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Abstract. There is a natural way to associate to any tree T with leaf set X , and with edges
weighted by elements from an abelian group G, a map from the power set of X into G — simply
add the elements on the edges that connect the leaves in that subset. This map has been well-
studied in the case where G has no elements of order 2 (particularly when G is the additive
group of real numbers) and, for this setting, subsets of leaves of size two play a crucial role.
However, the existence and uniqueness results in that setting do not extend to arbitrary abelian
groups. We study this more general problem here, and by working instead with both, pairs and
triples of leaves, we obtain analogous existence and uniqueness results. Some particular results
for elementary abelian 2-groups are also described.
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1. Introduction

In this paper we study the reconstruction of trees from path distances (and 3-way dis-
tances) when the edges of the tree are weighted by elements from an abelian group.
This extends earlier work from [2] on tree reconstruction from path distances when the
underlying abelian group has no elements of order 2. The corresponding uniqueness
and existence theorems no longer hold for general abelian groups. However, by mov-
ing from path distances to three-way distances, we derive corresponding existence and
uniqueness results. Some special applications to elementary abelian 2-groups (of rele-
vance to binary and DNA sequences) are also mentioned. The arguments rely heavily
on the theory of symbolic ultrametric representations from [4]. We begin by introducing
some notation that will be used throughout this paper.

1.1. Preliminaries
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Let X denote a nonempty finite set, let P (X) denote the power set of X , let S(X) denote
the set of X-splits, i.e., the set consisting of all subsets S = {A, B} of P (X) of cardinality
2 containing two disjoint subsets A, B of X for which A∪B = X holds (including the
trivial X-split {X , /0}), and let S ∗(X) denote the set of nontrivial X-splits, i.e., the set
consisting of all splits S ∈ S(X) with S 6= {X , /0}. For a subset Y of X and an X-split
S = {A, B}, let SY denote the induced Y -split defined by SY := {A∩Y, B∩Y}, and put

S∗(X : Y ) := {S ∈ S(X) : SY ∈ S∗(Y )} .

Further, given any (additive) abelian group G = (G , +) with identity element 0G ,
write

• P (X |G) for the group of G−valued set systems (over X), i.e., the group of all maps
from P (X) into G ,

• S(X |G) for the group of all maps from S(X) into G ,
• and S ∗(X |G) for the group of all maps from S ∗(X) into G .

Next, given any integer s ∈ N := {1, 2, . . .}, write

•
(X

s

)

⊆ P (X) for the collection of subsets of X of size s,
•

( X
≤s

)

for the collection of nonempty subsets of X of size at most s,

• and P (X , s |G) for the group of all maps from
( X
≤s

)

into G .

Further, given any map D in P (X |G) or in P (X , s|G), any two integers r, k ∈N with
k ≤ r ≤ s, and any r elements x1, . . . , xr in X , write

• D(r) for the restriction of D to
( X
≤r

)

,
• D(x1 · · ·xr) for the value D({x1, . . . , xr}) of D at the set {x1, . . . , xr},
• and D(x1 · · ·xr : k) for the sum

D(x1 · · ·xr : k) := ∑
J∈({1,..., r}

k )

D({x j : j ∈ J}).

Finally, given any map µ : S ∗(X) → G in S ∗(X |G) and any split system S ⊆ S ∗(X)
for X , put

µ(S) := ∑
S∈S

µ(S),

and let Dµ denote the map

Dµ : P (X) → G : Y 7→ Dµ(Y ) := µ(S ∗(X : Y )) .

We refer to maps µ : S ∗(X) → G as above as (proper) G-valued split assignments
(for X), and we will seek for specific conditions on µ that will allow us to reconstruct µ
from the induced maps D(s)

µ for the particular values s = 2 and s = 3 (what happens for
larger values of s, apparently also worth to be studied, will be considered in subsequent
papers).

Here is the context in which this task has been found to be of particular interest
in previous work, and which will be the focus of this paper: An X-tree is a tree T =
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(VT , ET ) for which X is a subset of VT and X includes all vertices of degree at most 2. In
case X is precisely the set of leaves of T , we say that T is a phylogenetic X-tree. Given
any finite tree T = (VT , ET ), and any edge e ∈ ET , we let SX(e) ∈ S∗(X) denote the
(necessarily nontrivial) X-split associated with edge e (i.e., the split {A, B} consisting
of the two subsets of vertices from X in the corresponding two connected components
of the graph (VT , ET −{e}); further background on X-trees can be found in [17]).

Let T = (VT , ET ) be an X-tree and

λ : ET → G

be any assignment of elements of G to the edges of T — we refer to this as a G-valued
edge assignment for T — and associate, to any such assignment λ, the induced map

λX : S∗(X) → G : S 7→ λX(S) := ∑
e∈ET

SX (e)=S

λ(e)

and the corresponding map Dλ := DλX : P (X) → G : Y 7→ λX(S∗(X : Y )).
Observe that if we denote, for any subset Y of X , the (unique!) smallest subtree of

T containing all vertices in Y by T (Y ) and its edge set by ET (Y ), we have e ∈ ET (Y )
for some edge e in ET if and only if the X-split SX(e) associated to e is contained in
S∗(X : Y ) which, in turn, implies that Dλ(Y ) coincides with the total λ-length

∥

∥λT (Y)

∥

∥ := ∑
e∈ET (Y)

λ(e)

of T (Y ).

1.2. Examples

In the context of X-trees, there are two choices of G of particular interest.

(i) G is the additive group R = (R, +) of real numbers.

When λ is required to take nonnegative values, only, on the edges of the tree, the
restriction D(2)

λ of Dλ to the subsets of size at most 2
(

or, rather, the associated map
X ×X → R : (x, y) 7→ Dλ(xy)

)

, is called a tree metric (for X) and has been widely
studied for more than 30 years. If the subsets Y of X taken into consideration are
allowed to range over larger subsets of X , the map Dλ has been applied to quantify
biological diversity of subsets of species and, in this context, Dλ(Y ) is referred to
as the phylogenetic diversity of Y . This measure, introduced by Faith in 1992 [11],
provides some indication of how much evolutionary ‘heritage’ each possible subset
Y contains in relation to the entire tree (by comparing Dλ(Y ) to Dλ(X)) and has
been proposed as a tool for ‘managing’ the conservation of endangered species (or,
depending on one’s interest and perspective, for prioritizing their extinction). For
further details, we refer the reader to [3] and the references therein.

An example of this concept is illustrated in Figure 1; if we take Y = {a, b, g, e}
then Dλ(Y ) = ‖λT (Y)‖ = 18.
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Figure 1: Left: A phylogenetic X-tree with edges weighted by real numbers. Right: The
induced edge weighted tree on the subset Y = {a, b, g, e} with Dλ(Y ) = 18.

There have been two recent mathematical investigations of Dλ in the case where
G is the additive group of real numbers. Pachter and Speyer [15] addressed the
following question: For which value of m do the subsets Y of X of size m suffice
to recover T? Steel [18] showed how the subsets of size m that maximize Dλ(Y )
can be constructed using a greedy algorithm.

In addition, maps in P (X , 3 |G) have been studied in the context of classification
(such as psychology) under the general term ‘three-way distances’, as discussed
further in [13, 14].

(ii) G is an elementary abelian 2-group.

This arises in the following context which is closely connected with the study of
aligned genetic sequences in evolutionary biology. Consider the set of sequences
of length k over an alphabet A of either 2 (e.g., the ‘purines, pyrmidines’ in molec-
ular biology) or 4 letters (e.g., the DNA bases A, C, G, T). Note that there is
canonical transitive and faithful action of an elementary abelian 2-group G = GA
of order #A on A , namely the unique nontrivial action of the cyclic of order 2 on
A in case #A = 2, and the action of the normal elementary abelian 4-subgroup of
the full permutation group SA of A , i.e., the well-known Klein 4-subgroup of SA ,
in case #A = 4. This allows us to view A as an affine space over GA . In other
words, as was first noted and exploited by Evans and Speed [10], there exists in
case #A = 2 or 4 a unique map

τ : A ×A → GA : (x, y) 7→ τx→y

from A ×A into that group that associates, to any pair (x, y) of letters in A , the
unique translation τxy ∈ GA for which τx→y(x) = y holds. In consequence, there
exists also, for every k ∈ N and for G := GA

k, a unique map

τ(k) : Ak ×Ak → G : (x, y) 7→ τ(k)
x→y

that associates, to any pair (x, y) of sequences of length k in A k, the unique trans-
lation τ(k)

x→y ∈ G for which τ(k)
x→y(x) = y holds. Note that

(i) τ(k)
x→y = 0 ⇐⇒ x = y,
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(ii) τ(k)
y→z + τ(k)

x→y = τ(k)
x→z,

(iii) and τ(k)
x→y = τ(k)

y→x

holds for all x, y, z ∈ Ak.

In case A is the set {A, C, G, T} of DNA bases, one of the three non-zero elements
in GA corresponds, in molecular biology, to what is called ‘transition’, the other
two to ‘transversions’.

Now, suppose we have an X-tree T = (VT , ET ) and a vertex assignment ψ : VT →
Ak that assigns a sequence ψ(v) in A k to each vertex v in T , and consider, with
G := (GA)k as above, the map

λ = λψ : ET → G : {u, v} 7→ τ(k)
ψ(u)→ψ(v) (1.1)

and the associated map Dλ = Dλψ ∈ P (X , 3 |G).

Note that Dλ(xy) = τ(k)
ψ(x)→ψ(y) holds for all x, y ∈ X . Thus, for any subset Y of X in

( X
≤2

)

, the value Dλ(Y ) is determined solely by the restriction f := ψ|X of the map
ψ to X — a property that does not extend to the 3-element subsets of X .

Nevertheless, one can design various procedures for selecting a value D(xyz) ∈
G = (GA)k for 3-element sets {x, y, z} ∈

( X
≤3

)

that Dλ could take purely as a func-
tion of f . In case #A = 2, a rather natural way to define D(xyz) ∈ G = (GA)k

is, after identifying GA with the group Z2 := Z/2Z, to define its i-th component
Di(xyz), for any three elements x, y, z in X , by Di(xyz) := 0 mod 2 in case the i-th
components fi(x), fi(y), fi(z) of the three sequences f (x), f (y), and f (z) in A k

coincide, and Di(xyz) := 1 mod 2 else. In other words, one may define

Di(xyz) := #{ fi(x), fi(y), fi(z)}−1 mod 2

for each i = 1, . . . , k. Note that the resulting map D ∈ P (X , 3 |G), at least, extends
the restriction D(2)

λ of Dλ = Dλψ to
( X
≤2

)

, i.e., one has D(xxy) = Dλ(xy) for all
x, y ∈ X . Later (in Proposition 3.7), we will characterize those maps f : X → A k

for which this particular choice of D is of the form D = Dλ for some G-valued
edge assignment of an X-tree T .

1.3. Outline of Results to Come

Given an X-tree T = (VT , ET ) and a G-valued edge assignment λ for T , the sup-
port supp(λX)

(

:= {S ∈ S(X) : λX(S) 6= 0G}
)

of λX is necessarily a compatible split
system∗ for X as it is contained in the set

S(X |T ) = {SX(e) : e ∈ ET} ⊆ S∗(X)

∗ A split system S ⊆ S(X) is called compatible if any two splits are compatible, i.e., if for all {A, B}, {A′, B′}
in S , one of the four intersections A∩A′, A∩B′, B∩A′, and B∩B′ is empty.
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of all nontrivial X-splits associated with the edges of T . More specifically, defining

Λ(X |G) := {µ ∈ S ∗(X |G) : supp(µ) is a compatible split system for X} ,

it follows from the standard results regarding X-trees and compatible split systems
quoted above that Λ(X |G) consists exactly of all those maps µ from S ∗(X) into G
that are of the form λX for some X-tree T and some G-valued edge assignment λ for T
in which case a unique such pair (T, λ) exists — unique up to canonical isomorphism,
of course — for which λ(e) 6= 0G holds for every edge e in T .

Given any integer s ∈ N, we will denote by Θs(X |G) the map

Θs(X |G) : Λ(X |G) → P (X , s |G) : µ 7→ D(s)
µ ,

and we will say that a map D ∈ P (X , s |G) has an arboreal representation (of order s) if
D is contained in the image of Θs(X |G). We will mostly be concerned in this paper with
the cases s = 2 and s = 3 as these will turn out to be the crucial values to be considered.
In the remainder of this paper we will:

• recall results from [2] which state that, in case G contains no element of order
2, the map Θ2(X |G) is an injective map from Λ(X |G) onto the set of all maps
D :

( X
≤2

)

→ G for which D(x) = 0,

D(xy)+D(yz)+D(zx) ∈ 2G (:= {2γ : γ ∈ G}) ,

and
#{D(xy)+D(uv), D(xu)+D(yv), D(xv)+D(yu)} ≤ 2

holds for all x, y, z, u, v ∈ X ,
• show that the map Θ3(X |G) is always injective (i.e., it is injective for every abelian

group G whether it contains elements of order 2 or not),
• characterize the image of Θ3(X |G) in a similar (yet slightly more complicated)

fashion,
• and describe some further results that are particular to elementary abelian 2-groups.

To establish these results, the following definition will be crucial:

Definition 1.1. For any map D :
( X
≤3

)

→ G in P (X , 3 |G), any x ∈ X, and any two
further elements a, b ∈ X, set

Dx(ab) := D(abx)−D(ab). (1.2)

Notice that Dx is symmetric, i.e., we have Dx(ab) = Dx(ba) for all a, b ∈ X , and
that Dx(ab) = 0G holds for all a, b in X with x ∈ {a, b}. Note also that, when G is the
additive group of real numbers and

2D(abc) = D(ab)+D(bc)+D(ca)

holds for all a, b, c ∈ X , then Dx is precisely the Farris transform of D defined by

DF
x (a, b) :=

1
2
(D(ax)+D(bx)−D(ab)),

(see [9] for a recent survey of uses of this transformation, and [6] for further recent
applications). For a general abelian group, Dx will play the same role as this transform
(when G has elements of order 2, the direct group-theoretic analogue of the Farris
transform is not well defined).
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2. Injectivity Results

The following result was shown in [2]:

Proposition 2.1. The map Θ2(X |G) from Λ(X |G) to P (X , 2 |G) is injective whenever
G contains no elements of order 2. Moreover, any map µ ∈ Λ(X |G) can be recon-
structed from its image D(2)

µ = Θ2(X |G)(µ) by a polynomial-time algorithm (in #X).

This proposition can be used to provide a weak result for general abelian groups as
follows: Let G2 denote the 2-torsion subgroup of G consisting of all elements having
order a power of 2. Then, given an X-tree T and a G-valued edge assignment λ that
takes values in G −G2, only, on all edges of T , one can reconstruct T (but not λ!) from
D(2)

λ . To see this, we simply observe that the quotient group G/G2 has no elements of
order 2 and if ψ : G → G/G2 denotes the quotient map, then ψ ◦λ provides a G/G2-
valued edge assignment for T that is never equal to the identity element of G/G2 by the
assumption that λ takes values in G −G2. Since ψ◦D = Dψ◦λ, the claim now follows
from Proposition 2.1.

The exclusion of elements of order 2 from G is necessary in order for D(2)
µ to deter-

mine T as the following example shows:

Example 2.2. For X = {1, 2, . . . , 6}, consider the X-trees with leaf set X that have the
shape shown in Figure 2. Up to isomorphism, there are precisely 15 such X-trees. Take
G := Z2 and, for each of these trees, consider the constant G-valued edge assignment
λ that assigns the nonzero element of G to each of its edges. Then, Dλ(xx ′) = 0G holds

for all x, x ′ ∈ X and, so, each of these 15 trees induce the same map D(2)
λ even though

their respective edge assignments λ are never equal to 0G .

Figure 2.

Returning to the case where G is a group without elements of order 2, D has an
arboreal representation precisely if, for any (or for all) x ∈ X , its Farris transform Dx
satisfies the properties of a ‘symbolic ultrametric’ on X −{x} and, for this situation, we
can apply the representation theory of symbolic ultrametrics as developed in [4]. We
will show that the same holds for Dx as defined in Definition 1.1, and we first recall the
theory of symbolic ultrametrics.
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For an X-tree T = (V, E), any map t from V into an arbitrary set M is called a
symbolic dating map for T . Further, t is said to be discriminating if t(u) 6= t(v) holds
for all edges {u, v} of T . Observe that no restrictions are placed on M. Now, define a
quadruple (X , T, t, z) with

• X a finite set, T = (V, E) an X-tree, t symbolic dating map for T , and z an element
of X

to be a symbolic representation of a pair (Y, δ) where Y is a finite set and δ is a map
from

( Y
≤2

)

into M if Y = X −{z} holds, and we have

δ(xy) = t (MedT (x, y, z))

for all x, y ∈ Y — here MedT is the median function that assigns, to any three vertices
u, v, w of T the unique vertex MedT (u, v, w) in T that is on each of the three paths in
T connecting the three vertices u, v, w. Similarly, (X , T, t, z) is called a discriminating
symbolic representation of (Y, δ) if, in addition, t is discriminating and z is not a leaf in
T .

Theorem 2.3 (below) characterizes those maps δ :
( Y
≤2

)

→ M that have a (discrimi-
nating) symbolic representation. Indeed, define δ to be a symbolic ultrametric (on Y ) if
the following two conditions are satisfied:

(U1) #{δ(ab), δ(bc), δ(ca)} ≤ 2 holds for all a, b, c ∈ Y ,
(U2) and there are no elements a, b, c, d ∈ Y with

δ(ab) = δ(bc) = δ(cd) 6= δ(bd) = δ(da) = δ(ac).

Then, the following holds (cf. [4]):

Theorem 2.3. Let Y and M be finite sets, and let δ be a map from Y ×Y into M. Then,
there exists a symbolic representation of δ if and only if δ is a symbolic ultrametric in
which case there exists (up to isomorphism) a unique discriminating symbolic repre-
sentation of δ .

We pause to note an interesting consequence of this result for molecular systematics
that had been the motivation for developing the theory presented in [4]:

Corollary 2.4. Suppose one has a collection X of species whose evolution is described
by some unknown X-tree T = (V, E). Suppose further that a ‘phylogenetic character’
χ : V → M with values in some set M can be defined such that, for any three species
x, y, z ∈ X, it is possible to accurately reconstruct the value χ(x, y, z) ∈ M that χ attains
for the ancestral species a(x, y, z) that is represented by the vertex MedT (x, y, z) of T .
Let T ′ denote the X-tree whose splits correspond to those edges of T for which the
character values at its endpoints are distinct (obtained from T by contracting all other
edges of T ). Then, T ′ can be accurately reconstructed from these data. In particular, T
itself can be reconstructed from these data provided χ(u) 6= χ(v) holds for all u, v ∈V
with {u, v} ∈ E.

Proof. Select any element z ∈ X and define D :
(X−{z}

≤2

)

→ M by D(xy) := χ(z, x, y).
Then, D is a symbolic ultrametric and has a unique discriminating symbolic represen-
tation on T ′. This completes the proof.
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Returning to arbitrary abelian groups, we have the following result concerning the
injectivity of the map Θ3(X |G) from Λ(X |G) to P (X , 3 |G).

Theorem 2.5. Given an X-tree T = (VT , ET ) and a G-valued edge assignment λ of T
with λ(e) 6= 0G for all e ∈ ET , one can, by a polynomial-time algorithm, reconstruct T

and λ (up to canonical isomorphism) from the map D := D(3)
λ .

Proof. First, suppose that D = D(3)
λ′ holds for some pair (T ′, λ′) where T ′ = (V ′, E ′) is an

X-tree and λ′ is a G-valued edge assignment for T ′ that does not vanish on the edges of
T ′. We first show that T ′ is isomorphic to T : Consider a fixed element z ∈ X and define
a symbolic dating map t ′ = t ′λ′ on the vertices v ′ of T ′ as follows: Set t ′(v ′) equal to the
sum of the group elements assigned by λ′ to the edges of T ′ on the path from z to v ′. As
λ′(e′) 6= 0G holds, by assumption, for any edge e′ of T ′, t ′ is a discriminating map (i.e.,
t ′(u′) 6= t ′(v ′) holds for every edge {u′, v ′} of T ′). Furthermore, if v ′ = MedT ′(x, y, z)
holds for some vertex v ′ in V ′ and two elements x, y in X , the definition of Dz = (D(3)

λ′ )z
implies immediately that t ′(v ′) = Dz(xy) holds. Thus, (T ′, t ′) provides a discriminating
symbolic representation of Dz considered as a map from (X −{z})× (X −{z}) into G .

However, in view of Theorem 2.3, there is at most one such pair (T ′, t ′) that does
so. Thus, T and T ′ must be canonically isomorphic and — modulo this isomorphism —
t ′λ′ must coincide with the symbolic dating map t = tλ that is induced by λ. Moreover,
we have λ(e) = t(v)− t(u) for any edge e = {u, v} in ET for which u is contained in the
path connecting z and v in T . Thus, λ is also determined by t.

Finally, one can reconstruct T and λ from D in polynomial time by applying, e.g.,
the algorithm described in [17] for constructing a discriminating symbolic representa-
tion of a symbolic ultrametric.

Remark 2.6. Note, by the way, that Theorem 2.5 easily implies Proposition 2.1: This
follows directly from the fact that, in view of the identity 2D(x1x2x3) = D(x1x2x3 : 2)

that is easily seen to hold† for any map D in P (X , 3 |G) that is of the form D = D(3)
µ for

some map µ ∈ Λ(X |G), the map D(2) determines the map D uniquely in case G contains
no elements of order 2.

3. The Image of Θ3(X |G)

We now consider the following question: How can we characterize those maps D ∈
P (X , s |G) that do have an arboreal representation? In the light of Theorem 2.5, we
will be concerned only with the cases s = 2, 3.

To begin with, let us suppose that, for an arbitrary abelian group G , we have a
map D ∈ P (X , 2 |G). If there exists an X-tree T = (VT , ET ) and a G-valued edge
assignment λ : ET → G with D = D(2)

λ , then D satisfies the so-called generalized four-
point condition (with respect to G): This condition states that D(a) = 0 holds for every

† Indeed, it will be shown in [1] that a map D in P (X , 3 |G) is of the form D = D(3)
µ for some map µ∈ S ∗(X |G)

if and only if D(x1x2x3x4 : 3) = D(x1x2x3x4 : 2) and D(x) = 0G holds for all x1, x2, x3, x4, x ∈ X which
readily (putting x3 = x4) also implies that 2D(x1x2x3) = D(x1x2x3 : 2) must hold for any such map D and
all x1, x2, x3 ∈ X .
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a ∈ X and that, for any four (not necessarily distinct) elements a, b, c, d in X , one has

#{D(ab)+D(cd), D(ac)+D(bd), D(ad)+D(bc)}≤ 2

as well
D(ab)+D(bc)+D(ca)∈ 2G .

In [2], it was shown that, provided G has no element of order 4, this generalized
four-point condition is not only a necessary, but also a sufficient condition for a map
D as above to have an arboreal representation (of order 2). Moreover, when G is an
elementary abelian 2-group, the following holds:

Proposition 3.1. For any map D from
( X
≤2

)

into an elementary abelian 2-group G , the
following assertions are equivalent:

(i) D has an arboreal representation on some phylogenetic X-tree;
(ii) D has an arboreal representation on every phylogenetic X-tree;

(iii) D satisfies the generalized four-point condition with respect to G ;
(iv) there exists a map f : X → G such that D(xy) = f (x)+ f (y) holds for all x, y ∈ X.

Furthermore, if all of this holds, f is clearly uniquely determined by its value on one
single point z ∈ X while, conversely, one may specify any value γ for f (z) and put
f (x) := D(xz) + γ for every x ∈ X, to construct a map f : X → G with the required
properties.

Proof. The equivalence of (i)–(iii) was established in [2, Proposition 2]. To establish the
equivalence of (i) and (iv), first suppose that there exists a map f having the property
described in part (iv), and consider the phylogenetic X-tree T with leaf set X that has no
interior edges (the ‘star’ tree). For any edge e ∈ E, let xe denote the leaf x ∈ X contained
in e and put λ(e) := f (xe). Then, it is easily seen that D = Dλ holds.

Conversely, suppose that D = Dλ holds for some X-tree T = (VT , ET ) and some
G-valued edge assignment λ : ET → G , and select an arbitrary element z ∈ X and an
arbitrary element γ ∈ G . For each x ∈ X , let E(x) denote the set of edges occurring
in the unique shortest path from z to x in T , i.e., put E(x) := {e ∈ E(T ), SX(e) ∈
S∗(X |{z, x})}, and put

f (x) := γ+ ∑
e∈E(x)

λ(e).

Then,
f (z)+ f (x) = 2γ+ ∑

e∈E(x)
λ(e) = Dλ(z, x) = D(z, x)

holds since 2γ vanishes in G . Furthermore, because D takes values in the elementary
abelian 2-group G , we have

D(xy) = D(xz)+D(zy) = ( f (z)+ f (x))+( f (z)+ f (y)) = f (x)+ f (y),

as required. The uniqueness of f , once z and f (z) are specified, is clear from the identity
f (x) = D(xz)+ f (z).
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We now turn to the question of arboreal representations of order 3. As any map
D ∈ P (X , 3 |G) that has an arboreal representation is necessarily of the form D = D(3)

µ
for some map µ ∈ S ∗(X |G), a necessary condition for a map D in P (X , 3 |G) to have
an arboreal representation (see [1] for more details) is that

D(x) = 0G (3.1)

and
D(x1x2x3x4 : 2) = D(x1x2x3x4 : 3) (3.2)

holds for all x, x1, x2, x3, x4 ∈ X . Regarding these identities, the following observations
are of some interest and easily established: Given any map D ∈ P (X , 3 |G),

(i) the identity
2D(x1x2x3) = D(x1x2x3 : 2) (3.3)

holds for all x1, x2, x3 ∈ X provided that D satisfies the conditions (3.1) and (3.2)
for all x, x1, x2, x3, x4 ∈ X ,

(ii) the identity (3.3) holds for all x1, x2, x3 ∈ X if and only if D(x) = 0 holds for all
x ∈ X and (3.3) holds for any three distinct elements x1, x2, x3 in X ,

(iii) if (3.3) holds for all x1, x2, x3 ∈ X , then (3.2) holds for all x1, x2, x3, x4 ∈ X with
#{x1, x2, x3, x4} ≤ 3, 2D(x1x2x3x4 : 2) = 2D(x1x2x3x4 : 3) holds for all x1, x2, x3,
x4 ∈ X , and one has

2Dx(ab) = 2D(xab)−2D(ab) = D(xa)+D(xb)−D(ab),

for all x, a, b ∈ X ,

(iv) if (3.3) holds for all x1, x2, x3 ∈ X and x is a fixed element in X , then (3.2) holds
for all x1, x2, x3, x4 in X if and only if it holds for all x1, x2, x3, x4 in X with x ∈
{x1, x2, x3, x4}.

The proofs are left, as a simple exercise, to the reader.
Thus, if (3.3) holds, for all x1, x2, x3 in X , for a map D ∈ P (X , 3 |G) and if G has

no elements of order 2, then D(2) satisfies the generalized four-point condition if and
only if

#{Dx(ab), Dx(bc), Dx(ca)} ≤ 2

holds for all a, b, c, x ∈ X : Indeed, putting

γ := D(ax)+D(bx)+D(cx),

we have

γ−2Dx(ab) = D(cx)+D(ab), γ−2Dx(bc) = D(ax)+D(bc),

and
γ−2Dx(ca) = D(bx)+D(ca)
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and, therefore,

#{Dx(ab), Dx(bc), Dx(ca)} = #{γ−2Dx(ab), γ−2Dx(bc), γ−2Dx(ca)}

= #{D(ab)+D(cx), D(ac)+D(bx), D(ax)+D(bc)} .

Thus, it remains to note that (3.3) implies also that

D(ab)+D(bc)+D(ca) = 2D(abc) ∈ 2G

holds for all a, b, c ∈ X .
Consequently, if G has no elements of order 2, we have:

Proposition 3.2. A map D :
( X
≤3

)

→ G into an abelian group with no elements of order
2 has an arboreal representation if and only if the following two conditions are satisfied:

(i) one has #{Dx(ab), Dx(bc), Dx(ca)} ≤ 2 for all a, b, c, x ∈ X,
(ii) D satisfies the three-point condition (3.3).

It follows that, if G has no elements of order 2, then D :
( X
≤3

)

→ G has an arboreal
representation if and only if, for all subsets U of X of size at most four, its restriction

DU :
(

U
≤ 3

)

→ G : A 7→ D(A)

to
( U
≤3

)

has an arboreal representation. Note also that, for all a, b, c, x ∈ X , we have

#{Dx(ab), Dx(bc), Dx(ca)} ≤ 2, (3.4)

for every abelian group G and any map D :
( X
≤3

)

→ G that has an arboreal representa-
tion.

However, this four-point condition (even if combined with other three- or four-point
conditions) is not sufficient for D to have an arboreal representation in case #X ≥ 5:

Example 3.3. Let X denote the set of vertices of a regular pentagon P in the plane,
and define a map D :

( X
≤3

)

→ Z2 as follows: For each A ∈
(X

2

)

, set D(A) := 0; and for
A ∈

(X
3

)

, set D(A) := 1 if the vertices in A appear consecutively in P, otherwise set
D(A) = 0. Then, the restriction

DU :
(

U
≤ 3

)

→ Z2 : A 7→ D(A)

of D to each 4-subset U of X has an arboreal representation; yet, D itself does not.

In contrast, we will see below (Theorem 3.5) that, for any abelian group G , a map
D :

( X
≤3

)

→ G has an arboreal representation if (and only if) the restriction

DU :
(

U
≤ 3

)

→ Z2 : A 7→ D(A)

of D relative to each subset U of X of cardinality at most 5 has such a representation, and
we will provide a simple five-point condition that, combined with the three- and four-
point conditions discussed above, characterizes those maps D that have an arboreal
representation. First note that characterizing arboreal representations is particularly
easy in case #X = 3:
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Lemma 3.4. Suppose that G is an arbitrary abelian group and X has cardinality 3.
Then, a map D :

( X
≤3

)

→ G has an arboreal representation if and only if D satisfies the
three-point condition (3.3).

Proof. The necessity of (3.3) is clear. Conversely, suppose that (3.3) holds and consider
the tree T that has X as its set of leaves, all attached to an unlabelled vertex of degree 3.
For x ∈ X , assign the G-value λ(ex) := D(X)−D(X −{x}) to the edge ex incident with
the leave x. Then, D(xy) = λ(ex)+λ(ey) = Dλ(xy) holds for any two distinct elements
x, y ∈ X as x, y ∈ X and x 6= y (together with our assumptions #X = 3 and (3.3)) implies
that

2D(X) = D(X −{x})+D(X −{y})+D(xy)

and, hence,

Dλ(xy) = λ(ex)+λ(ey)

= D(X)−D(X −{x})+D(X)−D(X−{y})

= 2D(X)−D(X −{x})−D(X −{y})

= D(xy)

must hold while

Dλ(X) = ∑
x∈X

λ(ex)

= ∑
x∈X

(

D(X)−D(X −{x})
)

= 3D(X)− ∑
x∈X

D(X −{x})

= 3D(X)−2D(X)

= D(X)

follows again from applying (3.3) to the 3-element set X as this implies also that
2D(X) = ∑x∈X D(X −{x}) must hold.

We now state the main result of this section:

Theorem 3.5. Given a set X of cardinality at least 4, an element x0 ∈ X, an arbitrary
abelian group G , and a map D ∈ P (X , 3 |G), the following assertions are equivalent:

(i) D has an arboreal representation;
(ii) The following four conditions all hold:

(3PC) For all a, b, c ∈ X, D satisfies the three-point condition (3.3),
(4PC) for all x, a, b, c ∈ X, D satisfies the four-point condition (3.4),

(4PC*) the identity (3.2) holds for all x, a, b, c ∈ X,
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(5PC) for all x, a, b, c, d ∈ X , D satisfies the following 5-point condition:

Dx(ab) = Dx(bc) = Dx(cd)

together with
Dx(ca) = Dx(ad) = Dx(db)

implies
Dx(ab) = Dx(ca);

(iii) D satisfies the conditions (4PC), (4PC*), and (5PC) described in part (ii) for x :=
x0 and all a, b, c, d ∈ Y := X −{x0}.

In particular, a map D ∈ P (X , 3 |G) has an arboreal representation if and only if the
restriction DU relative to every subset U of X of size at most 5 has an arboreal repre-
sentation.

Proof. Given a map D ∈ P (X , 3 |G) and an element x ∈ X , let Dx in P (X −{x}, 2 |G)
be defined as in (1.2). To establish the implication (i) ⇒ (ii), suppose that D has an
arboreal representation and choose some phylogenetic X-tree T = (V, E) and some map
λ : E → G that is not equal to 0G for any interior edge e with D = Dλ. It follows that
the map Dx is a symbolic ultrametric on X −{x} since it has a (unique) discriminating
symbolic representation as described in the proof of Theorem 2.5. By Theorem 2.3,
it follows that Dx satisfies properties (U1) and (U2) which are precisely the conditions
(4PC) and (5PC). Condition (4PC*) can also be verified directly.

The implication (ii) ⇒ (iii) is trivial, so it remains to establish the implication
(iii) ⇒ (i).

So, suppose that D satisfies the properties (3PC), (4PC), (4PC*), and (5PC) for x :=
x0 and all a, b, c, d ∈Y = X−{x0}. Conditions (4PC) and (5PC) imply that Dx0 satisfies
the properties (U1) and (U2) required for a symbolic ultrametric on Y , and so, again by
Theorem 2.3, Dx0 has a discriminating symbolic representation (X ′, T ′, t ′, z) where z
is an arbitrary additional element not contained in X or in any other set considered so
far, X ′ is the set Y ∪{z}, T ′ = (V ′, E ′) is an X ′-tree, and t ′ : V ′ → G is an appropriate
symbolic dating map, i.e., a map such that

t ′ (Med(a, b, z)) = Dx0(ab) = D(abx0)−D(ab)

holds for all a, b ∈ Y .
Now, consider the X-tree T := (V, E) with vertex set V := V ′ ∪{x0} and edge set

E := E ′∪{{x0, z}}, define a dating map t for T that just extends t ′ by putting t(x0) :=
0G , and note that

t(Med(a, b, x0)) = Dx0(ab) = D(abx0)−D(ab),

and hence, in particular, also

t(a) = t(Med(a, a, x0)) = Dx0(a) = D(x0a)

holds for all a, b ∈ X .
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Define a G-valued edge assignment λ = λt for T by putting λ({u, v}) := t(v)− t(u)
for every edge {u, v} of T for which u is on the path between v and x0. For any two
vertices u, v in V , let λ(u, v) denote the sum of the λ-values of the edges on the path
from u to v so that λ(v, u) = t(v)−t(u) holds for any two vertices u, v in V for which u is
on the path between v and x0 and, therefore, in particular, λ(v, x0) = t(v)− t(x0) = t(v)
for all v in V .

Next, put D′ := D(3)
λ and note that D′(ab) = λ(a, b) holds for all a, b in X . We claim

that D′ = D holds. Indeed, given any two elements a, b in X , we have

D′(ax0) = λ(a, x0) = t(a) = D(x0a),

as well as, with v := MedT (a, b, x0) and, hence,

t(v) = Dx0(ab) = D(abx0)−D(ab),

also

D′(ab) = λ(a, v)+λ(b, v)

= (t(a)− t(v))+(t(b)− t(v))

= D(x0b)+D(x0a)−2(D(x0ab)−D(ab))

= D(x0b)+D(x0a)− (D(x0b)+D(x0a)+D(ab))+2D(ab)

= D(ab)

and

D′(abx0) = λ(a, v)+λ(b, v)+λ(x0, v)

= D(ab)+ t(v)

= D(ab)+(D(abx0)−D(ab))

= D(abx0).

Thus, noting that D(x1x2x3x4 : 2) = D(x1x2x3x4 : 3) holds for all x1, x2, x3, x4 in X by
assumption and D′(x1x2x3x4 : 2) = D′(x1x2x3x4 : 3) by construction and that, therefore
D(x1x2x3x4 : 3) = D′(x1x2x3x4 : 3) must also hold for all x1, x2, x3, x4 in X , we see
finally that

D(abc) = D(abcx0 : 3)−D(abx0)−D(acx0)−D(bcx0)

= D′(abcx0 : 3)−D′(abx0)−D′(acx0)−D′(bcx0)

= D′(abc)

also holds for all a, b, c in X .

Remarkably, one can also derive Proposition 3.2 as a simple corollary of Theo-
rem 3.5. To this end we first establish the following result:
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Lemma 3.6. If a map D :
( X
≤3

)

→ G satisfies the three-point and the four-point con-
dition (3PC) and (4PC), then one has 4g1 = 4g2 for any two elements g1, g2 ∈ G for
which there exists five elements a, b, c, d, x ∈ X with g1 = Dx(ab) = Dx(bc) = Dx(cd)
and g2 = Dx(ca) = Dx(ad) = Dx(db).

Proof. Note that, putting

g := D(xa)+D(xb)+D(xc)+D(xd),

our assumptions imply that

D(ab)+D(cd) = g−4g1,

D(ac)+D(bd) = g−4g2,

and
D(ad)+D(bc) = g−2g1−2g2

holds. Thus, (4PC) implies that either 4g1 = 4g2, 4g1 = 2g1 +2g2, or 4g2 = 2g1 +2g2
holds which in turn implies that 4g1 = 4g2 must, in any case, hold, as claimed.

To derive Proposition 3.2 from Theorem 3.5 suppose that D :
( X
≤3

)

→ G satisfies
the three-point and the two four-point conditions (3PC) and (4PC). Then, if G has no
elements of order 2, it is easily checked that D also satisfies condition (4PC*), and
Lemma 3.6 implies that D also satisfies condition (5PC). Thus, by Theorem 3.5, D has
an arboreal representation.

Finally, we return to the specific setting where sequences over a 2-element set A are
associated to the elements in X by a map

f = ( f1, . . . , fk) : X → Ak,

and, identifying GA with the group Z2 as in Section 1.2, we consider further aspects
regarding arboreal representations of the associated map

D = D f :
(

X
≤ 3

)

→ Z2
k : {x, y, z}→ (Di(xyz))i=1,...,k (3.5)

defined, as above, by

Di(xyz) := #{ fi(x), fi(y), fi(z)}−1 mod 2.

An obvious question arises in this situation: For which functions f : X → A k does
D f have an arboreal representation? Our final proposition shows that, informally speak-
ing, D f has an arboreal representation if and only if the X-splits induced by f are com-
patible (cf. the footnote in Section 1.3).

To make this more precise, we introduce the following notation: Given a map f =
( f1, . . . , fk) : X → Ak, set Si( f ) :=

{

f−1
i (α1), f−1

i (α2)
}

where α1, α2 denote the two
elements in A , and set

S( f ) = {Si( f ) : i = 1, 2, . . . , k}∩S ∗(X).
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It is a well-known and classical result that the ‘Buneman complex’ B(S( f )) obtained
from S( f ) is a tree — and can, thus, be viewed in a natural way as an X-tree — if and
only if S( f ) is a compatible split system (cf. [5], see also [7, 8] for the definition of the
Buneman complex B(S) associated with an arbitrary split system S ). This translates
into

Proposition 3.7. Given a map f : X → A k, let D f :
( X
≤3

)

→ (GA)k be defined as in
(3.5). Then D f has an arboreal representation if and only if S( f ) is a compatible split
system in which case

• B(S( f )) provides an underlying X-tree for such a representation,
• f extends to a map ψ defined on the vertex set of the X-tree B(S( f )) that is defined

by identifying, for each vertex v, some elements x, y, z in X so that v is the median
of x, y, z in B(S( f )) as defined in Section 2 and then associating to v the median of
f (x), f (y), and f (z), i.e., the sequence f (v) = ( f1(v), . . . , fk(v)) whose i-th com-
ponent fi(v) is that element in A that occurs at least twice among the elements
fi(x), fi(y), and fi(z) in the 2-element set A ,

• and D coincides with the map Dλ associated with the resulting edge weighting λ
(= λψ, as defined in (1.1)) of B(S( f )).

To see (most of) this, all one has to observe is that D f coincides with the map Dµ for
the map µ∈ S ∗(X |G) that maps any split S ∈ S ∗(X) onto the sequence (δ(S, S1( f )), . . . ,
δ(S, Sk( f )))

(

with δ(S, S′) := 0 mod 2 in case S 6= S′ and δ(S, S′) := 1 mod 2 in case
S = S′, as usual

)

.

Remark 3.8. It may be interesting to consider extensions of the results of this paper
to non-abelian groups, in the setting where each edge has two elements of the group
assigned, one for each of the two directions by which the edge can be traversed. This
setting was explored in [16] for functions D : X ×X → G (G non-abelian), thereby
providing non-abelian analogues (and generalizations) of the results from [2]. As in
our current paper, elements of order 2 in G played an important role in [16], so the
consideration of functions D from X 3 (

rather than from
(X

3

))

into G might also be
useful in the non-abelian setting.
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