
New Zealand Science Review Vol 66 (1) 2009 11

One of the great joys in mathematics is when a complex prob-
lem that has no right to possess any reasonable solution can be 
solved by some elegant and exact formula. When the problem 
has some bearing on a real scientific question, the discovery is 
all the sweeter. Many examples of this can be found in different 
fields of science. In evolutionary biology, one of my favourites 
is the ‘bichromatic binary tree (BBT) theorem’. This deals with 
a question that arose when biologists began constructing phy-
logenetic trees using an ‘Occam’s Razor’ approach of finding 
the simplest explanation for the data – the maximum parsimony 
tree. The question was to find how many binary phylogenetic 
trees have a given parsimony score for a given assignment of 
states to the species? Although there are many elegant formulae 
for counting trees – some of which date back to mathematicians 
working around the time of Charles Darwin – we have no reason 
to suspect that this parsimony counting problem should have 
any nice, easy-to-use solution. 

A mathematician would probably not have even tried to 
search for a formula – but legend has it that David Penny, 
during some of the less riveting moments of the Los Angeles 
Olympics in 1984, began counting various cases and managed 
to formulate a a shortlist of possible formulae for this problem 
via a combination of trial and error, inspired guesswork and de-
termination. Some of these formulae failed, but eventually, one 
of them seemed to work. Some mathematicians got interested. 
However, it took a full year, a team effort of four mathemati-
cians, and a large computer to tackle some very complex algebra 
and eventually confirm that this remarkable formula was actually 
correct in all cases (Carter et al. 1990). Since then a more direct 
proof has been found, and it tells us a lot about the structure of 
most-parsimonious trees (for more details, see Semple & Steel 
(2003)). Today, Penny’s formula remains the most remarkable 
closed-form expression for any class of phylogenetic trees in 
evolutionary biology. 

The story of the BBT theorem contains an interesting 
moral. The textbook image of ‘mathematical biology’ is of the 
biologist who comes to a mathematician with a problem. The 
mathematician goes away and, after many cups of coffee and 
lots of chalk-dust on the cardigan sleeves, solves it and presents 
it to the appreciative biologist. Of course, this scenario rarely 
happens – often, the mathematician will decide that the original 
problem is too tricky, so will change some of the rules (assump-
tions) and turn it into a different problem that can be solved, 
all the while secretly hoping not to be accused of ‘cheating’ 
too much. But even if, after much work, the original problem 
can be solved, the mathematician knows there is still a good 
chance the biologist will not really appreciate the beautiful 
mathematical calculations, perhaps referring to them as mere 
‘chicken scratchings’. To add further insult, the biologist is likely 
to mutter something like: ‘Actually, I think the assumptions I 
described to you last week are probably wrong – the process 
is much more complex, you know!’ In the story of the BBT 
theorem, the process of interaction is different again: in this 
case, the biologist came to the mathematician and said ‘Here 
is the solution; now prove it for me!’ 

Being presented with a claimed mathematical solution to a 
problem by a biologist is rare; usually, the interaction between 
mathematicians and biologists involves a more to-and-fro ap-
proach, discussing what might be the case, trying to identify 
what properties of the data are responsible for different signals, 
attempting to formalise the problem in a mathematically precise, 
tractable model, and distilling the problem down to a few well-
chosen questions for further study. 

The remarkable collaboration between Mike Hendy and 
David Penny has been characterised by this type of interac-
tion, and has delivered several highlights. An early gem was 
the development of a branch-and-bound algorithm that allowed 
optimal most-parsimonious phylogenetic trees to be constructed 
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on more than just a handful of taxa. Apart from its direct useful-
ness in data analysis, it also set the stage for their bold paper 
in Nature (Penny et al. 1982) that provided the first formal test 
of the theory of evolution in a Popperian framework, requir-
ing, once again, new mathematical input to determine how 
similar one would expect two unrelated trees to be by chance 
alone. A second and more recent highlight of the Hendy–Penny 
collaboration has been the elegant and useful Hadamard rep-
resentation of symmetric models of DNA substitution (Hendy 
& Penny 1989). 

It was particularly exciting to be doing a PhD under their 
supervision at the time they were making this second discovery. 
More recently, I have been fortunate to find myself on the receiv-
ing end of the ‘Here is the solution; now prove it!’ approach of 
David Penny. Often this has been presented as a challenge or bet, 
with an appropriate prize (a bottle of rare single malt whisky) 
as reward for any success. This tradition of the ‘Penny Ante’ 
continues to this day at our annual international phylogenetics 
meetings (see University of Canterbury 2008), with problems 
and challenges posted online to entice the participants. More 
than one paper has resulted from this wager; and any funding 
body would surely be impressed at the research output per dollar 
spent on the whisky prize.

The offer of a prize or challenge may seem quaintly amusing 
or an outright gimmick, but for many mathematicians, it is 
precisely the incentive that will make them pick up a pen and 
start working hard. Inspired by David Penny’s constant pestering 
about finding the limits of phylogenetic accuracy in sequence 
data – a theme that we nicknamed ‘the war on error’ during 
the Bush years – several mathematicians began to establish 
new results that explicitly quantified phylogenetic signal. 
Yet an outstanding problem resisted all attempts to solve; it 
was only after we offered a $100 prize that some very smart 
mathematicians at UC Berkeley finally cracked the problem 
in 2006, and we now have a much more precise idea of how 
much DNA sequence data would be needed to construct a very 
large tree (Daskalakis et al. 2006). The prize was, of course, 
symbolic (but it had to be presented in person) – we estimate 
it would have cost at least 300 times this amount if they had 
charged us for their time. 

Joel Cohen wrote an essay in which he claimed: ‘biology is 
mathematics’ new physics, only better’ (Cohen 2004). While 
certain areas of modern physics, such as string theory, have be-
come theory-rich but data-poor (though the CERN large hadron 
collider may possibly reverse this trend), molecular evolutionary 
biology, by contrast, is overwhelmed with genomic data but 
the analysis is still trying hard to catch up. Moreover, unlike 
string theory, biology has a single and simple unified theory 
(evolution) that provides a framework for understanding what 
these data tell us about species, populations, and their origin 
and development. 

The physicist Eugene Wigner wrote of the ‘unreasonable 
effectiveness of mathematics’ (Wigner 1960) in areas of sci-
ence like physics and astronomy. In biology, the connection 
is less transparent and has taken longer to flourish; later, the 
Italian-born mathematician Gian-Carlo Rota (1986) made this 
scathing remark: 

	 The lack of real contact between mathematics and biology 
is either a tragedy, a scandal or a challenge, it is hard to 
decide which.

But in the two decades since Rota’s comment, some spec-
tacular advances have been made in many areas of computa-
tional, statistical and mathematical biology, including the rise 
of complete new disciplines such as bioinformatics. The type 
of mathematics being applied is often quite different from that 
employed in the physical sciences, where calculus, differential 
equations, and dynamical systems dominate. This part of tra-
ditional mathematics is sometimes referred to by its detractors 
as ‘steam engine mathematics’, though it is still very useful in 
various areas of mathematical biology – from modelling the 
propagation of electrical impulses along nerve fibres to the 
spread of an epidemic through a large population. 

However, the mathematics required in molecular evolution 
has mostly involved other fields – combinatorics, probability, 
algorithmic theory, Markov Chain Monte Carlo methodology, 
and so forth. These have allowed the study and analysis of evo-
lutionary relationships on a scale undreamed of twenty years 
ago. Indeed, it is remarkable how many of the controversies in 
evolutionary biology at that time (for instance, the chimp/hu-
man/gorilla trichotomy or the recent radiation of modern hu-
mans from Africa) have been largely resolved. In their place, 
a new suite of questions have arisen. Developing the theory 
to solve them will require the efforts of the next generation of 
mathematicians, statisticians and computer scientists, working 
closely with biologists – and listening for those occasions when 
a biologist has a hunch what the answer is and lays down the 
ante: ‘just prove it!’ 
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