topological results that for convenience we state
in Appendix A.

To an X-tree T , we associate the closed ball B(T ) = [0,1]E(T ) and open ball Int(B(T )) =
(0,1)E(T ). More generally, for an X-forest α = {(A,TA): A ∈ π}, we let B(α) = ∏

A∈π B(TA)

and let Int(B(α)) = ∏
A∈π Int(B(TA)). Note that B(α) (respectively Int(B(α))) is homeomorphic

to a closed (respectively open) ball of dimension
∑

A∈π |E(TA)| and accordingly we will refer
to this quantity as the dimension of α, denoted dim(α).

Given an X-tree T = (T ;φ) and map λ :E(T ) → [0,1] define p(T ,λ) :
(
X
2

) → [0,1] by setting

p(T ,λ)(x, y) =
∏

e∈P(T ;φ(x),φ(y))

λ(e),

where the empty product is taken as 1.
We can extend the correspondence λ �→ p(T ,λ) to X-forests as follows. Given an X-forest

α = {(A,TA): A ∈ π} let ψα : B(α) → [0,1](X
2) be defined by setting, for λ = (λA: A ∈ π),

ψα(λ)(x, y) =
{

p(TA,λA)(x, y), if ∃A ∈ π with x, y ∈ A,

0, otherwise.

We begin by proving two useful lemmas. Let δ(B(α)) denote the boundary of the ball B(α).
The following lemma describes a useful property of the map ψα .

Lemma 4.1. Let α = {(A,TA): A ∈ π} be an X-forest. Then,

ψα

(
Int

(
B(α)

)) ∩ ψα

(
δ
(
B(α)

)) = ∅.

Proof. Suppose ψα(Int(B(α))) ∩ ψα(δ(B(α))) �= ∅—we will show that this leads to contra-
dictions. This assumption implies that for some λ1 ∈ Int(B(α)), and λ2 ∈ δ(B(α)) we have
ψα(λ1)(x, y) = ψα(λ2)(x, y) for all x, y ∈ X. Now, if there exists an edge e of α with λ2(e) = 0
then select a pair x, y ∈ X that are separated by e but contained in the same component of α.
Then, ψα(λ1)(x, y) = ψα(λ2)(x, y) = 0, and this implies that λ1 ∈ δ(B(α)), a contradiction.
Thus we may suppose that for every edge e of α we have λ2(e) > 0 and so therefore also
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ψα(λ1)(x, y) = ψα(λ2)(x, y) > 0 for all x, y that belong to any component tree TA of α. Now if
we let di(x, y) := − log(ψα(λi))(x, y) for all x, y in TA, then di describes, for each pair x, y ∈ X,
the sum of the real-valued weights − log(λi)(e) over all edges e of TA that separate x and y (i.e.
di is a distance function on X induced by this edge weighting). Now, it is a well-known and
easily established result that two edge weightings of an X-tree induce the same distance function
on X if and only if the two edge weightings are identical (see e.g. Lemma 2.2(i) of [9]). Conse-
quently, since d1 = d2 it follows that λ1 and λ2 agree on each edge of TA. Since this applies for
each component A ∈ π it follows that λ1 = λ2. But this is impossible since λ1 ∈ Int(B(α)) and
λ2 ∈ δ(B(α)). �

Using the following lemma we will later be able to restrict our attention to trees as opposed
to forests.

Lemma 4.2. If α = {(A,TA): A ∈ π} then

ψα

(
B(α)

) ∼=
∏
A∈π

(
ψ

(
B(TA)

))
.

Proof. This follows from Lemma A.3 of Appendix A, taking I = π , and for A ∈ I , ZA = B(TA),
and for λ,λ′ ∈ B(TA), writing λRAλ′ if and only if p(T ,λ|A) = p(TA,λ′|A). �

We now recall the definition of a regular cell complex. In [3, Section 12.4] it states that a
family of balls (homeomorphs of Bd , d � 0) in a Hausdorff space Y is a set of closed balls of a
regular cell complex if and only if the interiors of the balls partition Y and the boundary of each
ball is a union of other balls.

Consider the set

C := {
ψα

(
B(α)

)
: α ∈ S(X)

}
.

We claim that this forms a set of closed balls of a regular cell complex (decomposition
of E(X)) where the boundary of each ball ψα(B(α)), denoted δ(ψα(B(α))), is defined by
δ(ψα(B(α))) := ψα(δ(B(α))) (so that, by Lemma 4.1, the interior of each ball ψα(B(α)) is given
by Int(ψα(B(α))) = ψα(B(α)) − δ(ψα(B(α))) = ψα(Int(B(α)))).

To help prove our claim we first present a proposition that is a reformulation of some results
appearing in [9]. Let

S(X)<α := {
β ∈ S(X): β < α

}
.

Proposition 4.3. The following statements hold:

(i) E(X) is the disjoint union of the elements of

{
ψα

(
Int

(
B(α)

))
: α ∈ S(X)

}
.

(ii) For α ∈ S(X), δ(ψα(B(α))) is the union of the elements of

{
ψβ

(
B(β)

)
: β ∈ S(X)<α

}
,
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and the disjoint union of the elements of

{
ψβ

(
Int

(
B(β)

))
: β ∈ S(X)<α

}
.

(iii) If α is an X-tree, then for each y ∈ ψα(B(α)), ψ−1
α (y) is a contractible regular cell complex.

Proof. Parts (i) and (ii) follow from [9, Theorem 3.3] and the definition of δ(ψα(B(α))). Part (iii)
is [9, Proposition 6.5]. �

By Proposition 4.3(i), the interiors of the elements of C partition E(X), and by Proposi-
tion 4.3(ii) the boundary of each element of C is equal to the union of other elements in C.
Hence to show that C is the set of closed balls of a regular cell complex it suffices to prove the
following.

Theorem 4.4. For all α ∈ S(X), the set ψα(B(α)) is homeomorphic to [0,1]dim(α).

Proof. By Lemma 4.2 it suffices to prove the theorem for α ∈ S(X) an X-tree.
To prove the theorem we use induction on dim(α). It can easily be checked that the result

holds for dim(α) = 0,1,2,3.
Now suppose that d := dim(α) > 3, and that ψβ(B(β)) is homeomorphic to [0,1]dim(β) for

all β ∈ S(X) such that dim(β) < d .
By Proposition 4.3(ii) and the inductive hypothesis, δ(ψα(B(α))) is a regular cell complex,

with set of closed balls equal to

{
ψβ

(
B(β)

)
: β ∈ S(X)<α

}
.

Moreover, this complex has face poset isomorphic to (S(X)<α,�) (cf. [9, Theorem 3.3]).
By Theorem 2.1 the poset [0̂, α] obtained by adding a minimal and a maximal element to
(S(X)<α,�) is thin and graded (graded means pure with a unique minimal and maximal ele-
ment) with length d +1, and by Theorem 3.1 [0̂, α] has a recursive coatom ordering. It follows by
[4, Theorem 4.7.24(i)]3 that ψα(δ(B(α))) is homeomorphic to δ([0,1]d), the (d−1)-dimensional
sphere.

It now follows that the set ψα(B(α)) is homeomorphic to [0,1]d by applying Proposi-
tion 4.3(iii) together with Corollary A.2 of Appendix A with g = ψα , B = B(α), and Z =
ψα(B(α)). �
5. Proof of some combinatorial lemmas

In this section we give the proofs of Lemmas 3.10–3.14. Since many of the proofs require
cases that are straightforward to check (but quite detailed to write out), when appropriate we will
refer the reader to [6] where the full details are presented.

3 Denoting the face poset of a cell complex Δ by F(Δ), this theorem states that if P is a graded poset of length d + 2,
then P ∼= F(Δ) ∪ {0̂, 1̂} for some shellable regular cell decomposition Δ of the d-sphere if and only if P is thin and
admits a recursive coatom ordering.
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5.1. Reformulation of (V1) with implications

In this section we prove Lemma 3.10.
Recall part (V1) of Definition 3.3: For all i < j and γ < αi,αj there is a k < j and an

element β such that γ � β � αk,αj .
An equivalent formulation is:
For each interior vertex v of Γ , where deg(v) = n, the following conditions apply (recall

Convention 3.4):

(V1)(a) {ec
1, e

c
2} /� {ec

31, e
c
32} when n = 3, e31, e32 are defined;

(V1)(b) {ec
1, e

c
2} /� {ëd

3 , . . . , ëd
n} when n � 4;

(V1)(c) {ed
1 , ed

2 } /� {ec
3, e

c
4} when n = 4, ed

1 , ed
2 � Γ ;

(V1)(d) ed
1ec

1 /� {ëd
2 , . . . , ëd

n} when n � 4, ed
1 � Γ ;

(V1)(e) ec
1e

d
1 /� {ec

2, ë
d
2 , . . . , ec

n, ë
d
n} when n � 4, ed

1 � Γ ;
(V1)(f) furthermore, if there is a component K in Γ with only one edge e, then the coatoms ec

and ed are not the two first coatoms in the ordering.

That the new formulation of (V1) is equivalent to the original one, follows from the investi-
gation of common elements of [0̂, αi] and [0̂, αj ] which is made in Section 5.2.

Proof of Lemma 3.10. It is easy to show that (V3)(b) ⇒ (V1)(a), (V3(c) ⇒ (V1)(b), (V3)(c) ⇒
(V1)(c), (V3)(d) ⇒ (V1)(e), and (V3)(a) ⇒ (V1)(f). Thus it only remains to show that (V1)(d)
holds. Suppose the coatom ordering satisfies (V3) but not (V1)(d). Then some ec

i , 2 � i � n,
has to come before ec

1 in the ordering because of (V3)(d). But then {ec
1, e

c
i } � {ëd

2 , . . . , ëd
n}, which

contradicts (V3)(c). Hence (V3)(c) and (V3)(d) imply (V1)(d). �
5.2. Common elements of [0̂, α1] and [0̂, α2]

Let Γ be an X-forest, and let α1 and α2 be different coatoms of [0̂,Γ ]. To reformulate the
condition (V1) it is important to find the common elements of [0̂, α1] and [0̂, α2]. For every
pair α1, α2 there is either some δ such that [0̂, α1] ∩ [0̂, α2] = [0̂, δ1] or δ1 and δ2 such that
[0̂, α1] ∩ [0̂, α2] = [0̂, δ1] ∪ [0̂, δ2] (see Lemma 5.1).

To reformulate (V1) we also need to find all β ∈ S(X) such that δi < β � αj when δi is not
covered by αj , i = 1,2, j = 1,2.

From Lemma 5.1 it now follows that the first and second formulation of (V1) are equivalent.
This lemma is also needed in the proofs of Lemmas 5.3 and 3.12.

Lemma 5.1. Let Γ be an X-forest, and let α1 and α2 be distinct coatoms of [0̂,Γ ]. For every
pair of α1 and α2, Table 1 gives δ such that [0̂, α1] ∩ [0̂, α2] = [0̂, δ1] or δ1 and δ2 such that
[0̂, α1] ∩ [0̂, α2] = [0̂, δ1] ∪ [0̂, δ2]. Furthermore, Table 1 (column 3) states whether or not δi is
covered by α1 and α2, and if not, column 4 gives β such that δi < β � αj for j = 1,2.

If nothing else is specified, all operations are made on Γ . This means that for example f c
1 f d

2 =
f c

1 (f d
2 ) = f c

1 (f d
2 (Γ )). Let e1, . . . , en be the edges incident with a vertex v0 in Γ . Let the other

vertex incident with ei be vi , and let mi = deg(vi). If m1 � 3, let f2, . . . , fm be the other edges
incident with v1. Let g be an edge of Γ that is not adjacent to e1.
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Table 1
Description of elements less than both α1 and α2

α1, α2 δ or δ1, δ2 Is δ � α1, α2? δ < β � αj

ec
1, gc δ = gcec

1 Yes
ec

1, gd δ = gdec
1 Yes

ed
1 , gd δ = gded

1 Yes

ec
1, ec

2

{
δ1 = ec

2ec
1

δ2 = ed
3 . . . ed

n

Yes
If n = 3, m3 �= 3 ėd

3 ec
1 � ec

1, ėd
3

ec
1, ed

2 δ = ed
2 ec

1 Yes

ed
1 , ed

2 δ = ed
2 ed

1 If n � 5 ec
3ed

1 � ed
1 , ec

3

ec
1, ed

1 δ = 0̂ if n = m1 = 1 If |E(Γ )| = 1

{
All γ � ec

1

All γ � ed
1

δ = ed
2 . . . ed

n if n � 4,m1 = 1 No

⎧⎪⎪⎨
⎪⎪⎩

ėd
2 ec

1 � ec
1, ėd

2

ėd
2 ed

1 � ed
1 , ėd

2

ec
2ed

1 � ed
1 , ec

2{
δ1 = ed

2 . . . ed
n

δ2 = f d
2 . . . f d

m

if n,m1 � 4
No
No

As δ above
Corresponding

Proof. With the help of the definition of � it is rather straightforward to obtain the results in
Table 1. �
5.3. A and B are compatible with (V3)

The following definition is used in Sections 5.4 and 5.3.

Definition 5.2. Let Γ be an X-forest and e an edge in Γ , and let α be ec(Γ ), ed(Γ ), ėd (Γ ) or
ëd (Γ ). The symbol 〈α〉 denotes α if α is defined and α � Γ .

In this section we prove Lemma 3.12. To do this, we require some preliminary results.
Let α1, . . . , αj , . . . , αt be a coatom ordering of [0̂,Γ ] satisfying (V3). Fix j , and consider the

interval [0̂, αj ]. Let A = {γ | γ � αk,αj and k < j} and let B = {γ | γ � αk,αj and k > j}. The
sets A and B are disjoint since S(X) ∪ {0̂} is thin.

Lemma 5.3. If v is an interior vertex of αj , Av = {γ ∈ A | γ is near v}, and Bv = {γ ∈ B |
γ is near v}, then Av �Bv .

Proof. Let A′ = {β � Γ | γ � β and γ ∈ Av} and B′ = {β � Γ | γ � β and γ ∈ Bv}. Then
A′ ⊆ {α1, . . . , αj−1} and B′ ⊆ {αj+1, . . . , αt }. This lemma will be proven by assuming Av /� Bv

for some interior vertex v in αj , and then deducing that α1, . . . , αt does not satisfy (V3) (which is
a contradiction) by showing that A′ � {αj } �B′ is forbidden by one of the sub-conditions (V3)(b),
(V3)(c), and (V3)(d).

First, note that since all coatoms near v are obtained by contracting or deleting edges in the
same component of αj and (V3) is symmetric, Av /�Bv implies that Av �Bv is forbidden by one
of the sub-conditions (V3)(b), (V3)(c), and (V3)(d).
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Fig. 4. Case 1.

To simplify the proof, we use the following notation. Let C ⊆ Av and D ⊆ Bv . Then C �
D ←− C′ � {αj } � D′} means that C′ = {β � Γ | γ � αj ,β where γ ∈ C} and D′ = {β � Γ |
γ � αj ,β where γ ∈ D}. Since S(X) ∪ {0̂} is thin, C′ and D′ are well defined and are always
disjoint. Observe that if C � D ←− C′ � {α} � D′, then D � C ←− D′ � {α} � C′. Since (V3) is
symmetric it is not necessary to check the reverse of any condition.

Based on the result in Lemma 5.1, we can divide the rest of the proof into cases as below. For
each case, (V3)(b), (V3)(c), and (V3)(d) are checked.

The interior vertex v in αj corresponds to one interior vertex v′ or two interior vertices v′
1 and

v′
2 in Γ . Let the edges incident with v′ or v′

1 be denoted e0, . . . , en, and let the edges incident
with v′

2 be denoted f0 = e0, f1, . . . , fm.

Case 1. The coatom αj is obtained from Γ by contracting the edge e0 incident with v′
1 and v′

2,
where deg(v′

1) � 3 and deg(v′
2) � 3. This case is illustrated in Fig. 4, where n,m � 2.

We will deduce the desired contradiction for the following case. Suppose m � 3 and that Av �
Bv is forbidden by (V3)(c). If ec

1, e
c
2 ∈ Av and ëd

3 , . . . , ëd
n, f̈ d

1 , . . . , f̈ d
m ∈ Bv , then by Lemma 5.1

{ec
1, e

c
2} � {ëd

3 , . . . , ëd
n, f̈ d

1 , . . . , f̈ d
m} ←− {ec

1, e
c
2} � {f c

0 } � {ëd
3 , . . . , ëd

n, f̈ d
1 , . . . , f̈ d

m}. If f d
0 � Γ ,

then (V3)(c) implies that {ec
1, e

c
2, f

d
0 } � {f c

0 } � {ëd
3 , . . . , ëd

n, f̈ d
1 , . . . , f̈ d

m,f c
1 , . . . , f c

m}. If f d
0 is not

covered by Γ , then n = 2 and f̈ d
0 = {ec

1, e
c
2}. This means that {f̈ d

0 , f c
0 } � {f̈ d

1 , f c
1 , . . . , f̈ d

m,f c
m}

which is forbidden by (V3)(c). This is a contradiction since α1, . . . , αt satisfies (V3).
The other cases are dealt with similarly (see [6, Section 5.2] for details).

Case 2. The coatom αj is obtained from Γ by deleting the edge e0 incident with v′, where
deg(v′) � 4.

We deduce the desired contradiction for the following case. Suppose n � 4 and that
Av � Bv is forbidden by (V3)(d). Then for some 1 � k � n − 1 ec

1, ë
d
1 , . . . , ec

k, ë
d
k ∈ Av and

ec
k+1, ë

d
k+1, . . . , e

c
n, ë

d
n ∈ Bv . By Lemma 5.1 we have {ec

1, ë
d
1 , . . . , ec

k, ë
d
k } � {ec

k+1, ë
d
k+1, . . . , e

c
n,

ëd
n} ←− {ec

1, ë
d
1 , . . . , ec

k, ë
d
k }� {ed

0 }� {ec
k+1, ë

d
k+1, . . . , e

c
n, ë

d
n}. Since ec

0 �Γ , ec
0 has to come before

or after ed
0 in the coatom ordering. This implies that {ec

0, ë
d
0 , . . . , ec

k, ë
d
k } � {ec

k+1, ë
d
k+1, . . . , e

c
n, ë

d
n}

or {ec
1, ë

d
1 , . . . , ec

k, ë
d
k }�{ec

0, ë
d
0 , ec

k+1, ë
d
k+1, . . . , e

c
n, ë

d
n} which are both forbidden by (V3)(d). This

is a contradiction since α1, . . . , αt satisfies (V3).
The other cases are dealt with similarly (see [6, Section 5.2] for details).

The remaining cases concern coatoms αj obtained from Γ by contracting or deleting the edge
g not incident with v′. In this situation deg(v) = deg(v′).

Let e0 be incident with v′ and v′
0 in Γ . If g is not adjacent to any edge ei , then the coatoms

near v are obtained from αj by the same operations as the coatoms near v′ in Γ . Furthermore, if
a coatom γ near v is obtained from αj by a certain operation, then γ is covered by the coatom
near v′ which is obtained from Γ by the same operation. Hence, if Av � Bv is forbidden by one
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of (V3)(b), (V3)(c), and (V3)(d), then A′ �B′ obviously is forbidden by the same condition. This
also applies when g is adjacent to e0, if αj is obtained from Γ by contracting g and deg(v′

0) � 4,
or if αj is obtained from Γ by deleting g and deg(v′

0) � 5. There are now two cases left.

Case 3. The coatom αj is obtained from Γ by contracting the edge g adjacent to e0, where
deg(v′

0) = 3.
The conditions (V3)(b), (V3)(c) and (V3)(d) can be checked in a similar way to Cases 1 and 2.

Details can be found in [6, Section 5.2].

Case 4. The coatom αj is obtained from Γ by deleting the edge g adjacent to e0, where
deg(v′

0) = 4.
The conditions (V3)(b), (V3)(c) and (V3)(d) can be checked in a similar fashion to Cases 1

and 2. Details can be found in [6, Section 5.2].

By checking the conditions for all cases it is found that Av �Bv is not forbidden by any of the
conditions (V3)(b), (V3)(c), and (V3)(d). Thus Av �Bv for every interior vertex v in αj . �

We will now prove that A�B is not forbidden by the condition (V3)(a) in Lemmas 5.5 and 5.6.
The following notation will be helpful.

Definition 5.4. If γ is a coatom of [0̂, β] which is obtained by contraction or deletion of an edge
of the component K in β , then we write γ ∈ K .

Recall Convention 3.4. The X-forest αj is obtained from Γ by contracting or deleting an
edge e0. Sometimes contraction or deletion of an edge results in splitting of a component in two
or more parts (recall Convention 3.5). Let K1, . . . ,K�+1 be the non-trivial components in Γ ,
and suppose e0 ∈ K�+1. Thus αj has the non-trivial components K1, . . . ,K�,K

′
1, . . . ,K

′
s where

s � 0. Let v1 and v2 be the vertices incident with e0, let e0, . . . , en be the edges incident with v1,
and let e0, f1, . . . , fm be the edges incident with v2. Then deg(v1) = n+ 1 and deg(v2) = m+ 1.

Lemma 5.5. If s � 2, then {γ � αj | γ ∈ ⋃k
i=1 K ′

i} /� {γ � αj | γ ∈ ⋃s
i=k+1 K ′

i} for all 1 � k �
s − 1.

Proof. Suppose {γ | γ ∈ ⋃k
i=1 K ′

i} � {γ | γ ∈ ⋃s
i=k+1 K ′

i} for some 1 � k � s − 1. We show that
α1, . . . , αt does not satisfy (V3), a contradiction from which the lemma follows. The following
two cases arise. The details are straightforward and similar to those in Lemma 5.3. They will be
omitted here, but can be found in [6, Section 5.3].

Case 1. v1 is unlabelled, v2 is labelled, and αj = ec
0(Γ ). By Convention 3.5 it follows that s = n,

and in αj that ei ∈ K ′
i and ei is incident with a leaf for 1 � i � n.

It is easy to show that {ec
1, ë

d
1 , . . . , ec

k, ë
d
k } � {ec

k+1, ë
d
k+1, . . . , e

c
n, ë

d
n} implies that α1, . . . , αt

does not satisfy (V3).

Case 2. The vertices v1 and v2 are unlabelled and αj = ed
0 (Γ ). Hence s = 2.

Using {ec
1, 〈ëd

1 〉, . . . , ec
n, 〈ëd

n〉} � {f c
1 , 〈f̈ d

1 〉, . . . , f c
m, 〈f̈ d

m〉}, it is easy to show that α1, . . . , αt

does not satisfy (V3). �
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Lemma 5.6. {γ � αj | γ ∈ ⋃k
i=1 Ki} /� {γ � αj | γ ∈ ⋃�

i=k+1 Ki ∪ ⋃s
i=1 K ′

i} for all 1 � k � � if
s > 0, and for all 1 � k � � − 1 if s = 0.

Proof. Let C1 = {γ � αj | γ ∈ ⋃k
i=1 Ki}, C2 = {γ � αj | γ ∈ ⋃�

i=k+1 Ki}, and C3 = {γ � αj |
γ ∈ ⋃s

i=1 K ′
i}. Also, let D1 = {β � Γ | β ∈ ⋃k

i=1 Ki}, D2 = {β � Γ | β ∈ ⋃�
i=k+1 Ki}, and

D3 = {β � Γ | β ∈ K�+1}. The lemma now states that C1 /� (C2 ∪ C3).
Note that Di = {β �Γ | γ �αj ,β where γ ∈ Ci} for i = 1,2. The set D3 is the disjoint union

of {β � Γ | γ � αj ,β where γ ∈ C3} and the set D′ defined by

D′ =

⎧⎪⎨
⎪⎩

{ec
0, 〈ed

0 〉} if αj = ed
0 , n �= 3,m �= 3 or if αj = ec

0;
{ec

0, e
d
0 , 〈ed

1 〉, 〈ed
2 〉, 〈ed

3 〉} if αj = ed
0 , n = 3, m �= 3;

{ec
0, e

d
0 , 〈ed

1 〉, 〈ed
2 〉, 〈ed

3 〉, 〈f d
1 〉, 〈f d

2 〉, 〈f d
3 〉} if αj = ed

0 , n = m = 3.

Now, suppose C1 � (C2 ∪ C3). Then it is easy to deduce that D1 � (D2 ∪D3) if s � 1 and that
(D1 ∪D3)�D2 or D1 � (D2 ∪D3) if s = 0, since C1 � (C2 ∪C3) ←− D1 �{αj }� (D2 ∪ (D3 \D′)).
The details are straightforward and therefore omitted (see [6, Section 5.3]). This is forbidden
by the condition (V3)(a), hence α1, . . . , αt does not satisfy (V3). Since this is a contradiction,
C1 /� (C2 ∪ C3). �
Proof of Lemma 3.12. From Lemma 5.3 follows that A�B is not forbidden by (V3)(b), (V3)(c),
or (V3)(d). Lemmas 5.5 and 5.6 imply that A �B is not forbidden by (V3)(a). Thus A�B. �
5.4. The order of the coatoms near two vertices

In this section the following notation will be used. Let α be an X-forest and C a set of coatoms
of α. In an ordering of C, [β] denotes β if β ∈ C.

Proof of Lemma 3.13. It is easy to show that there always exists an order of ec
1, ec

2, ec
3, 〈ec

11〉,
and 〈ec

12〉 that satisfies (V3)(b) and C �D.
Since deg(v) = 3, it follows that (V3) is satisfied if (V3)(b) is satisfied. Order the elements of

C ∪D so that C �D and ec
1, ec

2, ec
3, 〈ec

11〉 and 〈ec
12〉 have the given order. Then put 〈ec

21〉 and 〈ec
22〉

as far from each other as possible in the ordering without violating C �D, and do the same with
〈ec

31〉 and 〈ec
32〉. It is now easy to see that this ordering satisfies (V3) and C �D, and has the given

order of ec
1, ec

2, ec
3, 〈ec

11〉 and 〈ec
12〉. �

Proof of Lemma 3.14. If γ1, . . . ,γk is an ordering of C such that {γ1, . . . ,γi}�{γi+1, . . . ,γk}∪D
for all 1 � i � k −1, and δ1, . . . , δ� is an ordering of D such that C∪{δ1, . . . , δi}� {δi+1, . . . , δ�}
for all 1 � i � � − 1, then the ordering γ1, . . . , γk, δ1, . . . , δ� of C ∪D satisfies (V3) and C �D.

The symmetry of (V3) implies that if it is possible to find orderings as above for C, then it is
also possible to find the desired orderings for D. Hence it suffices to find such orderings of C. In
this case the sub-conditions of (V3) that need to be checked are (V3)(c) and (V3)(d).

If D = ∅, we may give C the ordering ec
2 ëd

3 . . . ëd
2 ec

3. If |C| � 2, then give C any ordering.
Now suppose D �= ∅ and |C| � 3. If there exists an edge f1 such that f c

1 ∈ C and ḟ d
1 ∈ D, then

|C| � 3 and (V3)(c) imply that there is some ḟ d
2 ∈ C. If also f c

2 ∈ C, then (V3)(c) implies that
there is some ḟ d

3 ∈ C. Hence either ḟ d
2 ∈ C, f c

2 ∈ D, or there is some ḟ d
2 ∈ C such that f2 �= e1.

Now it is easy to show that the orderings f c ḟ d . . . [f c] or f c f c ḟ d . . . [f c] of C will do.
1 2 2 11 1 2 2
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If f c
i ∈ C ⇒ f̈ d

i ∈ C for all edges fi incident with v, then (V3)(d) implies that there exists an
edge f1 such that ḟ d

1 ∈ C and f c
1 ∈D. If f c

2 and/or f c
3 are in C, then f̈ d

2 and/or f̈ d
3 are also in C.

Then the ordering ḟ d
1 [f c

2 ] [f̈ d
3 ] [f c

3 ] . . . [f̈ d
2 ] of C will do.

Thus in all cases above it is possible to choose an ordering that has the given order of those of
ec

1 and ëd
1 that are in C. �
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Appendix A

In this appendix we present some topological results that we use in Section 4. For basic ter-
minology and results concerning point-set topology see, for example, [10].

Proposition A.1. Suppose that B is a ball, with boundary S, a sphere. If f :S → S is a contin-
uous map such that f −1(p) is contractible for each p ∈ S, then f extends to a continuous map
F :B → B such that F restricted to Int(B) is injective and F(Int(B)) = Int(B).

Proof. The conditions on f ensure that f is a cellular map, and therefore it can be approximated
by homeomorphisms—for the definition of these terms, and the justification of the last statement,
see [7] and (for the dimension 4 case) [11]. The existence of an extension F with the properties
promised by Proposition A.1 now follows by [7, Lemma 1]. �

Now, given topological spaces Y,Z, and a map f :Y → Z, let Rf be the equivalence relation
on Y induced by f , i.e. the equivalence relation that identifies elements of Y that are mapped by
f to the same element of Z. Recall that if Y is compact, and f is a continuous surjection with Z

Hausdorff, then Z is homeomorphic to the quotient space Y/Rf . With this fact and the previous
proposition in hand, we now present a result that is used in the proof of Theorem 4.4.

Corollary A.2. Let Z be a Hausdorff topological space, and let B be a d-dimensional ball
with boundary S, a sphere. Suppose that g :B → Z is a continuous surjection whose restriction
to Int(B) is bicontinuous and injective. Suppose furthermore that g(S) is homeomorphic to S,
g(S) ∩ g(Int(B)) = ∅, and that for each q ∈ g(S), g−1(q) is contractible. Then Z is homeomor-
phic to B .

Proof. By assumption the space Z is homeomorphic to the quotient space B/Rg . Now, by Propo-
sition A.1, the map g|S extends to a continuous map F :B → B that maps Int(B) injectively onto
Int(B). In particular, it follows that B is homeomorphic to B/RF . Now, RF = Rg since F and
g are both injective on Int(B), F(Int(B)) ∩ F(S) = g(Int(B)) ∩ g(S) = ∅, and F |S = g. Conse-
quently, B/RF = B/Rg , from which it immediately follows that Z is homeomorphic to B . �

We conclude this appendix with a result that is used in the proof of Lemma 4.2.
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Lemma A.3. Let I be a finite index set. For each i ∈ I , let Zi be compact topological space, and
Ri be an equivalence relation on Zi such that Yi := Zi/Ri is Hausdorff. Let R be the (product)
equivalence relation on Z := ∏

i∈I Zi defined by (zi)i∈IR(z′
i )i∈I if and only if ziRiz

′
i for each

i ∈ I . Then Z/R is homeomorphic to
∏

i∈I Yi .

Proof. Set Y := ∏
i∈I Yi , and let f :Z → Y be the map that takes (zi)i∈I to ([zi])i∈I , where, for

zi ∈ Zi , [zi] denotes the equivalence class of zi under relation Ri .
Set W = Z/R, and let g :Z → W be the associated quotient mapping. By the universal prop-

erty of quotient mappings, there is a continuous mapping h :W → Y with h◦g = f . By standard
properties of quotient mappings h is a bijection. But since Z is compact, so is W , and since each
Yi is Hausdorff, so is Y . Hence h is a continuous bijection from a compact space to a Hausdorff
space, and is therefore a homeomorphism. �
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