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Abstract. Associated to any finite tree, there are simple vector spaces over Z2 and linear trans-
formations between them that relate collections of edge-disjoint paths, sets of leaves of even
cardinality, and bipartitions of the leaf set. In this paper, we use this connection to introduce
and study an apparently new integer-valued invariant, the ‘path index’ of a tree. In the case of
trivalent (or ‘binary’) trees, this index has an interesting recursive description that allows its easy
calculation implying in particular that the path index of such a tree never exceeds one quarter of
the number of its leaves and coincides with that number exclusively for the (unique!) trivalent
tree with four leaves. We then show how our algebraic perspective has some other uses — for
example, it relates to Hadamard conjugation first described by Mike Hendy, and it provides a
way to study a combinatorial optimization problem considered in phylogenetics called the small
maximum parsimony problem.

Keywords: X-trees, paths, maximum parsimony, short exact sequence

1. Introduction

Many properties of a tree can be studied by exploiting a vector-space structure (over
Z2) that relates edge-disjoint collections of paths, sets of leaves of even cardinality, and
bipartitions (or splits) of the leaf set of the tree. We describe how these vector spaces are
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78 A. Dress and M. Steel

related and how they give rise to a short exact sequence (as considered in homological
algebra) as well as an integer-valued invariant that appears to have not been studied
yet — which we call its path index. We show how this index can be computed by a
convenient recursion that has a particularly simple form in the case of trivalent trees,
implying in particular that the path index of such a tree never exceeds one quarter of
the number of its leaves and coincides with that number exclusively for the (unique!)
trivalent tree with four leaves. We then apply some of our constructions to derive results
concerning the parsimony score of a character, an invariant that is fundamental for the
method of maximum parsimony used to reconstruct trees from collections of characters
([1, 2, 8]).

Many of the definitions and arguments in this paper combine algebraic and com-
binatorial concepts, and although the algebra is elementary (groups, homomorphisms,
linear transformations, short exact sequences etc.), readers who are less familiar with
this area may wish to consult a suitable text, e.g. [7]. We begin by outlining the general
set-up of the paper.

2. The Index of a Map from a Finite Set into a Finite-Dimensional Vectorspace

Suppose we are given

• k : a field,
• U : a finite-dimensional k-vectorspace,
• E: a finite set,
• f : E →U , a map.

Based on these entities, let us define

• Û := Homk(U, k), the k-dual of U ,
• f̂ : Û → kE : ϕ 7→ ϕ◦ f ,
• ind( f ) : Û →U : ϕ 7→ ∑e∈E ϕ

(
f (e)

)
f (e)

(
= ∑e∈E f̂ (ϕ)(e) f (e)

)
,

• ind f := dimk ker
(
ind( f )

)
, the k-dimension of the kernel of the linear transforma-

tion ind( f ).

Remark 2.1. The map f : E →U induces a linear transformation

k[ f ] : k[E] → U

∑e∈E xee 7→ ∑e∈E xe f (e)

from the finite-dimensional k-vectorspace k[E] freely generated by E into U , and thereby
a dual transformation

f̂ := k̂[ f ] : Û → kE

ϕ 7→
(
ϕ◦ f : E → k : e 7→ ϕ( f (e))

)

from the dual Û of U into the k-vectorspace kE consisting of all maps from E into
k

(
identified with the dual vectorspace k̂[E] of k[E] in the canonical way by associ-

ating, to each map η : E→k, the linear extension k[η] : k[E]→k that maps an element
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∑e∈E xee∈ k[E] onto the corresponding linear combination ∑e∈E xeη(e) of the elements
η(e)

)
.

Furthermore, we have the canonical isomorphism

ιE : kE→k[E] :

f 7→ ∑
e∈E

f (e) · e

giving rise to the following commutative diagram for

ind( f ) = k[ f ]◦ ιE ◦ k̂[ f ] :

Û
ind( f )

−−−−→ U
yk̂[ f ]

xk[ f ]

kE ιE−−−−→ k[E]

Remark 2.2. Although dimk U = dimk Û holds, there is no reason to believe that ind( f )
is necessarily an isomorphism. Indeed, as we will see, there are rather naturally occur-
ring instances of such maps whose kernel — much to our own surprise — we found to
be non-trivial.

3. The Path Index of a Tree

In this section, we specialise the general set-up described above to the following setting.

(i) We consider a fixed finite set X .
(ii) In this paper, an X-tree will be be understood to mean any finite, connected, and

cycle-free graph with vertex set VT and edge set ET ⊆
(VT

2

)
whose vertex set

contains the set X while, conversely, every vertex v ∈ VT of degree less than 3 is
contained in X . Sometimes, X-trees are defined in a slightly more general way,
however we prefer the current simpler definition in the present context.

(iii) For every vertex v ∈VT , we define its co-boundary ∂T v relative to T by

∂T v := {e ∈ ET : v ∈ e}

so that the degree degT (v) of v relative to T is given by degT (v) := #∂T v. Further-
more, we put

Vk(T ) = {v ∈VT : degT (v) = k}

for each k ∈ N := {1, 2, . . .}. Of particular interest are trivalent X-trees, that is,
X-trees T for which X coincides with the set V1(T ) of leaves of T while every
other vertex of T has degree 3.

Two X-trees T and T ′ are said to be canonically isomorphic if there exists a (nec-
essarily unique) bijection ψ : VT→VT ′ that maps any element x ∈ X ⊆VT onto it-
self considered as an element of V ′

T , and for which the induced map
(ψ

2

)
:
(VT

2

)
→

(VT ′
2

)

restricts to a bijection ET→ET ′ from ET onto ET ′ . Any such bijection ψ is said to
induce an isomorphism from T onto T ′.
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(iv) We specify k to be the prime field k := F2 of characteristic 2 containing the two
distinct elements 0 = 0F2 and 1 = 1F2 , only.

(v) We specify U to be the quotient FX
2 /constF2(X) of the F2-vectorspace FX

2 consist-
ing of all maps from X into F2 modulo the one-dimensional subspace constF2(X)
consisting of all (altogether exactly two) constant maps from X into F2. Recall
that a split S of X is a subset of the power set P (X) of X consisting of two dis-
joint subsets of X , the two ‘split halves’ of S, whose union is all of X , and let
S(X) denote the set of all splits of X . We may then identify U with S(X) by
associating, to any coset η := η + constF2(X) in U of a map η in FX

2 , the (well-
defined!) split Sη := {η−1(0), η−1(1)} that, conversely, determines the coset η
uniquely. Note that, this way, the sum of two splits S = {A, B} and S′ = {A′, B′}
in S(X) = FX

2 /constF2(X) is the split S∆S′ = {A, B}∆{A′, B′} defined by

{A, B}∆{A′, B′} := {(A∩A′)∪ (B∩B′), (A∩B′)∪ (B∩A′)}

or, equivalently, by

{A, B}∆{A′, B′} := {A∆A′, X − (A∆A′)},

where A∆B is the ‘symmetric difference’ of A and B, defined by

A∆B := (A∪B)− (A∩B)
(

= (A−B)∪ (B−A)
)
,

for all A, B ∈ P (X). This allows us to denote the ‘∆-sum’ of any family (Si)i∈I
of splits in S(X) by ∆i∈ISi. Clearly, two elements a, a′ ∈ X are in the same split
half of ∆i∈ISi if and only if the number of indices i ∈ I for which a and a′ are in
disjoint split halves of Si is an even number.

(vi) And we specify f := fT to be the much studied map (cf. [8]) from ET to S(X)
that associates, to each edge e = {u, v} ∈ ET , the unique split Se = {Ae

u, Ae
v} of

X into the two subsets Ae
u and Ae

v consisting of all x ∈ X that are ‘closer’ to u
than v, or to v than to u, respectively — here, as also later on without further
notice, we make use of the simple fact that there exists, for any connected graph
G = (V, E) with vertex set V =VG and edge set E = EG ⊆

(V
2

)
, a canonical metric

dG : V ×V→R on the vertex set V defined, e.g., as the unique (!) largest metric
on V with dG(u, v) ≤ 1 for all u, v ∈V with {u, v} ∈ EG.

With these specifications, the construction above suggests that we consider the induced
map

ind( fT ) : Ŝ(X)→S(X) : ϕ 7→ ∆e∈ET : ϕ(Se)=1 Se

that maps any F2-linear map ϕ from S(X) into F2 onto the ∆-sum, over all e ∈ ET with
ϕ(Se) = 1, of the associated splits Se.

By abuse of notation, we also just write T instead of ind( fT ) for this map which is
justified by the fact to be established below that any two X-trees T and T ′ are canoni-
cally isomorphic if and only if the two associated maps ind( fT ) and ind( fT ′) from Ŝ(X)
into S(X) coincide.
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Definition 3.1. The path index ipath(T ) of the X-tree T is the index indT = ind fT of
the map fT : ET → S(X) from the edge set ET of T into the set S(X) of all splits of X
(considered, as described above, as an F2-vectorspace), that is, it is defined by

ipath(T ) := dimF2 ker(T ).

In the next section, we will show how this index has an alternative, more combina-
torial description, namely in terms of the number of even cardinality subsets of X that
satisfy various parity conditions based on systems of paths in T .

4. Some Canonical Identifications

In the following, we identify — by further abuse of notation — each subset Z of a set
X with

(i) the map

Z : X→F2 : x 7→





1, in case x ∈ Z,

0, in case x 6∈ Z,

(ii) the map

Z : P (X)→F2 : Y 7→ 〈Z|Y 〉X := ∑
y∈Y

Z(y) (= #(Z ∩Y ) ·1F2),

(iii) the element
Z = ∑

z∈Z
z ∈ F2[X ]

in the F2-vectorspace F2[X ] freely generated by X ,

this way identifying the set P (X) of all subsets of X with

(i) the F2-vectorspace FX
2 of all maps from X into F2 — with vector addition in P (X)

given by the symmetric difference operation ∆,
(ii) the F2-dual P̂ (X) = Hom(P (X), F2) of P (X) (considered as a vectorspace over

F2 using the identification described above) consisting of all maps

η : P (X)→F2 with η(A∆B) = η(A)+η(B) for all A, B ∈ P (X),

(iii) and the F2-vectorspace F2[X ] freely generated by X .

In particular, the one-dimensional subspace constF2(X) of FX
2 consisting of all con-

stant maps from X into F2 gets, in this way, identified with the one-dimensional sub-
space { /0, X} of P (X), thus inducing a canonical identification of the quotient space
FX

2 /constF2(X) of FX
2 with the set of cosets Y∆{ /0, X} = {Y∆/0, Y∆X} = {Y, X −Y} of

the subsets Y of X relative to { /0, X} and thus — once more and in an even more direct
way — with the set S(X) of splits of X .

Thus, as Z(X) = 〈Z|X〉X vanishes for some subset Z of X if and only if the cardi-
nality of Z is even, this implies further that
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• the set Peven(X) consisting of all subsets of P (X) of even cardinality forms a sub-
vectorspace of P (X) of co-dimension 1,

• every set Z ∈ Peven(X) induces a canonical linear form S(X)→F2 also denoted, by
abuse of notation, by Z from S(X) = FX

2 /constF2(X) into F2 defined by

Z({A, B}) := 〈Z |A〉X
(

= #(A∩Z) ·1F2 = #(B∩Z) ·1F2 = 〈Z |B〉X
)

for every split {A, B} in S(X),
• the induced pairing

Peven(X)×S(X)→F2 : (Z, S) 7→ 〈Z |S〉X := Z(S)

is a non-degenerate pairing of F2-vectorspaces,
• and the induced map

Peven(X)→Ŝ(X) : Z 7→ (Z : S(X)→F2 : S 7→ 〈Z |S〉X )

is a canonical isomorphism from Peven(X) onto the F2-dual Ŝ(X) of the quotient
space FX

2 /constF2(X) = S(X) referred to in the definition of the map T = ind( fT )
in the previous section.

Let us now assume that, as in Section 3, T is an X-tree with vertex set VT and edge
set ET ⊆

(VT
2

)
. Then, the induced map f̂T from Peven(X) = Ŝ(X) into F

ET
2 maps every

Z ∈ Peven(X) onto the map

Z ◦ fT : ET→F2 : e 7→ Z
(

fT (e)
)

= Z(Se) = 〈Z |Se〉
X

and thus, identifying F
ET
2 with P (ET ) as explained above, onto the subset

[Z] = [Z]T := {e ∈ ET : 〈Z |Se〉
X = 1}

of ET . It follows that f̂T maps any 2-subset {x, y} of X onto the set [x, y] of edges e∈ET
on the path from x to y in T and, more generally, any Z ∈ Peven(X) onto the (unique!)
smallest subset F of ET for which, for every z ∈ Z, there exists some z′ ∈ Z −{z} such
that the edges on the path from z to z′ are all in F:

Indeed, it is fairly obvious that, indexing the elements of a subset Z of X of cardi-
nality 2k for some k ∈ N as z1, z2, . . . , z2k, one has

[Z]T = [{z1, z2}∆ · · ·∆{z2k−1, z2k})]T = [z1, z2]T ∆ · · ·∆ [z2k−1, z2k]T ,

and there exists some such labelling (unique up to permutations π of the index set
{1, 2, . . . , 2k− 1, 2k} with |π(2i)−π(2i− 1)| = 1 for all i = 1, 2, . . . , k — or, equiva-
lently (!), with π(2i) = π(2i−1)+1 in case π(2i−1) is odd, and π(2i) = π(2i−1)−1
in case π(2i−1) is even, i = 1, 2, . . . , k — in case T is trivalent) such that [Z]T coincides
with the disjoint union of the sets [{z1, z2}]T , . . . , [{z2k−1, z2k}]T .

This explains the term ‘path index’ that we suggest to call the index of the map
fT : ET → S(X) and the notation [Z] = [Z]T for the set of edges e in ET with 〈Z |Se〉

X = 1.
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Furthermore, it follows that the F2-linear extension

∆T := F2[ fT ] : P (ET )→S(X)

of the map fT : ET→S(X) maps any subset F of ET onto the ∆-sum

∆T F := ∆e∈F Se

while the map T : Ŝ(X) = Peven(X)→S(X) maps any even-cardinality subset Z of X
onto the ∆-sum ∆T [Z] = ∆e∈[Z] Se of the splits in the family (Se)e∈[Z], i.e., we have

T (Z) = ∆T [Z] = ∆e∈[Z] Se

for every even-cardinality subset Z of X .
In particular, as ∆T maps a given subset F of ET onto the zero element {X , /0} in

S(X) if and only if the cardinality of [x, y]T ∩F is even for all x, y ∈ X (or, equivalently,
if and only if the cardinality of [x, y]T ∩F is even for some fixed element x ∈ X and
all elements y ∈ X −{x}), we see also that the path index of T coincides with the F2-
dimension of the collection of subsets Z ∈ Peven(X) with #

(
[x, y]T ∩ [Z]T

)
≡ 0 mod 2

for all x, y ∈ X (or, equivalently, for some fixed elements x ∈ X and all elements y ∈
X −{x}) — where this collection is, of course, considered as an F2-subvectorspace of
P (X).

Using these notations, it is now easy to show that an X-tree T is indeed uniquely
determined by the associated map T : Peven(X)→S(X). For the following lemma, con-
sider, for any a ∈ X , the following subset of Peven

P2(X |a) :=
{
{a, b} : b ∈ X −{a}

}
.

Lemma 4.1. Two X-trees T and T ′ are canonically isomorphic if and only if the in-
duced maps T and T ′ from Peven(X) into S(X) coincide. Moreover this is the case if
and only if the restriction of these two maps to P2(X |a) coincide for one (or, as well,
for all) a ∈ X (since P2(X |a) forms an F2-basis of Peven(X)).

Proof. First note that
T

(
{x, y}

)
=

{
X −{x, y}, {x, y}

}

holds for a 2-subset {x, y} of X if and only if {x, y} ⊆ V1(T ) and dT (x, y) = 2 holds.
Thus, it suffices to observe that, given any vertex v ∈ VT and any two distinct leaves
x, y of T with {x, v}, {y, v} ∈ ET , the map T x,y associated with the X x,y-tree T x,y :=
(V x,y, Ex,y) defined by

V x,y := VT −{x, y}, Ex,y := ET −
{
{x, v}, {y, v}

}
,

for the set
Xx,y := {v}∪ (X −{x, y})

is completely determined by the map T because, for every element a in X x,y −{v} =
X −{x, y}, one has

T x,y({v, a}) =
{

A−{x}, B∪{v}−{y}
}

where A and B denote the two subsets of X with T
(
{x, a}

)
= {A, B} and x ∈ A (and,

hence, y ∈ B).
Using these facts, Lemma 4.1 can easily be established by induction on #X in a

well-known recursive fashion.



84 A. Dress and M. Steel

Remark 4.2. It might be of some interest to find a structural characterization of those
F2-linear maps τ : Peven(X)→S(X) for which some X-tree T with τ = T exists.

5. Examples

(i) Suppose that T is a trivalent X-tree with at least four leaves such that every leaf
has distance 2 to some other leaf. Then, #X must be even, and X is the only non-
empty subset Z in Peven(X) with #

(
[x, y]T ∩ [Z]T

)
≡ 0 mod 2 for all x, y ∈ X , so

ipath(T ) = 1 must hold.

More generally, if x, y ∈ X are any two leaves of distance 2, we have either
x, y ∈ Z or x, y 6∈ Z for any subset Z ∈ ker(T ). Indeed, it is easily seen that,
for any two such leaves x, y ∈ X , ker(T ) is the disjoint union of its two sub-
sets {Z ⊆ X −{x, y} : Z ∈ ker(T )} and {Z ∪ {x, y} : Z ⊆ X −{x, y}, T (Z) =
{X −{x, y}, {x, y}}}.

(ii) Let Tn be the trivalent X-tree that has n ≥ 2 leaves and for which at most two
interior vertices are incident with more than one leaf (the class of ‘caterpillar
trees’, as in [8]). Then, a simple inductive argument (see also Section 6 below)
shows that

ipath(Tn) =





1, if n ≡ 1(mod3),

0, if n 6≡ 1(mod3).

holds.

(iii) The smallest trivalent X-tree with ipath(T ) > 1 has 9 leaves and is shown in Fig-
ure 5.1. In the next section, we describe how to construct trivalent X-trees with
arbitrarily large path index.

Figure 5.1: The smallest trivalent X-tree having ipath(T ) > 1.
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6. Computing the Path Index of a Trivalent X-Tree

To compute the path index of a trivalent X-tree T , we first note that any trivalent X-tree
that has five or more leaves has a subtree of one of the four types shown in Figure 6.1
where x, y, x ′, y ′, z, z ′ are leaves (this result may be established as follows: Choose
two vertices (necessarily leaves) x and v in VT at maximal distance (≥ 4), consider the
unique vertex u = u3 ∈ VT with dT (u3, x) = 3 and dT (u3, v) = dT (x, v)− 3 as well all
vertices w ∈VT with dT (w, v) = dT (w, u3)+dT (u3, v), and list the resulting cases).

2

1

21

1

(1)

(3)

(2)

(4)

1

1

2

22

1

u

u
uu

y′

x′

u

u

u
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x′

y′

u

u u′

u′

y′

x′

z′

z

u′
u

yx x′

y′

y

y
x

x
x y

u

u

Figure 6.1: The four cases for a ‘pendant’ subtree in a trivalent X-tree.

Given a subset V ′ of VT , let T |V ′ := (V ′, ET ∩
(V ′

2

)
) denote the subgraph of the tree

(VT , ET ) induced by V ′ that we consider as a (trivalent) X ′-tree for X ′ := V1(T |V ′) in
case that subgraph is connected and V ′ = V1(T |V ′)∪V3(T |V ′) holds in which case
its path index ipath(T |V ′) is well defined. Using the notation introduced in Figure 6.1,
this is in particular the case for each of the four types 1, 2, 3, 4 of subtrees shown in
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Figure 6.1 for the respective subsets

V (1) := VT −{x, y, x′, y′},

V (2) := VT −{x, y, x′, y′, u1, u2},

V (3) := VT −{x, y, z, x′, y′, u1, u2, u′1},

V (4) := VT −{x, y, z, x′, y′, z′, u1, u2, u′1, u′2}

giving rise, for each j ∈ {1, 2, 3, 4}, to a trivalent X j-tree T |V ( j), with X j := {u}∪
(X ∩V ( j)) in case j = 2, 3, 4 and X j := {u1, u2}∪ (X ∩V ( j)) in case j = 1. Note that
#X j = #X − j−1 holds for all j = 1, 2, 3, 4.

Theorem 6.1. For all j = {1, 2, 3, 4}, we have

ipath(T ) = ipath(T |V ( j))+δ j,4.

Proof. The proof relies on considering the four cases j = 1, 2, 3, 4 described above
separately. In each of these cases, we let T ′ denote the trivalent X j-tree T |V ( j), and
we consider a subset Z ∈ ker(T ). In case j = 1, we have either (a) {x, y, x′, y′} ⊆ Z or
(b) {x, y, x′, y′}∩Z = /0. In subcase (a), put Z′ : = Z −{x, y, x′, y′}∪{u1, u2} while, in
subcase (b), put Z′ := Z; either way, we have Z′ ∈ ker(T ′), since #

(
[x′′, y′′′]T ′∩ [Z′]T ′

)
≡

0 mod 2 for all x′′, y′′ ∈ X −{x, y, x′, y′}∪{u1, u2}. Conversely, if Y ∈ ker(T ′) holds,
then there is a unique subset Z ∈ ker(T ) with Z ′ = Y . Thus, ipath(T ) = ipath(T ′).

In case j = 2, either (a) Z∩{x, y, x′, y′}= {x, y, x′} or (b) Z∩{x, y, x′, y′}= /0 holds.
In subcase (a), put Z′ := (Z −{x, y, y′})∪{u} while, in subcase (b), put Z ′ := Z; either
way, we have Z′ ∈ ker(T ′). Conversely, if Y ∈ ker(T ′) holds, there is again a unique
subset Z ∈ ker(T ) with Z′ = Y . Thus, ipath(T ) = ipath(T ′) holds also in this case.

In case j = 3, either (a) Z ∩{x, y, x′, y′, z} = {x, y, z} or (b) Z ∩{x, y, z, x′, y′} = /0
holds. In subcase (a), put Z ′ := Z −{x, y, z}∪{u} while, in subcase (b), put Z ′ := Z;
either way, we have Z′ ∈ ker(T ′). Conversely, if Y ∈ ker(T ′) holds, there is once again
a unique subset Z ∈ ker(T ) with Z ′ = Y . Thus, ipath(T ) = ipath(T ′) holds also in this
case.

Finally, in case j = 4, either (a) Z ∩{x, y, x′, y′, z, z′} = {x, y, x′, y′, z, z′} or (b) Z∩
{x, y, x′, y′, z, z′}= /0 or (c) Z∩{x, y, x′, y′, z, z′}= {x, y, z} or (d) Z∩{x, y, x′, y′, z, z′}
= {x′, y′, z′} holds. In subcase (a), put Z ′ := Z −{x, y, x′, y′, z, z}, in subcase (b), put
Z′ := Z, in subcase (c), put Z′ := Z −{x, y, z} ∪ {u}, and in subcase (d), put Z ′ :=
Z−{x′, y′, z′}∪{u}. In each of these four subcases, we have Z ′ ∈ ker(T ′). Conversely,
if Y ∈ ker(T ′) holds, there are precisely two subsets Z ∈ ker(T ) with Z ′ = Y . Thus,
ipath(T ) = ipath(T ′)+1 holds in case j = 4.

Clearly, Theorem 6.1 allows us to compute the path index of any trivalent X-tree
in a simple recursive fashion as well as to construct all trivalent X-trees with a given
number of leaves and a given path index starting from the trivalent X-trees T2, T3, and T4
with exactly 2, 3, or 4 leaves, respectively. Thus, it implies in particular the following
noteworthy consequences:
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Corollary 6.2. Suppose T is a trivalent X-tree with n = nT leaves. Then

ipath(T ) ≤
n+1

5
.

Furthermore, this bound is achieved exactly for n = 4, 9, 14, 19, 24, . . . , i.e., whenever
this number n+1

5 is an integer, and the trees for which this bound is achieved are exactly
those that can be constructed by starting with the trivalent tree T4 with 4 leaves, and
then making repeated application (in any order) of the reverse of operations of type T 7→

T |V (4) described above. In particular, the quotient ipath(T )

nT
is maximized exclusively for

T4 where it attains the value 0.25.

Corollary 6.3. More generally, given any two non-negative integers n, i with n ≥ 6 and
i ≤ n+1

5 , there exists a trivalent X-tree with n leaves and path index i, and any such tree
can be constructed by starting with one of the three trees Tk, k = 2, 3, 4 and making
repeated application (in any order) of the reverse of operations of type T 7→ T |V ( j)
described above for j ∈ {1, 2, 3, 4} applying the reverse of an operation of type T 7→
T |V ( j) exactly m j times, for some non-negative integers m1, m2, m3, m4 that satisfy the
conditions

(i) k +2m1 +3m2 +4m3 +5m4 = n,
(ii) δ4,k +m4 = i.

Corollary 6.4. If T is a trivalent X-tree with at least 4 leaves, its path index either
coincides with 1, or there exists at least one leaf x for which no leaf y of distance 2
exists in which case the path index is always smaller than the number s(T ) of such
leaves x; in particular, we have ipath(T ) = 0 for every trivalent X-tree T with s(T ) = 1,
and the inequality ipath(T ) ≤ max

(
1, s(T )−1

)
holds for every trivalent X-tree T .

Corollary 6.5. The class of trivalent X-trees with ipath(T ) = 0 is precisely the class
of trees that can be constructed by starting with T2 or T3, and then making repeated
application (in any order) of the reverse of operations of type T 7→ T |V ( j), where j ∈
{1, 2, 3}, described above.

The enumeration of the isomorphism classes of trivalent X-trees T with ipath(T ) = 0
might be an interesting exercise. Similarly, a simple ‘structural’ characterization of such
trees would be desirable, as well as further insight into uniqueness and non-uniqueness
of the numbers m1, m2, m3, m4 discussed in Corollary 6.3.

In particular, it might be of some interest to investigate the structure of the infinite
edge-labelled graph whose vertices are the (isomorphism classes of) trivalent trees, with
two such vertices T,T ′ connected by a directed edge labelled by j ∈ {1, 2, 3} from
T to T ′ if (up to isomorphism) T ′ results from T by an operation of type j, and to

characterize those (we expect, finitely many) trivalent trees T for which edges T
j′
→T ′

and T
j′′
→T ′′ exist such that no trivalent tree T ′′′ with edges T ′ j′′

→T ′′′ and T ′′ j′
→T ′′′ exist.

For example, define two directed paths

T(0)
j1→T(1)

j2→T(2) · · ·
jn
→T(n)
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and

T ′
(0)

j ′1→T ′
(1)

j ′2→T ′
(2) · · ·

j ′n→T ′
(n)

to be equivalent if one can be transformed into the other by a repeated exchange of a
subpath of the form

T(ν−1)
jν
→T(ν)

jν+1
→ T(ν+1)

by the form

T(ν−1)
jν+1
→ T ′

(ν)

jν
→T(ν+1).

Then we expect that there exists a small constant C such that the number C(T, e) of
inequivalent paths leading from any given tree T containing a given fixed edge e to one
of the (at most seven!) smallest trivalent subtrees T ′ of T that still contain the edge e
and are not further reducible by any one of the operations of type 1, 2, 3, or 4 without
eliminating e is, independently of the choice of T and e, bounded from above by C.

For the sake of completeness, we note that it is, of course, possible to compute
ipath(T ) for any X-tree T by using a slightly more general recursive procedure.

7. Further Applications

We continue to consider a fixed finite X-tree T with vertex set VT and edge set ET ,
we put V ∗

T := VT −X , and we continue writing [Z] instead of [Z]T for any subset Z ∈
Peven(X) and T for the map ind( fT ) := ∆T ◦ [. . . ] : Z 7→ ∆T [Z] that is the topic of this
note.

7.1. A Short Exact Sequence

Given any vertex in v ∈ V ∗
T , the co-boundary ∂T v ⊆ ET of v is easily seen to be

contained in the kernel of ∆T . In fact, we can say quite a bit more here by describing
what is known in homological algebra as a ‘short exact sequence’. To do so, we consider
the F2-linear extension of the map ∂T : VT → P (ET ) : v 7→ ∂T v that we will also denote
by ∂T :

∂T : P (VT ) → P (ET ),

U 7→ ∂TU := ∆u∈U ∂T u,

and its restriction to P (V ∗
T ) that we denote by ∆T . Obviously, ∂T maps any subset U of

VT onto the set of all edges e ∈ ET for which #(e∩U) = 1 holds and, as mentioned just
above, any vertex v ∈ V ∗

T and, thus, any subset of V ∗
T onto an element in the kernel of

∆T . More generally, we have ∆T (∂TU) = {U ∩X ,X −U} for any subset U of VT and,
hence, ∆T (∂T A) = {A, X −A} for every subset A of X .

For the next proposition, recall that a sequence of linear transformations

· · ·Ci
ψi
→Ci+1

ψi+1
→ Ci+2 · · ·

is exact if ψi(Ci) = ker(ψi+1) holds for all applicable i. Furthermore, it is called a short
exact sequence if, in addition, it is of the form

0→C0
ψ0→C1

ψ1→C2→0.
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For instance, given any embedding α of one finite set Φ into another finite set Ψ and
putting Ψ∗ := Ψ−α(Φ), one has a canonical short exact sequence of F2-vectorspaces

0→P (Ψ∗)
α∗

→ S(Ψ)
α∗→ S(Φ)→0, (7.1)

that is given by the F2-linear transformations

α∗ : P (Ψ∗)→S(Ψ) : U 7→ {U,Ψ−α(U)}

and
α∗ : S(Ψ)→S(Φ) : {A, B} 7→ {α−1(A), α−1(B)}.

In particular, any X-tree T gives rise to a canonical short exact sequence

0→P (V ∗
T )

αT
→ S(VT )

αT→ S(X)→0, (7.2)

given by the linear transformations

αT : P (V ∗
T )→S(VT ) : U 7→ {U, VT −U}

and
αT : S(VT )→S(X) : {A, B} 7→ {A∩X , B∩X}.

Here, we want to establish the following, closely related result:

Proposition 7.1. The sequence

0 → P (V ∗
T )

∆T
→ P (ET )

∆T→ S(X) → 0 (7.3)

is exact.

Proof. Recall first from standard graph theory that, given any finite connected simple
graph G = (V, E) with vertex set V and edge set E ⊆

(V
2

)
, one has a canonical F2-linear

map

∂G : P (V )→P (E) : U 7→ ∂GU := ∆u∈U ∂Gu

= {e ∈ E : #(e∩U) = 1}

= E ∩{{u, v} ∈
(

V
2

)
: u ∈U, v ∈V −U}

that induces an isomorphism

ιG : S(V )
∼
→ {F ⊆ E : #(F ∩C) ≡ 0 mod 2 for all ‘cycles’ C ⊆ E}

from the set S(V ) of splits of the vertex set V of G onto the set of subsets F of E that
intersect any ‘cycle’ C of G in an even number of edges.∗ We remark in passing that this
∗ A ‘cycle’ of G is any subset of E of the form {{v0, v1}, {v1, v2} . . .{vk−1, vk}{vk , v0}} where v0, v1, . . . , vk

are vertices in V and the subsets {v0, v1}, {v1, v2} . . . {vk−1, vk},{vk , v0} are edges in E.
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can be viewed as a generalization of the rather familiar simple fact that G is bipartite
— that is, there exists a split {U, W} of V with E ⊆ {{u, w} : u ∈U, w ∈W} — if and
only if every cycle of G has even cardinality.

In particular, if G = (V, E) is a tree, ιG maps S(V ) isomorphically onto P (E). Using
this in the special case where G = (VT , ET ) for some X-tree T and denoting the resulting
isomorphism S(VT )→P (ET ) by ιT , we see that short exact sequence (7.2) gives rise to
another short exact sequence

0→P (V ∗
T )→P (ET )→S(X)→0 (7.4)

where the map P (V ∗
T )→P (ET ) is the map ιT ◦αT : P (V ∗

T )→S(VT )→P (ET ) and the
map P (ET )→S(X) is the map αT ◦ ι−1

T : P (ET )→S(VT )→S(X).
Thus, all that remains to be observed is that — using the additivity of all the

maps involved and representing one-element sets by the single element they contain
— ιT (αT (v)) = ∆T (v) = ∂T (v) holds for every v ⊆ V ∗

T which is obvious, and that
αT ◦ ι−1

T (e) = ∆T (e) = Se holds for every edge e = {u, v} of E which follows from
the fact that ιT ({VT (u, v), VT (v, u)} = {e} holds for the split of VT into the two con-
nected components VT (u, v) := {w ∈ VT : dT (w, u) < dT (w, v)} and VT (v, u) := {w ∈
VT : dT (w, u) < dT (w, v)} of the graph (VT , ET −{e}).

The relationship between the maps described in this proof is summarized by the
commutative diagram shown in Figure 7.1. Note also the short exact sequence (7.3) is
related to the maps f̂T and ind fT by the commutative diagram presented in Figure 7.2.

αT

ιT

S(VT )

P (V ∗
T )

P (ET )

0 0S(X)

∆T

αT

∆T

Figure 7.1.

Peven(X)

f̂T

0 P (ET ) S(X)
∆T∆T

P (V ∗
T ) 0

ind fT

Figure 7.2.

7.2. Hadamard Conjugation
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The linear structure we have described so far provides a convenient way to state
the main ‘Hadamard transform’ identity due to Mike Hendy [5]. This is an identity
between two apparently quite different polynomials (the original proof of this identity
in [5] involves identifying two probabilities; a purely combinatorial proof which fits
into the framework developed above can be found in [9]).

Theorem 7.2. For each edge e in the edge set ET of the trivalent X-tree T let xe denote
an indeterminant. Then, the identity

∑
F⊆ET : ∆T (F)=S

∏
e∈F

xe ∏
e∈ET−F

(1− xe) =
1

2n−1 ∑
Z∈Peven(X)

(−1)<Z |S> ∏
e∈[Z]

(1−2xe)

holds for any given S ∈ S(X).

8. Parsimonious Edge Sets

We continue with the assumptions and notations introduced above. A subset F of ET is
called parsimonious if #F ≤ #F ′ holds for every subset F ′ of ET with ∆T (F ′) = ∆T (F),
and strictly parsimonious if F ′ = F holds for any such subset F ′ of ET with #F = #F ′.
In other words, F is parsimonious if #F ≤ #(∆TU ∆ F) holds for all subsets U of V ∗

T ,
and strictly parsimonious if #F < #(∆TU ∆ F) holds for every non-empty subset U of
V ∗

T .
Note that 2#(∂T v∩F) ≤ #∂T v = degT (v) holds for any parsimonious subset F of

ET , in particular, no two edges in a parsimonious set F ⊂ ET are incident in a trivalent
X-tree T .

Our first result in this section describes basic properties of parsimonious sets, using
simple arguments that exploit the linearity of the operator ∆T .

Proposition 8.1.

(i) Any subset F ′ of a (strictly) parsimonious subset F of ET is (strictly) parsimonious.
(ii) Any two subsets F ′, F ′′ of a parsimonious subset F of ET with ∆T F ′ = ∆T F ′′

coincide.

Proof. Suppose that ∆T F ′ = ∆T F ′′ holds for some subset F ′′ of ET , put

F ′′′ := F ∆ F ′ ∆ F ′′,

and note that
∆T F ′′′ = (∆T F) ∆ (∆T F ′) ∆ (∆T F ′′) = ∆T F

as well as F ′′′ = (F −F ′)∆F ′′ (by definition) and, hence,

F ′′′ ⊆ (F −F ′)∪F ′′ as well as #F ′′′ ≤ #F −#F ′ +#F ′′

holds. Hence, if F is parsimonious, we must have #F ≤ #F ′′′ and, therefore, #F ′ ≤ #F ′′,
so F ′ must be parsimonious, too. Further, if in addition F is either strictly parsimonious
and #F ′′ ≤ #F ′ holds, or if F ′′ ⊆ F and, hence, also F ′′′ ⊆ F holds, we must have
F ′′′ = F and, therefore, F ′ = F ′′.
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It follows that the collection of parsimonious subsets as well as the collection of
strictly parsimonious subsets of ET form a simplicial complex whose combinatorial-
topological properties might be a good topic for further investigations.

It is possible to determine in linear time (in #X) by applying the well-used ‘Fitch-
Hartigan’ algorithm ([2, 4]) whether or not F is parsimonious and, if so, whether it
is strictly parsimonious. Because this algorithm is recursive, it is of interest to ask
for a structural characterization of the collection of subsets F of ET that are (strictly)
parsimonious. We now provide such a characterization (Proposition 8.3), and derive
some simple consequences from it.

Definition 8.2. Given a subset U of VT , and a subset F of ET , put

‖U‖F := #
(
(ET −F) ∩ ∂TU

)
−#

(
F ∩ ∂TU

)
.

Proposition 8.3. Let F be any subset of ET . Then the following holds:

(i) F is parsimonious if and only if ‖U‖F ≥ 0 holds for every subset U of V ∗
T .

(i′) F is parsimonious if and only if ‖U‖F ≥ 0 holds for every subset U of V ∗
T for

which T |U is connected. In particular, any connected component U of the graph
(VT , ET −F) contains at least one element from X (as U ⊆V ∗

T and /0 6= ∂TU ⊆ F
would otherwise hold implying that ‖U‖F is negative).

(ii) F is strictly parsimonious if and only if ‖U‖F > 0 holds for every non-empty
subset U of V ∗

T .
(ii′) F is strictly parsimonious if and only if ‖U‖F > 0 holds for every non-empty

subset U of V ∗
T for which T |U is connected.

(iii) There exists a canonical bijection between the set

{F ′ ⊆ ET : #F ′ = #F and ∆T F ′ = ∆T F}

and the set
{U ⊆V ∗

T : ‖U‖F = 0}

that is given by associating to each such subset U of V ∗
T the symmetric difference

∆TU ∆ F of ∆TU and F.

In particular, F is strictly parsimonious if and only if F is parsimonious and
‖U‖F 6= 0 holds for every non-empty subset U of V ∗

T .

Proof. Note first that

#∆TU = #∂TU = #
(
(ET −F) ∩ ∂TU

)
+#

(
F ∩ ∂TU

)
= ‖U‖F +2#

(
F ∩ ∂TU

)

holds for every subset U of V ∗
T and every subset F of ET . Thus,

#(∆TU ∆ F) = #F +#∆TU −2#(∆TU ∩F) = #F +‖U‖F ,

and, therefore,
#(∆TU ∆ F)−#F = ‖U‖F (8.1)

holds for all F and U as above. In consequence, the assertions (i) and (ii) follow from
the fact that, as observed above, F is parsimonious if and only if #(∆TU∆F)≥ #F holds
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for all U ⊆V ∗
T , and F is strictly parsimonious if and only if #(∆TU∆F) > #F holds for

every non-empty subset U subset of V ∗
T .

Next, note that
‖U ∪U ′‖F = ‖U‖F +‖U ′‖F

holds for every subset F of ET and any two subsets U, U ′ of V ∗
T with

∂TU ∩∂TU ′ = /0,

which ‘additivity’ readily implies that (i) holds if and only if (i′) holds, and that (ii)
holds if and only if (ii′) holds.

This establishes the first four claims while the last one follows also immediately
from (8.1).

Proposition 8.3 leads to the following simple sufficient condition for a set of edges
to be strictly parsimonious where we denote, for any pair of edges e, e′ of T , the ‘T -
distance’ of their ‘midpoints’ by dT (e, e′), noting that

dT (e, e′) =
1
4 ∑

u∈e,u′∈e′
dT (u, u′) = 1+min(dT (u, u′) : u ∈ e, u′ ∈ e′)

holds for any distinct edges e, e′ ∈ ET (and that this defines a (proper) metric on ET ).

Corollary 8.4. Let F be any subset of ET . Suppose that, for any two distinct edges
e, e′ ∈ F, we have dT (e, e′) ≥ 4. Then F is strictly parsimonious.

Proof. By Proposition 8.3 (ii′), it suffices to show that, for any subset U of V ∗
T for which

T |U is connected, we have ∂ET−FU > ∂FU . However, this is easily seen to be a simple
consequence of the fact that, for any finite tree without vertices of degree 2 and, thus,
in particular, for the tree T ′ = (

⋃
e∈E,e∩U 6= /0 e, {e ∈ E : e∩U 6= /0}), one has

#L1 < #(V1(T ′)−L1)

for any subset L1 of V1(T ′) with dT ′(x, y) ≥ 5 for all x, y ∈ L1 (and, thus, in particular,
for the set {v ∈V −U : {u, v} ∈ F for some u ∈U}) which in turn follows from the fact
that

#F ′′ < #V1(T ′′)

holds for every subset F ′′ of the edge set E ′′ of a finite tree T ′′ without vertices of degree
2 for which e∩ e′ = /0 holds for any two distinct edges e, e′ in F ′′ (applied to a tree T ′′

that is constructed in an appropriate way from T ′). For more details, see [9].

The condition on F described in Corollary 8.4 is similar to a condition studied
by Huber in [6]. Note that if we weaken this condition on F in Corollary 8.4 to
dT (e, e′) ≥ 3, one cannot even guarantee that F is parsimonious as the example pro-
vided by Figure 8.1 illustrates. However, if T is a ‘caterpillar tree’ as described above
in Section 5 (ii), it can be shown quite easily using Proposition 8.3 that a subset F of
its edge set ET is strictly parsimonious if and only if dT (e, e′) ≥ 3 holds for any two
distinct edges e, e′ in ET .

Another characterization of parsimonious edge sets (which follows from an appro-
priate version of Menger’s Theorem) is described in the following result.
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Figure 8.1: Example to illustrate a limitation to extending Corollary 8.4.

Proposition 8.5. Given a set F of edges of cardinality k and a split {A, B} of X with
∆T (F) = {A, B}, the following assertions are equivalent:

(i) F is parsimonious, i.e., #F ≤ #F ′ holds for any subset F ′ of F with ∆T (F ′) =
{A, B},

(ii) k ≤ #F ′ holds for any subset F ′ of ET that separates A from B, i.e., for which no
connected component of the graph (VT , ET −F ′) has a non-empty intersection
with both, A and B,

(iii) there exist k edge-disjoint paths in T that each have one endpoint in A and one
endpoint in B any one of which contains exactly one edge from F,

(iii′) there exist k edge-disjoint paths in T that each have one endpoint in A and one
endpoint in B any one of which contains at least one edge from F,

(iv) there exist k edge-disjoint paths in T all of whose endpoints are elements from X
and any one of which contains exactly one edge from F,

(iv′) there exist k edge-disjoint paths in T all of whose endpoints are elements from X
and any one of which contains at least one edge from F,

(v) there exist 2k distinct elements z1, z2, . . . , z2k−1, z2k in X such that the edge set
[{z1, z2, . . . , z2k−1, z2k}] is the disjoint union of the k paths [{z2i−1, z2i}], i = 1, . . . ,
k, and each path [{z2i−1, z2i}] has a non-empty intersection with F.

In other words, one can construct all parsimonious edge sets F ⊆ ET by listing first
all even-order subsets Z of X, decomposing the edge set [Z] into a union of edge-disjoint
paths X-to-X paths, and then choosing, in all possible ways, one edge in each of these
disjoint paths in [Z].

Proof. (i) ⇒ (ii): As this is a well-known, yet important fact, we just sketch a proof:
Assume that F ′ is any subset of ET that separates A from B and consider the connected
components of the graph (VT , ET −F ′). There are three types among these connected
components, those of A-type that contain some vertex from A, but none from B, those of
B-type that contain some vertex from B, but none from A, and those that contain neither
a vertex from A nor a vertex from B — as F ′ was supposed to separate A from B,
there can’t be any connected components of (VT , ET −F ′) that contains simultaneously
vertices from A and from B. Moreover, if no proper subset F ′′ of F ′ separates A from
B, there cannot be any connected component U of (VT , ET −F ′) that contains neither
a vertex from A nor a vertex from B as dropping any one of the edges in ∂TU would
produce a proper subset F ′′ of F ′ that would also separate A from B. Similarly, there
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can be no edge e = {u, v} in F ′ such that both, u and v, are contained in a connected
component of A-type, nor one such that both, u and v, are contained in a connected
component of B-type because F ′−{e} would also separate A from B in this case. Thus,
any path from a vertex in A to one in A must contain an even number of edges from
F ′, and any path from a vertex in A to one in B must contain an odd number of edges
from F ′ which readily implies that ∆T F ′ = {A, B} must hold in this case. Thus, if F is
parsimonious, k = #F ≤ #F ′ must hold for any edge set F ′ of ET that separates A from
B.

(ii) ⇒ (iii): One form of Menger’s celebrated theorem (cf. [3]) implies that, for
any two disjoint subsets of vertices A and B in a graph G (not necessarily a tree), the
minimum number of edges that must be deleted from G in order to separate all vertices
in A from all vertices in B is precisely the same as the maximum number of edge-disjoint
paths that have the property that each path has one endpoint in A and the other endpoint
in B. Consequently, if k = #F ≤ #F ′ holds for any subset F ′ of ET that separates A from
B, there must exist a set P of k edge-disjoint paths, each of which connects a vertex
from A with a vertex from B and each of which must therefore contain exactly one edge
from F .

The implications (iii) ⇔ (iii′), (iii) ⇔ (iv), and (iv) ⇔ (iv′), and (iii) ⇔ (v) are
trivial.

(iii) ⇒ (i): Any subset F ′ of ET with ∆T (F ′) = {A, B} must have a non-empty
intersection with any of those k paths whose existence is asserted in (iii). So, #F ′ ≥ k =
#F must indeed hold for any subset F ′ of ET with ∆T (F ′) = {A, B}.

We end this section by mentioning how parsimonious edge sets are connected with
the ‘small parsimony problem’ in phylogenetics. In this setting, we have a function
χ : X →{0, 1, . . . , r−1} that we wish to extend to a function χ from VT into {0, 1, . . . ,
r−1} so as to minimize the size of the set

Ch(χ) := {e = {u, v} ∈ ET : χ(u) 6= χ(v)}.

Any such extension is called a most parsimonious extension of χ.

Proposition 8.6. With T and X as above, consider a map χ : VT → {0, 1, . . . , r − 1}
that extends the map χ : X → {0, 1, . . . , r−1}.

(i) If r = 2, Ch(χ) is a parsimonious set of edges of T if and only if χ is a most
parsimonious extension of χ.

(ii) If r > 2 and Ch(χ) is a parsimonious set of edges of T , then χ is a most parsimo-
nious extension of χ.

Proof. The first assertion follows immediately from the fact that associating, to each
extension χ of χ, the edge set Ch(χ) defines a canonical one-to-one correspondence
between extensions χ of χ and subsets F of ET with ∆T F = {χ−1(0), χ−1(1)}.

The second assertion follows from the fact established in Proposition 8.5 that, if
F := Ch(χ) is parsimonious, it is an edge set of minimal cardinality separating the two
subsets A and B of X with ∆T F = {A, B} and that k := #F edge-disjoint paths must
exist in T that each have one endpoint in A and one endpoint in B such that any one of
them contains exactly one edge from F . This implies that χ(a) 6= χ(b) must hold for
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any pair a, b of endpoints of those k edge-disjoint paths and that, therefore, Ch(χ′) must
contain at least one edge from each of these k paths for each extension χ′ of χ implying
that #Ch(χ′) ≥ k = #Ch(χ) must hold for each extension χ′ of χ. So, χ must indeed be
most parsimonious if F = Ch(χ) is parsimonious.
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